plist Class for REALbasic

©2006 by MacCrafters Software

Table of Contents

PLIST CLASS FOR REALBASIC 1
NEW TO VERSION 210! ..ottt 3
INSTALLATION......cocuitttiitctete ettt ettt et s a bbb bbb b a b a e 3
INITIALIZATION w.outiiitiitteteeitenttete ettt ettt sht et et s bt et et she e bt eateshee bt eabeshe e bt eabesate bt eabesatesbeeabesatenbeeasesanenbeensenane 3
PLIST AND PLISTIDICT ...euttiuteiteetieite sttt ettt et sttt ettt ettt shte bt et sae e bt eabeshte s bt eabesatesbeembesatesbeeneesaeenbeenseeane 3
HOW TO GET AND SET DATA ..ottt 4
DEALING WITH ARRAYS ..ottt st st 4

Getting Data from an EIEMENLccccccimiiiiiiiiiiiiiiiiieieieeet ettt 4
Nesting Limits of Arrays and DICHORAYIEScccccuecimiiinioiiiiiiieieieieteeteee ettt 5
Looping Through Q@ DICLIORATY..............cccccoueimiiiiiiiiieiiiieeteeet ettt ettt 5
PLIST PROPERTIESceittettiutiittettetesteentteutesttenteeutesbeeteeasesheenbeeasesheenbesaseshee bt easesute bt easesetenbeembesutesbeensesanenbeensenane 5
EFFOF it bbbttt bbbt et eneen 5
EFFPOTMESSAZE..........cec e 6
JOURADICE ...ttt ettt ettt 6
JOUNAKEY ...ttt ettt 6
JOUNAVQIUE..........c..cooiiiiiiiiic ettt ettt 6
JOUNATYPE ...ttt ettt ettt 6
ROOE ..ottt ettt h et et h bttt h ettt h bt ettt et teen 6
PLIST MEETHODSocvtiiiiiiteiiiictete sttt sa s a b a bbbt a e 6
CLOATSOATCI ...ttt ettt ettt b ettt et a et b ettt et ae bbbt st s s e e 7
CLEATMUP ...ttt ettt ettt ettt ettt ettt 7
7 OO UR P PSPRRP 7
FIANGXL. ...ttt ettt ettt ettt h ettt h bttt et h ettt et s ettt ettt neene e 7
PLESE .ottt ettt Rttt h Rttt h bttt et h ettt et es et beeneeneeneene e 8
SAV ettt a et a e a bttt h et h Rt Rttt h Rt Rt bt h e n bbbttt et ene st enes 8
LOGUA ...ttt ettt h e a ettt s ettt et ne et ene e 8
PLISTDICT PROPERTIESc.uttittetieitesteeteeitesttenteeatesteeteeutesheesbeeatesheenbesasesueesbeeasesatenbeeasesutenbeensesutesbeensesanesseensenane 8
INGITE ...ttt a e bt bbbttt et b ettt et et ebeeteen 8
PATORL ..ottt h et b ettt b bttt ettt reen 8
VIAIUES ...ttt h e h et h bt h bRt h bt st he bt bt bt ne bttt neeneeneeneas 8
TYDCS .ot 8
EOF ..ottt bbbttt 9
PLISTDICT METHODS ...cuttiuteittetteitesieett et st et ettt esbe et shtesbeeateshtesbeeasesaee bt eabesatenbeeabesatesbeeabesatesbeensesanenbeenseeaee 9
ADSOIUEEP ANttt ettt ettt b bt b ettt et s ettt ettt et ettt eae st ene s 9
AQAATFAY ...ttt 9
AACRIIA ...ttt 9
APPENAATFAY ...ttt 10
APPENABOOICAN ...ttt 10
APPENACOIOT ...ttt 10
APPENADALG ...ttt 10
APPENADALE ...ttt 10
APPEIADICE ...ttt 10
APPENADOUDIEcceiiiiiiiiiiiiiee et 10
APPENAIRLEZET ...ttt ettt 10
APPEIALIST ...ttt 11
APPENALISTDOX ...ttt 11
APPEIAPOPUP ...ttt ettt 11

APPENAWIIAOW ...ttt ettt 11
CRIIA ..o ettt et e et e et e e e e et e e et e e e eaae e 11
COPY ottt 12
COURL ..ot et ettt et e et e e et e e et e e e et e e e eaaeeseeaaeeeeeaaeeseenaeeeans 12
CUTTEIEKEY ...ttt ettt ettt ettt ettt ettt 12
EEXISES oo e e e e e e e e e e ——— e e e e e ————as 12
GIBOOICAN ... ettt ettt e ettt e et e e 12
GECTHECRDOX ... ettt e ettt e et e e e eaae e 12
GECOILOF ... ettt ettt e e e ettt et e e eae e 13
GOID QI ... e ettt ettt e ettt e e eae e 13
GOIDALE ...ttt ettt et 13
GEIDOUDIE (AEFUNCE) ...ttt ettt ettt ettt ettt ae bbbttt eneeseeneens 13
GEEAIIFTOIA ... e ettt et e et e e e eaae e 13
GOELIST ...ttt ettt et e et e e e e e eae e e 13
GOILISTDOX ... ettt ettt et e e ettt e et e e e 13
GOIPOPUD ...ttt ettt 14
GOIRAMIO ... e ettt ettt e et e ettt e e e eaae e 14
GOIREAL ...ttt ettt e e 14
GOIIMIEGET ...ttt ettt 14
GESIALICTEOXT ...ttt ettt et e et e e et e e ettt e e et e e e et e e e eaaeeeeeaaeeeens 14
GOISIFING ...ttt ettt 14
GOITYPC. ...ttt 14
GEVAIUE ... ettt ettt e e 15
GEWIRAOW ... ettt ettt et e e et e ettt e e e eae e e e eaae e e 15
THUACK ...ttt e e eaaa e 15
MOV e 15
MOVEEFTTFST........oooooeeeeeeeeeeeeee ettt ettt e e e ettt e e e e e e et e e e e e e e aaaaees 15
MOVELAST..........oooooeeeeeeeeeeeee e ettt 15
MOVEINGXE ...ttt ettt e et e e e e e e et 16
ROIAMC. ... ettt 16
ROIMOVE ...t 16
SCIBOOICAN ...ttt ettt et et 16
SCECHECKDOX...........ooceeeeieeeeeeeeeee e ettt et e ettt et e e 16
SCECOLOT ...ttt ettt 16
SCOEDQIA ...ttt ettt ettt e e 16
SCOEUDQLC..........oooooeieeeeeeeee e ettt ettt 16
SEIDOUDIE (AGFUTICE) ...ttt s ettt ettt se st ene s ene s 17
SCIEATEFTCIA ...ttt ettt e e s ae e e 17
SEOUNIEEF ...ttt ettt 17
SCELIST ..o et ettt e et et e e eee e 17
SCILISTDOX ... ettt ettt et e e e 17
SEIPOPUD ...ttt ettt 17
SCIRAIO ... ettt ettt ettt 17
SCIREAL ...ttt et 17
SCISTATICTOXT ..ottt ettt ettt e et e e ettt e e et e e e e e s eeaaeeseaas 18
SOISIFIIG ...ttt 18
SCEWITAOW ...ttt ettt et e ettt e et e s e aae e e 18
NOTES ABOUT LISTBOXES AND POPUP IMENUS.......ccoiiiiiitiiiieiieniieieetesteeteeseesseeseessesseessesssessesssesssesseessessees 18
WHAT CAN CAUSE AN ERROR?cotiiiiiiiiiitietiittesteete st esteete it eteeeaestaeseessesseesseessasssesseessesssansesssesseesessaesseens 18
PLIST EXAMPLEcttiitiiiieiieiteteetteeteete st e bt esvesteeseessesteasseessasssesseessasseasseassasssenseassasssensesssasssenseessesseensessaanseans 19

The plist class is designed to allow you to easily maintain an Apple plist-standard
preferences file for your applications.

New to Version 2.11!

* Move and Copy can now move and copy items from one plist to another.
* The saveFile property of plist is now global. See the saveFile property for more
information.

Installation
To use plist in your application, drag both plist and plistDict onto your project.

Initialization

Use the new constructor to initialize plist (i.e. prefs=new plist). You must pass at
least one parameter to the constructor. This is a folder item that contains the
path to the preferences file you wish to open. The second, optional, parameter is
a folder item that points to a template file. This template file would be your
application's default preferences. This file would be initially read from if the
preferences file does not exist.

It is highly recommended that you use the Property List Editor to build a default
preferences file for your application. While you could build one from scratch
within plist, it could be a daunting task if you have a complex preferences file.

Examples:

This example initializes plist without a template file.
f=PreferencesFolder.child("myapp.plist")
prefs=new plist(f)

This example initializes plist with a template file.
prefFile=PreferencesFolder("myapp.plist")
templateFile=getFolderltme("myapp.plist")
prefs=new plist(prefFile,templateFile)

When you initialize plist, the pretences in the file you specify are automatically
loaded.

plist and plistDict

As you have already noticed, there are two classes used in plist. The plist class
handles loading, saving, and error reporting while the plistDict class contains the
data of the preferences file and all the methods to manipulate the data.

How to Get and Set Data

plist uses a parent-child relationship similar to the Folderltem class. A plist file
consists of a root dictionary. The root dictionary can contain other dictionaries.
These dictionaries are children of the root dictionary. The children dictionaries
may also contain dictionaries and so on. You, of course, will need to know the
structure of your preferences file. Most preferences files are simple and may not
contain any children. Some, like the Finder's preferences file, are quite complex.

All the Get methods have an optional default parameter. This allows you to set a
default value without having to call a Set method. For example,
prefs.root.GetBoolean(“ShowAll”,true) would set ShowAll to true if it doesn’t exist
and return true.

A very simple example of getting or setting a Boolean value would be:
Bool=prefs.root.GetBoolean("ShowAll")
prefs.root.SetBoolean(“ShowAll”,true)

Next is a more complex example of getting or setting data in a child of the root:
Width=prefs.root.child("WindowPosition").GetInteger("width")
prefs,root.child(“WindowPosition”).SetInteger(“width”,self.width)

Dealing With Arrays

Arrays are treated as children. Each element of the array can be anything. It can
even be another dictionary or array. Getting and setting data from an array
varies depending on where you need to get the data. A few examples should
clarify this.

Getting Data from an Element

If the data type of the element is not an array or dictionary, treat the element like
a child.

For example, to get an integer from the secend element of an array called
“myArray”, do this: third - arrays are zero-based!

app.prefs.root.child(“myArray”).Getinteger(“2”)

If, however, the element is an array or dictionary, you must use the Index
method. If, for example, the third element of the array is a dictionary and in the
dictionary is a key called “myData”, you would retrieve it like this:
text=prefs.root.child(“myArray”).index(3).GetString(“myData”)

If the element was an array, you might use something like this:
text=prefs.root.child(“myArray”).index(3).GetString(“2”)

Julia Truchsess

Julia Truchsess
third - arrays are zero-based!

Julia Truchsess

Julia Truchsess

Julia Truchsess

Julia Truchsess

Nesting Limits of Arrays and Dictionaries
There are no nesting limits. They can go as deep as you like.

Looping Through a Dictionary

You may loop through a dictionary (i.e. child) one item at a time. Doing so allows
you to step through the structure without having to know the structure in advance.
This is handy if your application is parsing a plist you did not create. To loop
through a dictionary, use the MoveFirst, MoveNext, MoveLast, and CurrentKey
methods. You will also need to check the eof property. Just to be safe, use
MoveFirst at the beginning of the loop. For example:

Dim key as string

prefs.root.MoveFirst

While not prefs.root.eof
key=prefs.root.CurrentKey
MsgBox "key="+key+" type="+prefs.root.GetType(key)
Prefs.root.MoveNext

wend

If you wanted to look at the structure of a plist that had several dictionaries, you
could call a method recursively. For example:

Sub ShowStructure(dict as plistDict)
Dim key,type as string

dictt.MoveFirst

While not prefs.root.eof
key=dict.CurrentKey
type=dict.GetType(key)
MsgBox "key="+key+" type="+type
If type="dict" or type="array" then

ShowStructure(dict.child(key))

end
Dict.MoveNext

Wend

End sub

plist Properties
The properties of the plist class are:

Error
Type: Boolean

If set to true, then an error has occurred. See What Can Cause An Error? for
more information.

ErrorMessage

Type: String
If an error has occurred, this will contain the error message. See What Can
Cause An Error? for more information.

foundDict

Type: plistDict
Contains the dictionary of the last successful Find.

foundKey

Type: String
Contains of key of the last successful Find.

foundValue

Type: String
Contains the value of the last successful Find.

foundType
Type: String
Contains the type of the last successful Find.

Root

Type: plistDict

This points to the root of the preferences file. When using any method of the
plistDict class, you must use root! For example,
value=prefs.root.Getlnteger("WindowHeight")

saveFile

Type: Folderltem
This points to where the file will be saved and the Save method is called. As of version

2.11, this property is now global. This allows you to easily change where the plist will be
saved. For example, you are writing an application where the user can create something
and then save his/her work. You’ve decided that a plist would be a good storage solution.
So, as the user is working on his/her project, you could use a temporary plist to store the

work. Then, when the user saves it, just set the saveFile property to the Folderltem
returned from the Open File Dialog box and then call the plist Save method.

plist Methods
The methods of the plist class are:

Can onlysearch

Values,

not Keys.

ClearSearch

Input: Nothing

Output: Nothing

Clears the search flags used for FindNext. Normally, you will not need to call
this. It is automatically called when you use Find or if the previous text searched
for doesn’t match the text being searched for in FindNext.

Cleanup

Input: Nothing

Output: Nothing

If the plist file was binary, the Cleanup method will delete any temporary files
created.

This method is also called if you set the Clean parameter in the Save method.
Very Important: Only call this method when you quit your application. Calling it
earlier may cause unexpected results and crashes.

Find DOESN"T LIKE EMPTY DICTS!

Input: searchText as String
Output: Boolean
Finds the first occurrence of the search string (searchText) in the plist. If found,
true will be returned and the following properties in plist will be populated:
* foundDict — This is the dictionary in which the item was found. This is a
pointer to that dictionary. Therefore it is a plistDict object.
* foundKey — The name of the key in which the item was found.
* foundValue — The entire value in which the item was found.
* foundType — The data type in which the item was found.

Example:
if prefs.Find(“Smith”) then
MsgBox “key="+prefs.foundKey
MsgBox “value="+prefs.foundValue
MsgBox “type="+prefs.foundType
MsgBox “Full Name="+prefs.foundDict.GetString(“firstName”)+”
“+prefs.foundDict.GetString(“lastName”)
End

The above example searches for the word “Smith” and returns the key, value,
and type. It also uses the foundDict property to display the first and last name of
the person found.

FindNext

Input: searchText as String
Output: Boolean
Finds the next occurrence of the search string (searchText) in the plist. If a

Julia Truchsess
Can only search Values,
not Keys.

Julia Truchsess
DOESN"T LIKE EMPTY DICTS!

Julia Truchsess

Julia Truchsess

Julia Truchsess

search has not been done on this text before, it will find the first occurrence. See
Find for more details.

Plist

Input: prefFile as Folderltem,[templateFile as Folderltem]
Output: Object
This is the constructor class. See Initialization above for more details.

Save

Input: [clean as Boolean]

Output: Nothing

Saves the preferences file to disk. If Clean is set to true (the default is false and
it is optional), then any temporary files will be deleted. This applies only to
saving binary plists. Very Important: Only set Clean to true when exiting your
program! Doing so in the middle somewhere may cause unexpected results.

Load

Input: prefFile as Folderltem,[templateFile as Folderltem]

Output: Nothing

Loads a preferences file. You do not need to call this after you initialize plist — it
is called automatically. Use this method if you wish to re-load the file.

plistDict Properties
Listed below are some properties of plistDict you may find useful.

Name
Type: String
The name of the child (the root is called "root")

Parent
Type: plistDict
A pointer to the parent of the child.

Values
Type: Dictionary
The key-value pairs of the child.

Types
Type: Dictionary
The types of the elements in the child.

EOF

Type: Boolean
End-of-File. Check this property if you are using the MoveNext method.

plistDict Methods
Listed below are all of the methods of plistDict.

AbsolutePath

Input: Nothing

Output: String

Returns a colon-delimited string showing the path from root to the array or
dictionary. While this method may not be useful for normal use, it may come in
handy if you are looping through a plist you don’t know the structure of.

Examples:
path=prefs.root.child(“myChild”). AbsolutePath — This would be returned as
“:root:myChild”

AddArray

Input: name as String
Output: Nothing
Adds an array to a child.

Examples:

prefs.root. AddArray(“myArray”) — Adds an array to the root.
prefs.root.child(“myChild”). AddArray(“myArray”) — Adds an array to a child called
“myChild”.

prefs.root.child(“myRootArray”).index(3).AddArray(“myArray”) — Adds an array to
the index of another array. In this case, the array is called “myRootArray” and it
is being added to the third element in the array.

AddChild

Input: name as String

Output: Nothing

Adds a child (i.e. dictionary). If the name you pass already exists, the error
property will be set.

Examples:

prefs.root. AddChild(“newChild”) — Adds a child to the root.
prefs.root.child(“firstChild”). AddChild(“anotherChild”) — Adds a child to another
child called “firstChild”

AppendArray

Input: Nothing
Output: Nothing
Appends an array to an array.

Example:
prefs.root.child(“myArray”).AppendArray — Appends an array to an array called
“‘myArray”

AppendBoolean

Input: value as Boolean
Output: Nothing
Appends a Boolean value to an array.

AppendColor

Input: value as Color

Output: Nothing

Appends a string value with a hex representation of the color passed. For
example, white would be stored as FFFFFF.

AppendData

Input: value as String
Output: Nothing
Appends data to an array.

AppendDate

Input: value as Date
Output: Nothing
Appends a date value to an array.

AppendDict

Input: Nothing
Output: Nothing
Appends a dictionary (i.e. child) to an array.

AppendDouble

Input: value as Double
Output: Nothing
Appends a double value to an array.

Appendinteger

Input: value as Integer
Output: Nothing
Appends an integer value to an array.

10

AppendList

Input: items() as string, startindex as integer, endindex as integer

Output: Nothing

Appends a list of items (array) to an array. The startindex and endindex
parameters allow you to control which items in the array you want saved to the
plist.

Examples:

prefs.root.child(“myArray”).AppendList(items,1,UBound(items)) — Adds all
elements in the array starting at 1.

prefs.root.child(“myArray”). ApopendList(items,1,2) — Adds only the first and
second elements to the array.

AppendListbox

Input: list as Listbox
Output: Nothing
Appends a list box’s items to an array.

AppendPopup

Input: list as Listbox

Output: Nothing

Appends a popup menu’s items to an array.

AppendString

Input: value as String
Output: Nothing
Appends a string value to an array.

AppendWindow

Input: win as Window
Output: Nothing
Appends a window’s title, position, and size to an array.

Child

Input: name as String
Output: plistDict
Returns the plistDict object of the name of the child passed.

Examples:

dim d as plistDict

d=prefs.root.child(“myDictionary”) — Assigns the child “myDictionary” to the d
property.

prefs.root.child(“myDictionary”).SetString(“name”,”"Bob”) — Sets the key “name” to
the value of “Bob” in the root’s child called “myDictionary”.

11

Copy

Input: key as String,dest as plistDict

Output: Nothing

Copies an element from one dictionary or array to another dictionary or array. If the
destination is an array, the entry is appended to it.

Example:
prefs.root.Copy(“myPage”, prefs.root.child(“pages”)) — This will copy “myPage” to the
destination dictionary.

Count

Input: Nothing

Output: Integer

Returns the number of entries in the child. You can also use this to get the
number of elements in an array.

Examples:

c=prefs.root.child(“myDictionary”).Count — Returns the number of entries in the
child “myDictionary”

c=prefs.root.child(“myArray”).Count — Returns the number of elements in the
array.

CurrentKey

Input: Nothing

Output: Nothing

Returns the name of the current key. Use this in conjunction with MoveFirst,
Movelast, and MoveNext.

Exists

Input: key as String
Output: Boolean
Determines if a key exists.

GetBoolean

Input: key as String,[default as Boolean]
Output: Boolean
Returns the Boolean value of the key passed.

GetCheckbox

Input: box as Checkbox

Output: Nothing

Sets a checkbox’s value depending on what is in the plist. The key of the value
is the name of the checkbox.

12

GetColor

Input: key as String,[default as Color]
Output: Color
Returns the Color value of the key passed.

GetData

Input: key as String,[default as String]
Output: String
Returns the String value of the key passed.

GetDate

Input: key as String,[default as Date]
Output: Date
Returns the Date value of the key passed.

GetDouble (defunct)

Input: key as String,[default as Double]

Output: Double

Returns the Boolean value of the key passed. Use GetReal instead as this
function is only provided for backward compatibility.

GetEditField

Input: field as EditField

Output: Nothing

Populates an EditField’s text property with the value in the plist. The key of the
value is the name of the EditField.

GetList

Input: key as String,items() as string

Output: Nothing

Populates the array you pass with items from the array in the plist. Please note
that, unlike most of the other Get methods, this one does not return a value.
Instead, it populates the array that is passed.

GetListbox

Input: list as Listbox, setDefault as Boolean

Output: Nothing

This will populate the list box passed with the items in the plist. If the setDefault
parameter is set to true, then the default value stored in the plist will be selected
in the list box. See Notes About Listboxes and Popup Menus for more
information.

13

GetPopup

Input: list as PopupMenu, setDefault as Boolean

Output: Nothing

This will populate the popup menu passed with the items in the plist. If the
setDefault parameter is set to true, then the default value stored in the plist will
be selected in the popup. See Notes About Listboxes and Popup Menus for more
information.

GetRadio

Input: radio as RadioButton

Output: Nothing

Sets a RadioButton’s value to the value in the plist. The key of the value is the
name of the RadioButton.

GetReal

Input: key as String, [default as double]
Output: Double
Returns the Double value of the key passed. Use this instead of GetDouble.

Getinteger

Input: key as String,[default as Integer]
Output: Integer
Returns the Integer value of the key passed.

GetStaticText

Input: txt as StaticText

Output: Nothing

Sets the caption property of the StaticText to the value in the plist. The key of the
value is the name of the StaticText field.

GetString

Input: key as String,[default as String]
Output: String
Returns the String value of the key passed.

GetType
Input: key as String
Output: String
Returns the data type of the key. The possible values are:
* Boolean
* Date
* Real
* Integer
* String

14

* Dict
* Array

GetValue

Input: key as String, [default as String]
Output: String
Returns the value as a string no matter what type it is.

GetWindow

Input: key as String, win as Window

Output: Nothing

Sets a window’s title, position, and size. If the key you pass doesn't exist, then
the properties of the Window object you pass will be used as the default.

Index

Input: index as Integer

Output: plistDict

Used with arrays. Use this for multi-dimensional arrays or if an element in an
array contains a dictionary or another array.

Example:

s=prefs.root.child(“myArray”).index(1).GetString(“mySite”) — Returns the value of
“mySite” which is located in a dictionary of the first element of the “myArray”
array.

Move

Input: key as String,dest as plistDict

Output: Nothing

Moves an element from one dictionary or array to another. After moving the element, the
original one is deleted. . If the destination is an array, the entry is appended to it.

Example:
prefs.root. Move(“myElement”,prefs.root.child(“myDict’))

MoveFirst

Input: Nothing
Output: Nothing
Moves to the first item in the child.

Movelast

Input: Nothing
Output: Nothing
Moves to the last item in the child.

15

MoveNext

Input: Nothing

Output: Nothing

Moves to the next item in the child. Use CurrentKey to find out what the key
name is.

Rename

Input: key as string,newName as string

Output: Nothing

Renames an element to the new name. Any element can be renamed including
dictionaries and arrays.

Remove

Input: ToRemove as Variant

Output: Nothing

Removes an element from a dictionary or an array. To remove an element from
an array, pass an integer. To remove an element from a dictionary, pass the
name as a string.

SetBoolean

Input: key as String, value as Boolean
Output: Nothing
Sets a value as Boolean.

SetCheckbox

Input: box as Checkbox
Output: Nothing
Sets a Boolean with the name of the key being the name of the Checkbox.

SetColor

Input: key as String, value as Color

Output: Nothing

This method converts the data of the color data type to a hex value and stores it
as a string.

SetData

Input: key as String, value as Color
Output: Nothing
Sets a data value as a string.

SetDate

Input: key as String, value as Date
Output: Nothing
Sets a date value.

16

SetDouble (defunct)

Input: key as String, value as Double

Output: Nothing

Sets a double value. Use SetReal instead. This method is provided for backward
compatibility.

SetEditField

Input: field as EditField
Output: Nothing
Sets a String with the name of the key being the name of the EditField.

Setinteger

Input: key as String, value as Integer
Output: Nothing
Sets an integer value.

SetList

Input: key as String, items() as String, startindex as Integer, endindex as Integer
Output: Nothing

This method is an easy way to create an array from an array. The startindex and
endIndex parameters allow you to control which items in the array will be stored.

SetListbox

Input: list as Listbox

Output: Nothing

This method stores the items in the list box and the selected value, if any. The
name of the key is the name of the list box. See Notes About Listboxes and
Popup Menus for important information.

SetPopup

Input: list as PopupMenu

Output: Nothing

This method stores the items in the list box and the selected value, if any. The
name of the key is the name of the list box See Notes About Listboxes and
Popup Menus for important information.

SetRadio

Input: radio as RadioButton
Output: Nothing
Sets a Boolean with the name of the key being the name of the RadioButton.

SetReal
Input: key as String, value as Double

17

Output: Nothing
Sets a double value. Use this instead of SetDouble.

SetStaticText

Input: txt as StaticText
Output: Nothing
Sets a String with the name of the key being the name of the StaticText field.

SetString

Input: key as String, value as String
Output: Nothing
Sets a string value.

SetWindow

Input: key as String, win as Window

Output: Nothing

This method actually creates another dictionary that contains the window’s name,
position, and size.

Notes About Listboxes and Popup Menus

You may notice that there is no key parameter for GetListbox, GetPopup,
SetListbox, and SetPopup. This is because the key is the name of the list box or
the popup menu. Plist can also handle arrays of list boxes and popup menus. If
a list box or popup menu is part of an array, its key will have its index tacked onto
the end. For example, if you have an array of list popup menus called favorites,
The key of the first popup menu would be “favorites.0”, the second “favorites.1”
and so on.

What Can Cause An Error?

plist is designed to trap and report all sorts of errors. When an error occurs, the plist
Erro property is set to true and the plist ErrorMessage property contains the message.
If you wish to be notified via a message box when an error occurs, set the plist debug
property to true.

To aid you in tracking down error, below is a list of all the possible errors and what can
cause them.

Error Possible Cause

Key does not exist A key you are reference doesn’t exist.

Illegal Type You are trying to do a Get or Set on an
element that is actually a dictionary or
array.

Type Mismatch You are trying to Set a different data type
than what the element is. For example, if

18

you did prefs.root.SetString(“date”,date)
and the “date” element is actually a date,
you would get this error.

Could not create date object The date that was passed could not be
parsed into a date format.

Child Exists A child you are trying to add already exists.

Array Exists An array you are trying to add already
exists.

[key] is not an array You are trying to append to something that
is not an array.

Subscript out of range You are trying to reference an element in
an array that is beyond the actual number
of elements.

Source cannot be a dictionary or an array You are attempting to either Move or Copy
a dictionary or an array.

Source does not exist The source in Move or Copy does not
exist.

Destination is nil The destination in Move or Copy is nil.

Key [key] already exists You are attempting to Rename an element
to a key that already exists.

plist Example

Included with the plist are three sample projects.

* The plist Example project shows you how to use some of the methods in
plist. It also shows you how to save a list of opened windows and then re-
open them when the application is re-launched. When you click on the
Save button, the plist will be displayed in the edit field below it.

* The From Scratch Example project shows you how to create a plist from
scratch within your code.

* The Safari Search project shows you how to use the Find methods as well
as some of the “all-in-one” methods such as SetCheckbox and SetRadio.

Hopefully, this documentation has provided you with enough information to make
effective use of the plist and plistDict classes. The classes were tested against
the Finder's plist (a rather complex plist). If you have any questions or come
across any problems, feel free to send an email to macmage @maccrafters.com

19

