

REALbasic 2010 Release 1 User’s Guide

Documentation by David Brandt.
© 1999-2009 by REAL Software, Inc. All rights reserved.
Printed in U.S.A.

Version 2010 Release 1, February, 2010

Mailing Address REAL Software, Inc.
PO Box 162181
Austin, TX 78716

Web Site http://www.realsoftware.com

ftp Site ftp://ftp.realsoftware.com

Support REALbasic Feedback at the REAL Software web site.

Bugs/
Feature Requests

Submit via REALbasic Feedback at the REAL Software
web site.

Database Plug-ins The REALbasic CD; the most recent versions are at
www.realsoftware.com.

Sales sales@realsoftware.com

Phone 512-328-REAL (7325)

Fax 512-328-7372

Contents

CHAPTER 1 Introduction . 19

Contents . 19
Welcome to REAL Studio . 20
Installing REAL Studio. . 21

Windows Requirements . 21
Linux Requirements . 21
Macintosh Requirements . 21

Where to Begin . 22
Documentation Conventions . 22
Using the On-Line Help . 23

Searching the Online Reference . 25
Context-Sensitive Help . 25
Context-Sensitive Error Messages 26

Using Tips . 26
Electronic Documentation . 27
Our Support Web Page . 28
End User Web Sites . 28
REAL Studio Developer . 28
REAL Studio third-party Books . 28
Our Internet Mailing Lists . 28
Obtaining Updates . 28
Technical Support from REAL Software 29

Contacting REAL Software . 29
Reporting Bugs and Making Feature Requests 30

CHAPTER 2 Getting Started with REAL Studio 31

Contents . 31
Concepts . 32

Applications are Driven by Events 32
3REALbasic User’s Guide

Contents
Developing Software with REAL Studio 32
The Development Environment . 33

The REAL Studio IDE Window . 35
The Window Layout Editor . 36

The Project Editor . 40
The Code Editor . 46
The Menu Editor . 49

Configuring the IDE for Multiple Windows 51
Working with the Tabs bar . 53

The Contextual Menu . 53
Hiding the Tabs bar . 53
Dragging a Tab . 54

The Main Toolbar . 55
Customizing the Main Toolbar . 58

The Bookmarks Bar . 59
REAL Studio IDE Menus . 61

The File Menu . 61
The Edit Menu . 63
The Project Menu . 65
The View Menu . 68
The History Menu . 70
The Bookmarks Menu . 71
The Window Menu . 72
The Help Menu . 73

Working with Projects . 73
Creating a New Project . 74
Configuring the Project Editor Toolbar 77
Adding Items to Your Project . 79
Removing Items from Your Project 81
The Project Editor Contextual Menu 81
Saving Your Project . 84
Creating Project Templates . 87

CHAPTER 3 Building a User Interface 89

Contents . 90
Working with Windows. . 90

Window Types . 90
Creating Windows. 102
Removing Windows . 103
Setting the Default Window . 104
Encrypting Windows . 107
4 REALbasic User’s Guide

Contents
Message Dialog Boxes . 108
The MsgBox function . 109
The MessageDialog Class . 109

Interacting with the User Through Controls 113
Favorites Controls . 114
Adding, Changing, and Removing Controls 116
Understanding Control Layers . 131
Understanding The Focus . 132
Full Keyboard Access . 137
Duplicating Controls . 139
The Object Hierarchy . 139
Button Controls for Performing Actions 140
Controls for Displaying and Entering Text 143
HTMLViewer . 146
Controls for Displaying and Entering Numeric Values 147
Controls for Presenting a List of Choices 149
Controls for Visually Grouping Other Controls 155
Controls for Displaying Graphics and Pictures 160
Controls for Playing Movies, Music, and Animation 163
Miscellaneous Controls . 164
Controls for Handling Communications 165
Toolbar Control . 168
The Timer . 173
Controls for Working With Databases 173
The Spotlight Query Control . 174
ActiveX Controls . 174
The Container Control . 177
Opening an Old Project . 178

Changing The Tab Order . 179
Using the Edit Tab Order Mode 180
Auto-Adjustment of the Tab Order 183

Aligning Controls with Other Controls. 183
Spacing Controls Evenly . 184

The Control Hierarchy. 184
Control Hierarchy Features . 187

Adding Menus and Menu Items . 189
The Default Menubar . 190
Adding Menubars . 192
Adding Menus . 193
Adding a Help Menu . 196
Adding Menu Items . 196
Adding a Submenu . 200
5REALbasic User’s Guide

Contents
Adding a Menu Item to the Mac OS X Apple and Application Menus .
202
Moving Menus and Menu Items 204
Converting a Menu Item to a Menu 205
Removing Menu Items . 205
Adding A Menu Item Separator 205
Creating MenuItems on the Fly . 205
Importing and Exporting Menus 207

User Interface Guidelines . 208

CHAPTER 4 BASIC Programming Concepts 211

Contents . 211
BASIC versus REAL Studio . 212
Storing Values in Properties and Variables 213

What are Properties? . 213
Variables . 213
Data Types . 213
Changing a Value From One Data Type to Another. 219
Assigning Values to Properties . 219
Getting Values From Properties 222
Getting and Setting Values in Variables 223
Declaring Objects . 227
Using Arrays . 229
Mathematical Operators . 235
Operator Precedence . 236
Constants . 236

Reserved Words . 240
Executing Instructions with Methods 241

Passing Values to Methods . 241
Returning Values from Methods 243
Passing Parameters by Value and by Reference 244
Using the Meta-Constant . 245

Documenting Your Code . 247
Comparison Operators . 249

Logical Comparisons . 250
Bitwise Comparisons . 251

Executing Instructions Repeatedly with Loops 252
While...Wend . 253
Do...Loop . 253
For...Next . 254
The For…Each statement . 257
6 REALbasic User’s Guide

Contents
Adding Loops to your Code. 258
Making Decisions with Branching . 260

If…Then…End If . 260
If...Then...Else...End If . 261
If...Then...ElseIf...End If . 262
If...Then...Else . 262
#If...#Endif . 262
Select...Case . 264

CHAPTER 5 Programming with Events and Objects 271

Contents . 271
Understanding Event-Driven Programming 272
Using The Code Editor . 273

Opening the Code Editor . 273
Configuring the Code Editor . 275
The Browser . 278
Understanding Methods in the Code Editor 282
Opening a Window from its Code Editor 296
The Code Editor’s Contextual Menu 297
Searching your Project . 297
Finding using the Contextual Menu 302
Copying and Pasting Code . 304

Printing Your Code . 304
Importing and Exporting Your Classes, Menus, Modules, and Windows 305

External Project Items . 305
Importing . 305
Exporting . 307
Encrypting Your Source Code. 307

Responding To User Actions with Event Handlers 309
Object-Oriented Programming . 310
Windows Events . 311

Opening Windows . 313
Adding Properties to Windows . 314

The Scope of a Property. 315
Declaring an Array as a Property 316
Computed Properties . 321
Shared Methods and Properties 322

Adding Constants to Windows . 324
The Scope of Window Constants 324
Localizing an Application using Constants 325
Converting a Literal to a Constant 327
7REALbasic User’s Guide

Contents
Adding Methods to Windows . 329
Passing Parameters to Methods 329
Returning Values from Methods 330
The Scope of Methods . 331
Dynamic Method Creation . 334
An Example Method . 335
Passing a Parameter by Value or Reference 336
Setting Default Values for a Parameter 338
Setter Methods . 340
Constructors and Destructors . 341
Attributes . 341

Accessing Items of Other Windows 342
Controls . 345
Events . 345

Creating New Instances of Controls On The Fly 346
Sharing Code Among An Array of Controls 348
Drag and Drop . 350

Dragging Text From TextFields . 350
Dragging a Row From a ListBox 351
Dragging from an ImageWell . 351
Dragging from a Canvas Control 352
Dropping. 352
Dropping Items On TextAreas . 353
Dropping Items on ListBoxes . 354
Dropping Items on ImageWells and Canvas controls 355
RawData and PrivateRawData Properties 356

Menus and Menu Items . 357
Adding Code To a Menu Handler 359
Enabling Menu Items . 360
Handling Menu Items From Individual Controls 361
Handling Menu Items When a Window Is Open. 361
Handling Menu Items When No Windows Are Open 361
Creating New Menu Items On The Fly 362
Displaying a Contextual Menu . 364
Classes . 365

CHAPTER 6 Adding Global Functionality with Modules . . 367

Contents . 368
Understanding Modules . 368
Adding A New Module . 368

Scope of a Module’s Items . 370
8 REALbasic User’s Guide

Contents
Adding Methods to Modules . 370
Adding Properties to Modules . 373
Adding Constants to Modules . 375

Adding a Constant to a Module 376
Color constants . 378
Using Constants to Localize your Application 378

Adding Classes to Modules . 384
Converting a Project Class to a Module Class 385

Adding Class Interfaces to Modules 387
Adding Event Definitions to Modules 392

Adding Delegates to Modules . 393
Structures . 394

Creating a Structure . 394
Using Structures . 396
Structure Alignment . 397

Adding an Enumeration to a Module 397
Nesting a Module in a Module . 399
Class Extension Methods . 401
Importing and Exporting Modules . 402

Exporting . 402
Importing . 402

Encrypting Modules . 403

CHAPTER 7 Working With Text and Graphics 405

Contents . 405
Working With Fonts. 406

The System and SmallSystem Fonts 406
What Fonts Are Available? . 406

Working with the Selected Text . 407
Creating a Password Field . 408
Formatting and Filtering Text Entry 408

The Format Property . 408
The Mask Property . 409

Handling Styled Text . 409
Determining the Font, Size, and Style of Text 410
Setting the Font, Size, and Style of Text 411

Working with StyledText Objects . 412
Working with Text Encodings . 416

Text Encodings: From ASCII to Unicode 416
Changing Your Code To Handle Text Encodings 417
9REALbasic User’s Guide

Contents
Formatting Numbers, Dates, and Times 420
Numbers . 420
Dates . 421
Times . 423

Searching using Regular Expressions 424
Adding Pictures and Drawing Graphics 427

Understanding the Coordinates System 427
Displaying Pictures In a Window 428
Creating Pictures . 431
Drawing Standard Dialog Icons. 435
Drawing Pixels . 436
Drawing Lines . 437
Drawing Ovals . 437
Drawing Rectangles . 437
Drawing Polygons . 438
Drawing into a Region in the Graphics Object 439
Creating Custom Controls with the Canvas Control 440

Working with Vector Graphics . 442
Drawing and Displaying a Vector Object 443
Opening and Saving Vector Graphics 445

Working With Color. 445
Determining the RGB Values For a Color 446
The Pixel Property of Graphics Objects 448

Printing Text and Graphics . 448
Working with the Page Setup Dialog Box 448
Printing With The Print Dialog Box. 449
Printing Without The Print Dialog Box 450
Printing Styled Text . 450

Transferring Text and Graphics with the Clipboard 451
Testing The Clipboard For Specific Data Types 451
Getting Data From The Clipboard 452
Putting Data On The Clipboard. 452

CHAPTER 8 Creating Reports . 455

The Report Layout Editor . 456
Report Editor Controls . 456
Report Editor Toolbar . 457
Report Editor Areas . 457
Adding a Report to a Project . 458
Adding a Grouping Section . 460

Report Editor Examples . 464
10 REALbasic User’s Guide

Contents
Using a Database as a Data Source 464
Using a Text File as a Data Source 470

CHAPTER 9 Working With Files . 479

Contents . 479
Understanding File Types . 480

Using The File Types Editor . 480
Creating Custom File Types for Your Application 489

Understanding FolderItems . 491
How Are Shortcuts and Aliases Handled? 491
Getting a File at a Specific Location 492

Accessing Specific System Folders 494
Verifying that you have accessed the Item. 495
Creating a New FolderItem . 496
Getting Information About a FolderItem 496
Deleting a FolderItem . 496
Getting and Setting Ownership 497
Getting and Setting Permissions 497
Getting The Path To Your Application’s Folder 500
Getting Specific Items In the Application’s Folder 500
Getting The Selected File From An Open File Dialog Box 501

Getting The Selected Folder From An Open Folder Dialog Box. 504
Using the Save As Dialog Box. 507
Working With Text Files . 510

Reading From a Text File . 510
Writing to a Text File . 512
Limitations of Text Files . 514

Working With Styled Text Files . 514
Loading Styled Text Into a TextArea 514
Writing Styled Text From a TextArea to a File 514

Working With Picture Files . 516
Saving Pictures. 516
Opening Pictures . 518

Working With Sound Files . 519
Working With Movie Files . 520
Working With Binary Files . 521

BinaryStreams . 522
Reading From a Binary File . 522
Writing to a Binary File . 523

Working With Macintosh Resources 524
11REALbasic User’s Guide

Contents
Opening a File’s Resource Fork . 524
Adding a Resource Fork to a File 525
Adding a Resource Fork to a Project 525
Supported Resource Types . 526
Reading Resources . 526
Writing To Resources . 528
More Information on the ResourceFork 528

Files Opened From the Desktop . 529
Files Opened by Double-Clicking 529
Files Dropped On Your Application’s Icon 529
Creating New Files . 529

CHAPTER 10Creating Reusable Objects with Classes 531

Contents . 531
The Benefits of Classes . 532

Reusable Code . 532
Smaller Projects and Applications 532
Easier Code Maintenance . 532
Easier Debugging . 532
More Control . 532

Understanding Instances . 533
Understanding Subclasses . 533

What is a Subclass? . 533
Examples of Subclasses . 533

Referring to a Class’s Properties and Methods From Within the Class . 538
Creating Classes . 539

Creating a Subclass from an Existing Class 540
Creating a Superclass from an Existing Class 541

Saving Classes . 542
External Project Items . 542

Modifying Classes . 543
Scope of a Class’s Methods, Properties, and Constants 543
Adding Properties . 544
Customizing the Properties List. 545
Adding Computed Properties. 549
Adding Shared Properties. 552
Adding Constants . 553
Adding Methods . 555
Adding Shared Methods . 557
Adding Event Definitions . 558
Adding Structures . 561
12 REALbasic User’s Guide

Contents
Structure Alignment . 564
Adding Enumerations . 564
Adding Delegates . 566

Virtual Methods . 568
Extending Classes . 568

Writing a Class Extension Method 568
Calling a Class Extension Method 569

Constructors and Destructors . 569
Constructors . 570
Old Syntax . 571
Destructors. 571

Overloading . 572
Overloading Custom Classes . 572
Assigning a Value to a Method . 573

Using Arrays of Classes . 575
Casting . 576
Managing Menus within Classes . 577
Using Classes in Your Projects . 577

The Class . 577
The Instance . 577
The Reference . 578
Subclasses Based on Controls . 578
Classes Based on Classes Other Than Controls 578
Accessing the Properties and Methods of a Class 579
When are Instances of Classes Removed From Memory? 580

The Application Class . 580
Special Event Handlers . 581
Scope of the App Class’s Properties 582
Scope of the App Class’s Methods 582

Creating Custom Interface Controls with Classes 583
Drawing Your Custom Control . 584

Class Interfaces . 585
Implementing Methods . 590
Modifying and Deleting Interfaces 591
A Class Interface Example Project 591
Creating a new Class Interface from an Existing Class. 593

Interface Inheritance . 594
Introspection . 597
Importing Classes From Other Projects 598

Importing External Project Items 599
Exporting Classes For Use In Other Projects 599

Encrypting Your Source Code. 599
13REALbasic User’s Guide

Contents
Deleting Classes From a Project . 602

CHAPTER 11Creating Databases with REAL Studio 603

Contents . 603
REAL Studio’s Database Architecture 604
Structured Query Language . 604
REAL Studio’s Database Tools . 605

Selecting a REAL Data Source. 605
Creating and Modifying Databases from the Project Editor 607

Adding Indexes . 609
Viewing Data . 610
Storage Types and Column Type Affinities 615

The DatabaseQuery Control . 617
The DataControl Control . 618
Creating a Database Front End Programmatically. 619

Accessing a Data Source . 619
Creating a Database in Code . 620
Opening a Data Source . 621
Editing Records . 623
Listing Records. 626
Adding Records . 627

CHAPTER 12Debugging Your Code . 631

Contents . 631
What is Debugging? . 632

Logical Bugs . 632
Syntactical Bugs . 632
Analyzing the Project . 632
Filtering Types of Issues . 636

The Debugger . 636
Breaking into the Debugger . 637
The Debugger Screen . 638
Controlling Execution . 647

Following the Execution of Methods 648
Step . 648
Step In . 648
Step Out . 649
Tracking Method Execution with the Stack 649

Watching Your Values . 649
14 REALbasic User’s Guide

Contents
Local Values . 649
Parameters . 650
Global Values . 650
Object IDs . 650

Starting and Stopping Your Project 651
Runtime Exception Errors . 652

Handling Runtime Errors . 653
Profiling your Project . 655
Remote Debugging . 657

About Firewalls . 663

CHAPTER 13Communicating With The Outside World 665

Contents . 665
Communicating With Serial Devices 666

Getting Set Up . 666
Opening the Serial Port . 666
Reading Data . 666
Writing Data . 667
Changing a Serial Control’s Configuration on the Fly 668
Closing the Port . 668
Communicating With Modems . 668
Communicating with USB and FireWire Devices 668

TCP/IP Communications with the TCPSocket Control 669
Getting Set Up . 669
Making a Connection to Another Computer 670
Listening For a Connection From Another Computer 670
Reading Data . 670
Writing Data . 671
Handling Errors . 672
Orphaning a Socket . 673
Maximum Number of Sockets . 673
Closing the Connection . 674
Sending and Receiving Email via TCP/IP 674
HTTP Communications . 675

Handling Multiple Connections with the ServerSocket Control 675
Reference Counting . 676

Handling Secure TCP Connections with the SSLSocket Control 676
UDP Connections with the UDPSocket Control 677

Datagrams . 678
UDPSocket Modes . 678

Making Networking Easy . 679
15REALbasic User’s Guide

Contents
The AutoDiscovery Class . 680
Understanding Protocols . 681

CHAPTER 14Extending the Capabilities of REAL Studio . . . 683

Contents . 683
Making API calls to the Operating System 684
Calling AppleScripts . 685

Preparing an AppleScript to Work in REAL Studio 685
Adding an AppleScript to a Project 685
Passing Values To an AppleScript. 686
Returning Values From an AppleScript. 686
Calling an AppleScript . 686
Removing an AppleScript . 686

Communicating with AppleEvents . 687
Sending AppleEvents . 687
Receiving AppleEvents . 687
Sophisticated AppleEvents . 688

Using and Writing REAL Studio Plug-ins 689
Loading Plug-ins . 689
Using Plug-ins . 689
Including Plug-ins in Your Stand-Alone Applications 689
Writing Your Own Plug-ins . 689

Using PowerPC Shared Libraries . 690
Microsoft Office Automation . 690

ActiveX Components . 691

CHAPTER 15Building Stand-Alone Applications 693

Contents . 694
Choosing a Target Platform . 694

Building Your Application . 695
Building for Windows . 696
Incremental Compilation . 697
Analyzing the Project . 699

Customizing the Standalone Application’s Properties 700
Appearance Settings . 701
Version Information . 702
Windows Settings . 705
Linux Settings . 706
Mac Settings . 706
16 REALbasic User’s Guide

Contents
Debugger . 706
Advanced . 707

Preparing your Application for Compilation 712
Compiling for Windows . 713
Mac OS X Considerations . 716
Linux Considerations . 718

Assigning Custom Document Icons . 719
Region Codes . 720

CHAPTER 16Converting Visual Basic Projects to REAL Studio
723

Contents . 723
VB Migration Assistant . 724

What doesn’t it do? . 724
Supported Versions of VB . 724
Third-party Controls . 724
Converting a VB Project . 724
Encoding Issues on Windows . 727
Encoding Issues on Macintosh and Linux 727
Non-English File Names . 727
Auto-opening your Project . 728

Database Options . 728

Index . 729
17REALbasic User’s Guide

Contents
18 REALbasic User’s Guide

CHAPTER 1 Introduction

Before you get started developing applications with REAL Studio, there are a few
things you should know. Reading this chapter will help you understand how to
install REAL Studio and how to get answers to your questions.

Contents

n Welcome to REAL Studio

n Installing REAL Studio

n Documentation conventions

n Using the Online Reference

n Other helpful resources

n Contacting REAL Software
19REALbasic User’s Guide

Introduction
Welcome to REAL Studio
REAL Studio makes it easy to build powerful applications quickly. If you are new to
programming, you will find REAL Studio’s programming language easy to learn. If
you are an experienced programmer, you will find the language to be powerful. In
either case, you will find you can accomplish quite a bit in a short period of time.

REAL Studio has a visual graphical user interface (“GUI”) builder that lets you
build your application’s user interface without any (or very little) programming. If
you know how to drag and drop, you can build an interface. REAL Studio provides a
rich set of interface controls and you can create your own controls as well.

REAL Studio’s programming language, REALbasic, is an object-oriented version of
the BASIC programming language. BASIC is an acronym that stands for Beginners
All-Purpose Symbolic Instruction Code. It was originally designed to be used for
teaching programming. Consequently, its syntax is less cryptic and easier to under-
stand than most languages. REALbasic supports most of BASIC’s commands. How-
ever, that is where the similarities between BASIC and REALbasic end.

Most forms of BASIC are interpreted. This means that they include a translator that
has to constantly translate BASIC code into the code that the computer can actually
understand. REALbasic has no interpreter. REALbasic compiles your code when
you run your application.

REALbasic’s form of the BASIC language is also “object-oriented.” This means that
it uses a modern architecture that most popular programming languages (like C++
and Java) are using today. Object-oriented programming languages make it easier to
write and debug because the code is written as individual objects that are similar to
objects in the real world. In fact, in many ways REALbasic is more object-oriented
than languages like C++ and certainly easier to learn and program.

REAL Studio also makes application development faster and easier than traditional
languages by removing the need to learn how to access the programming interface
for the operating system. This application programming interface (or “API” for
short) consists of thousands of commands, not one of which you ever need to learn to
build applications in REAL Studio.
20 REALbasic User’s Guide

Introduction
Installing REAL Studio
The REAL Studio application has the following hardware and operating system
requirements:

Windows
Requirements

To run REAL Studio on Windows, you must have the following:

n A PC with at least a 1.0 GHz processor and at least 1 GB of RAM. (2.0 GHz
processor and 2 GB of RAM recommended),

n The Windows 2000, Windows XP, or Windows Vista or Windows 7 operating
system.

Compiled Windows applications run on Windows 2000, XP, and Vista/Window 7.

Run the Windows installer to install REAL Studio for Windows.

Linux
Requirements

To run the REAL Studio IDE on Linux, you must have the following:

n A PC with at least a 1.0 GHz processor and at least 1 GB RAM; 2 GB of RAM and
2 GHz processor recommended,

n Any x86-based Linux distribution that includes GTK+ 2.8 (or higher), glibc-2.4 or
higher, the CUPS (Common Unix Printing System), and libstdc++.so.6. Ubuntu
6.10 or above, SUSE Linux Enterprise Desktop 10, and Red Hat Enterprise Linux 5
are officially supported.

The Linux version is available as a tar archive (.tgz file), Red Hat rpm file, and a deb
file for Ubuntu.

A .tgz file was processed by tar and compressed by gzip. Untar the file and locate
the REAL Studio application in the REAL Studio folder.

Compiled applications require an x86-based Linux distribution with GTK+ 2.8 or
above, glibc-2.4, the CUPS, and libstdc++.so.6.

Macintosh
Requirements

To run REAL Studio on Macintosh you must have the following:

n A Macintosh with a 1.0 GHz G4 processor and 1 GB of RAM or any Intel-based
Macintosh and Mac OS X 10.3 or later. REAL Studio for Macintosh is a Universal
Binary; it runs “natively” on both PowerPC and Intel-based Macintoshes. The
recommended configuration is any Intel Macintosh with 2 GB of RAM and
Mac OS X 10.4 or above.

Compiled Macintosh applications run on any Intel or PowerPC Mac with Mac OS X
10.2 or later.
21REALbasic User’s Guide

Introduction
To install the Macintosh version of REAL Studio, drag the REAL Studio application
from the disk image to your hard disk. It is recommended that you store it in your
Applications folder.

Where to Begin
If you are new to programming, you should begin by going through the QuickStart
and then the Tutorial. This will give you a good overview of REAL Studio and intro-
duce you to the programming language. Next, read the User’s Guide. This guide will
provide you with detailed information on the language and the various components
that make up REAL Studio. When you need details about a specific control or com-
mand in the language, consult the Language Reference.

Documentation Conventions
This documentation uses the following typographical conventions:

Initial
References

The first time a new phrase or term is used, it will appear in italics for emphasis.

Menu
References

When you are told to select a menu item, the menu name is listed first, followed by
an arrow, then the item name and command key shortcut. For example File . Exit
means “choose Exit from the File menu”.

Keyboard
Equivalents

Most menu items have keyboard equivalents. On Windows and Linux, the Ctrl key
is the primary modifier, and sometimes the Alt and Shift keys are used. On Macin-
tosh, the Command key is the primary modifier; sometimes the Option and Shift
keys are also used. When keyboard equivalents are given, Windows and Linux
equivalents are given first, followed by the Macintosh keyboard equivalent. For
example “Ctrl+Q or x-Q” means “Ctrl+Q on Windows and Linux or Command-Q
on Macintosh.”

Screen
Illustrations

REAL Studio is truly a cross-platform application. The application itself runs under
Windows 2000 and above, Linux with GTK+ 2.8 installed, and Mac OS X. REAL
Studio can build applications that run on Windows 2000, Windows XP,
Vista/Windows 7, Mac OS X, and Linux. The screen snapshots of the REAL Studio
development environment are a mixture of Windows XP, Windows Vista, Ubuntu
Linux, and Mac OS X Leopard. Where necessary, windows and controls that appear
in built applications are shown for the Windows, Macintosh, and Linux platforms.
Some interface features of REAL Studio are specific to a platform, so only that
platform is shown.
22 REALbasic User’s Guide

Introduction
Code Examples Code examples appear in gray boxes:

Icons There are four icons used to call your attention to steps and important notes:

This icon means that there are numbered steps for you to follow.

This icon means that the text to the right of it is supplemental information that
clarifies a point or is relevant only to some REAL Studio users.

This icon means that the text to the right of it is important information that should
not be overlooked.

This icon indicates that the text to the right pertains to Mac OS X only.

Using the On-Line Help
The REAL Studio Language Reference is built-in to REAL Studio. To access this
language reference, choose Help . Language Reference (F1 on Windows and Linux
or x-? on Macintosh) or press the Help key.

Dim i, x as Integer
x=0
For i = 1 to 100
x = x + i
Next
23REALbasic User’s Guide

Introduction
Figure 1. The On-Line Reference

Click a category name to view the subcategories and then click a subcategory to
view its language items. Click on item to navigate to it.

Use the Arrows in the header area to move backward and forward through the items
you have been browsing. The keyboard equivalents are Ctrl+[and Ctrl+] on
Windows and Linux and Command-Left Arrow and Command-Right Arrow on
Macintosh. The Home button takes you back to the page with the list of categories
and subcategories. The History button displays the list of pages you have navigated
to. A sample History screen is shown in Figure 2. The Item column shows the
names of the screens you have navigated to, with the most recent screen at the top of
the list. The Category column is a hypertexted list of the categories of the items.

Figure 2. The History screen.

The Larger and Smaller buttons increase or decrease the font size that is used in the
Online Reference.

Click on a category to
view its subcategories

Search areaLocation area
24 REALbasic User’s Guide

Introduction
When you are programming, context-sensitive help is also available. Select the item
in your Code Editor for which you want help and right+click (Command-click on
Macintosh). A contextual menu appears. Choose the Help for ItemName menu
command. REAL Studio will then open the online reference to the desired item.

Searching the
Online
Reference

Use the Location area in the header of the window to search the Online Reference.
To search for a REAL Studio language object (i.e., an item listed in the Browser),
simply begin typing the name of the object.

As you type, REAL Studio tries to guess the name of the object. If it has one guess,
the guess appears in gray text. To accept the guess, press the Tab key. If it has
several guesses, three dots appear. Press Tab and a pop-up menu of choices appears.
Use the up and down arrow keys to highlight the desired item and press Tab or
Return to select it. Press Enter or Return to accept the entry and jump to the item.

Use the Search area to search for any term, such as the name of a property, method or
event. Press Enter to do the search. If it finds matching items, it will return a list of
found items. For example, the following shows the results for a search on the term
“multiline”.

Figure 3. Search results in the Online Reference.

Context-
Sensitive Help

The contextual menu in the Code Editor has a menu item for help. Highlight a
command in your Code Editor for which you want help and then choose “Help
for...” from the contextual menu. In the following example, the user has
right+clicked (Control-click on Macintosh) on the term “FolderItem” in the Code
Editor. The contextual menu appears and offers to look up this term in the Online
Reference.
25REALbasic User’s Guide

Introduction
Figure 4. Looking up a term from the Code Editor.

Context-
Sensitive
Error
Messages

When you attempt to compile REAL Studio code, the application first analyzes
your project for syntactical errors and other issues that may cause the application to
behave unexpectedly. If it finds a problem, it opens a new tab in the IDE called
“Issues” and describes the problem it found. For more information about REAL
Studio’s error checking, see the section “Analyzing the Project” on page 632.

Using the
HyperText
Links in the
Online Help

Any text that appears in the blue/underline style in the Online Reference is a
hypertext link. Clicking on the text will switch the Online Reference to a page about
the topic you clicked on.

Using the Code
Examples

The Online Reference contains many code examples that you can use in your proj-
ects. You can copy and paste the examples into your Code Editor.

Some code examples omit irrelevant code for the sake of clarity. Omitted code is
indicated by dots. Insert your own code in its place. Also, some examples include a
Sub or Function statement, which is added automatically by the Code Editor. If
copy and paste such an example into the Code Editor, you need to remove the
duplicate statements.

Using Tips
As you work, the REAL Studio IDE “watches” your activities and displays hints in
the Tips bar. This is the bar at the bottom of the IDE window.
26 REALbasic User’s Guide

Introduction
Figure 5. The Tips bar.

For example, as you write code, tips remind you of the correct syntax for the
commands you are entering. This is shown in Figure 5. The insertion point is in the
MsgBox command and the Tips bar shows its syntax. Also, the text in the Tips bar
changes as you move the mouse around the IDE window. Simply place the mouse
over an object to get information about it.For example, in Figure 6 the mouse
pointer is over the Add Folder item in the toolbar and the Tips bar shows
information on this item.

Figure 6. Help on the Add Folder item.

Electronic
Documentation

All of the REAL Studio documentation is available at our web site (http://www.real-
software.com). These documents are available in PDF (Adobe Acrobat) form.

You can purchase printed copies of the documentation from REAL Software for an
extra charge.

The Tips bar
27REALbasic User’s Guide

Introduction
Our Support
Web Page

Our support page is located at http://www.realsoftware.com/support. This is the
place to check for information on REAL Studio. You’ll find information on cus-
tomer service, technical support, and links to mailing lists and news groups.

End User Web
Sites

There are dozens of web sites created by other users dedicated to REAL Studio.
Check our web site for links to these sites.

REAL Studio
Developer

REAL Studio Developer (http://www.rbdeveloper.com) is a magazine devoted to
REAL Studio programming tips and techniques. REAL Studio Developer publishes
articles by both experienced REAL Studio users and the authors of REAL Studio.

REAL Studio
third-party
Books

The REALsoftware web site contains information on third-party books, web sites,
magazines and other resources that offer support. Check for the most current
information at http://www.realsoftware.com.

Our Internet
Mailing Lists

We sponsor several Internet Mailing lists that give you the opportunity to ask ques-
tions, and share information with other REAL Studio users via email. For more
information on the available Internet Mailing Lists, see our support page at
www.realsoftware.com/support.

Obtaining
Updates

REAL Software provides new releases of REAL Studio no more than three months
apart. A new release is available to all users who have a current license.

REAL Studio contains an option to check for a new release automatically. By
default, this option is selected. If you wish, you can deselect this preference or check
for a new release whenever you wish. When you first launch REAL Studio, it asks
whether you would like to check for updates immediately.

Figure 7. The Check for Updates message box.

This option can also be turned on in the General preferences screen in the options
dialog box. Choose Edit . Options (REAL Studio . Preferences on Macintosh),
select General Preferences, and then click Check Weekly. You also have the option
in General Preferences of checking for updates immediately
28 REALbasic User’s Guide

http://www.realsoftware.com

Introduction
Figure 8. Checking for REAL Studio updates.

Deselect the Check Weekly checkbox if you don’t want automatic updates.

The new release can also be downloaded from REAL Software’s home page
(http://www.realsoftware.com).

Technical
Support from
REAL Software

REAL Software provides free email support for all users who have a current license.
Older versions of REAL Studio do not qualify for free email support. See the
technical support page on our web site for information about our technical support
policy.

We also have Developer Program that is available at an extra charge. It entitles you
to priority technical support. See the support page at our web site
(http://www.realsoftware.com/support) for more information or call us at 512-328-
7325.

If you purchased REAL Studio from an international distributor, you need to
contact your distributor for technical support. You will find a list of all of our
international distributors on our web site at http://www.realsoftware.com.

Contacting REAL Software
If you need to contact REAL Software, we can be reached in the following ways:

Phone 512 328-REAL (512 328-7325)
from 9AM to 6PM Central Time, Monday through Friday

Fax 512 328-7372

email Submit via REAL Studio Feedback (Help . REAL Studio Feedback)
29REALbasic User’s Guide

Introduction
Reporting
Bugs and
Making
Feature
Requests

If you think you have found a bug in REAL Studio or have a feature request, please
let us know about it. The best way to report bugs or make feature requests is via
Feedback page on the REAL Software web site. Feedback was designed to gather all
the necessary information that helps us track down bugs and implement feature
requests. For each bug or feature request reported, you will receive a confirmation
message via email with a tracking number you can use to check on the status of your
bug report or feature request. Once we close the issue, we will email you with the
reason the issue was closed (e.g., the bug has been fixed for the next release, the fea-
ture will be implemented in the next release, it’s not a bug after all, etc.).

You can access Feedback directly from within REAL Studio. Just choose
Help . REAL Studio Feedback and your default web browser will open the
Feedback page.

If you don’t have an email account, you can send us your bug reports and feature
requests via regular mail to our mailing address or fax them to us.

Mail REAL Software, Inc.
PO Box 162181
Austin, TX 78716
30 REALbasic User’s Guide

CHAPTER 2 Getting Started with
REAL Studio

Building a simple application with REAL Studio can take just a few minutes. First,
you create your user interface, which consists of menus and windows filled with
interface controls. Once you have created the interface, you use REAL Studio’s pro-
gramming language to make the interface do what you want it to do when you want
it to do it!

This chapter will give you an overview of the important concepts you need to under-
stand the REAL Studio development environment and how to work with projects.

Contents

n Concepts

n The Integrated Development Environment (IDE)

n Working with projects
31REALbasic User’s Guide

Getting Started with REAL Studio
Concepts
There are a few important concepts you will need to understand in order to develop
applications with REAL Studio. You should also be very comfortable with the
graphical user interface your computer uses. If you are not, it would be a good idea
to spend some time getting familiar with it before you begin using REAL Studio.
Otherwise, you may find many of the references in this documentation confusing.

Applications
are Driven by
Events

Before computers used graphical user interfaces, applications ran by simply execut-
ing a series of programming code statements starting with the first statement and
ending with the last. Interfaces were all character-based. A menu was just a num-
bered list of commands that the user selects from to instruct the application to do a
task. Most of the time, the application was just sitting there waiting for the user to
make up his mind. When the user finally chose a command (perhaps by selecting
the number next to the menu item and pressing the Enter key) the application
would take whatever action was associated with the chosen command. When the
user pressed the Enter key, an event occurred. In other words, something happened
to which the application can respond.

Now that desktop computers use a graphical user interface, users have a far more
intuitive way to interact with applications. However, one thing hasn’t changed:
applications are still driven by events. The difference is that back in the old days
there were very few events the application had to worry about responding to. The
old-fashioned application was always in a modal state: It only had to respond to the
limited number of choices it presented to the user. With a graphical user interface,
many more choices and ways of interacting with the computer are available. The
user might choose a menu item, click on a button, or type in a field. Also, the appli-
cations themselves may cause events to occur that were not directly caused by the
user. For example, when a window opens, an event occurs (the window opened).
When a window is moved or resized, an event occurs.

Fortunately, REAL Studio makes it easy to deal with all of these different events.
You can easily find out which events each part of your application’s interface can
respond to. Making your application respond to an event is as easy as locating the
object that will receive the event, selecting the event, and entering the instructions
(using REAL Studio’s programming language) you want the object to follow when
the event occurs. Later on, you will learn about events in more detail. For now, it’s
just important to understand the concept of event-driven programming.

Developing
Software with
REAL Studio

If you have written computer programs using traditional programming languages,
you already know that the process of development is three steps: write some code,
compile the code (turning the code into something the computer can really under-
stand), and test your application. When you find a problem in your application, you
start the process over again. Developing software applications with REAL Studio
isn’t much different than that. The big difference is how often you go through this
process. Compilers for traditional languages can take several minutes or more to
32 REALbasic User’s Guide

Getting Started with REAL Studio
compile an application before you can begin testing. Consequently, you spend a lot
of time writing code before compiling to avoid waiting for the compiler. REAL Stu-
dio’s compiler is so fast that you will find you can make a small change to your code
and immediately run it to make sure the change you made works as expected. You
can also ask REAL Studio to check your code for errors before you even try to com-
pile it.

Like traditional programming language compilers, REAL Studio’s compiler will
stop if it finds a syntactical error in your code and inform you what the error is so
you can fix it. But unlike traditional compilers that require you to track down the
line of code where the error occurred, REAL Studio’s compiler takes you right to the
point in your source code where the error occurred.

If you have used traditional programming languages, you will find developing
applications with REAL Studio to be easier, faster and more fun.

The Development Environment
REAL Studio is an Integrated Development Environment (IDE). This means that it
contains everything you need to build an application. An interface builder, code
editor, compiler, and debugger are all integrated into one package. In traditional
programming languages, these items would each be a separate application.

The REAL Studio user interface is extremely configurable. By default, all
components of your application are organized into a single window, the IDE
window. With a single IDE window, you can browse among project items by
clicking on tabs at the top portion of the window. You can also open more than one
project at the same time; each will be shown in its own window.

Figure 9 on page 34 shows an example of the user interface configured for a single
IDE window.
33REALbasic User’s Guide

Getting Started with REAL Studio
Figure 9. A project organized into one IDE window.

In Figure 9, editors for the components are open and they are identified in the Tabs
bar. The tab for the “Window1” item is in front and its editor fills the main section
of the screen. You move among the components by clicking their tabs.

The user interface can also be configured to open some or all components of your
application in separate windows. If you prefer to move among editors without
displaying and hiding each one sequentially, then you will like this configuration.
For example, the following illustration shows the editor panel in Figure 9 in its own
window.

Tabs bar
34 REALbasic User’s Guide

Getting Started with REAL Studio
Figure 10. A Window Editor open in a separate window.

Notice that its tab has been removed from the main IDE window in the back. You
can open additional editors in their own windows or configure REAL Studio to open
all editors in separate windows.

You will learn more about these and other interface options later in this chapter.

The REAL
Studio IDE
Window

The main IDE window organizes all the components of your application into a series
of screens. The design should be familiar to anyone who is used to working with an
internet browser that has the ability to use multiple tabs. This includes Internet
Explorer 7 on Windows, Firefox on all platforms, and Safari on Windows and
Macintosh.
35REALbasic User’s Guide

Getting Started with REAL Studio
When you start REAL Studio, the main IDE window appears. Two tabs are open,
the Project Editor and the Window Editor for the default window. The Window
Editor is in front.

Figure 11. The REAL Studio Window Editor.

The Window
Layout Editor

You use the Window Layout Editor to design each window in your project. To
access the Window Layout Editor for a window, double-click the window’s name in
the Project Editor. By default, REAL Studio adds a new tab to the Tab bar and dis-
plays the editor for that window in that screen. The Window Layout Editor for the
default window appears as shown in Figure 12.
36 REALbasic User’s Guide

Getting Started with REAL Studio
Figure 12. An example window displayed in its Window Editor.

Notice that the Tabs bar now has two tabs. You can return to the Project Editor by
clicking on its tab. Also, the Location field has changed to show the name of the edi-
tor. For a Window Editor, the name of the screen consists of the name of the win-
dow followed by the word “Layout.” You can always navigate to this screen by
entering its name in the Location area, followed by “Layout”. To navigate to a con-
trol on the layout, use the format:

This Window Editor can be closed by clicking its tab’s close box, but the Project
Editor cannot be closed.

The window being edited is in the center of the screen and its properties are shown
in the Properties pane on the right. These are the same properties as you saw from
the Project Editor when you clicked on Window1 item in the Project Editor.

The dividers on either side of the editing area can be dragged to the left or right to
resize the editing area within the IDE window. When the mouse pointer is over a
resizing hot point in a divider (indicated by a dot in Figure 12), it changes to a
resizing pointer with arrows pointing to the left and right. Drag to resize the
editing area. Resizing is shown in Figure 16 on page 41.

The window editing area has horizontal and vertical scroll bars that enable you to
view different areas of the window without resizing the IDE window or resizing the
editing area. You can also reposition the window in the editing area by dragging its
title bar.

You can configure REAL Studio to open editors in their own windows. If you have
selected this option, double-clicking the “Window1” item in the Project editor

Controls
pane

Controls
pop-up
menu

Window
Editing
area

Properties
pane

Tips bar

WindowName.ControlName Layout
37REALbasic User’s Guide

Getting Started with REAL Studio
opens the editor shown in Figure 12 in its own window. For more information on
this option, see the section “Configuring the IDE for Multiple Windows” on
page 51.

The Controls
Pane

The list on the left side of the Window Editor screen shows the names of REAL Stu-
dio’s built-in controls. Controls are interface elements such as buttons, checkboxes,
text entry fields, lists, tab panels, pop-up menus, and movie players.

You use the Controls pane to add controls to the window that you are designing.
There are several ways to add a control to a window:

n Double-click on the control,

n Drag a control from the Controls pane to the window editing area,

n Select the control in the Controls pane and then press the Enter key (Return on
Macintosh),

n Select the control in the Controls pane and then drag an area in the Window
Editing area in the location, size, and shape that you want.

When you add a control to a window, an instance of that type of control appears in
the Window editing area and the Properties pane changes to show the properties for
that control.

For example, in Figure 13, a PushButton control has been added to the window. Its
resizing handles indicate that it is selected.

Figure 13. A PushButton control added to Window1.

Since the PushButton control is selected in the Window Editor, the Properties pane
has changed to show the properties of the PushButton. To redisplay the window’s
properties, deselect the PushButton by clicking on the surface of the window.

The Properties
pane now shows
the properties of
the PushButton
38 REALbasic User’s Guide

Getting Started with REAL Studio
The Controls
Pop-up Menu

The pop-up menu above the list of controls enables you to populate the Controls list
with one of three types of controls, all the controls, or a subgroup of the controls:

Figure 14. The Controls pop-up menu.

The Controls pop-up menu offers the following choices:

n Built-in Controls: The controls that are built into REAL Studio. This is the default
choice. The built-in controls are shown in Figure 13. For more information on
REAL Studio’s built-in controls, see the section “Interacting with the User Through
Controls” on page 113.

n Project Controls: Custom controls that are based on built-in controls. Project
controls are also listed as items in the Project Editor. For information on creating
custom controls, see the section “Understanding Subclasses” on page 533 and the
procedures for creating subclasses based on controls in Chapter 10 on page 531.

n Plug-in Controls: Controls that you add to REAL Studio by installing plug-ins.
Third-parties can market custom controls in the form of plug-ins that are installed
by placing the plug-in in the Plugins folder in the REAL Studio folder. This list is
empty if you have no third-party plug-in controls installed.

n All Controls: The built-in, project, and plug-in controls in one alphabetized list.

n Favorites: Controls from any of the three types of controls that you have marked as
Favorites. REAL Studio ships with a selection of the most frequently used controls
as Favorites. Those controls are shown in Figure 14. For more information, see the
section “Favorites Controls” on page 114.

The current selection has a checkmark to its left.
39REALbasic User’s Guide

Getting Started with REAL Studio
The Project Editor
A project is the collection of items that make up the application you are developing.
The Project Editor organizes all the major components of the application. You add
these items to the application from the Project and you can access each item from
this screen.

For example, each of the windows that makes up your application will be listed in
the Project Editor. Some of the other items that might be listed in the Project
Editor are classes, modules, menubars, pictures, sounds, databases, and movies. You
will learn about these items in later chapters.

You use the Project Editor toolbar or the Project . Add submenu to add items to
the project. You will learn more about projects in the next chapter.

The Project Editor displays a list of these elements to give you easy access to them.
You click on a project item to go to an editor for that item or, if there is no editor, a
viewer.

Figure 15. The REAL Studio Project Editor window.

The main IDE window resembles an internet browser window. The Main Toolbar
contains controls for navigating among parts of your project. The Back and Forward
buttons allow you to redisplay previously viewed screens, the Location field lets you
go to an item by name, and the Search area lets you search for specific objects
throughout your project.

With the Add Bookmark button, you can add frequently used items to the
Bookmarks menu or the Bookmarks bar. You can navigate to bookmarked items

Main toolbar

Editor toolbar

Tabs bar
Bookmarks bar

Project Editor

Properties pane

Tips bar
40 REALbasic User’s Guide

Getting Started with REAL Studio
simply by choosing its name from the Bookmarks menu or clicking on it in the
Bookmarks bar.

The History menu tracks the series of screens that you have worked on. You can
redisplay a screen by choosing its name from the History menu.

You can open an item listed in the Project Editor by double-clicking it. Its editor
(or viewer) appears in the IDE window and a tab for that editor is added to the Tabs
bar. The Tabs bar contains a tab for each editor that is open. You can view any open
editor by clicking on its tab.

Just below the Tabs bar is a toolbar that belongs to the editor that is displayed. You
use it to add or manipulate items in the editor you are viewing. The Editor toolbar
changes depending on which editor you are on.

Editor Panes Each Editor screen is divided into two or more panes. In the case of the Project
Editor screen, it is divided into the Project Editor pane and the Properties pane. Panes
are separated by dividers that can be moved to the left or right by holding down the
mouse button on the divider and dragging to the left or right.

To resize the panes, move the pointer to the divider until the mouse pointer changes
to an Arrow pointer that points to the left and right. Then hold down the mouse
button and drag in either direction.

Figure 16. The Properties pane being resized.

You can increase the usable area in an editor by selecting the View . Editor Only
menu command. This menu command hides the Main toolbar, the Bookmarks bar,
and the Editor toolbar, leaving only the Tab bar above the editor. It also minimizes
the space taken up by secondary panes in the editor area without hiding them
completely.

Mouse pointer
41REALbasic User’s Guide

Getting Started with REAL Studio
Figure 17. The Project Editor after choosing Editor Only.

When the Editor Only menu command is selected, REAL Studio places a
checkmark to its left. Selecting the Editor Only command again changes the IDE to
its previous configuration.

Another way of increasing the area of the IDE window that is devoted to the editor
is to move the Properties pane out of the window entirely. For information on this
option, see the section “Displaying the Properties pane in its own window” on
page 44.

The following sections give an overview of each type of Editor screen.

The Properties
Pane

When you select an item in the Project Editor by clicking on it, the Properties pane
(the pane to the right of the divider) shows properties that belong to the selected
item. For example, in Figure 18 on page 43 the Window1 item is selected in the
Project Editor, so its properties are shown in the Properties pane.

Properties are values that are owned by an item. They characterize the item. Some
examples of items that have properties are a window, a menu item, and a control in
a window. For example, a window has a Title property that holds the text that is
shown in the window’s Title bar. A window also has Width and Height properties
that store the window’s size. A window’s Left and Top properties describe the
position of its top-left corner.

The Properties pane displays all of the properties that can be modified in the IDE for
the currently selected item. This is an important point because some objects have
properties that can be modified only by your programming code. An item may also
have properties that cannot be modified or can be modified only from the IDE. The
appearance of the Properties pane depends on which object is selected.
42 REALbasic User’s Guide

Getting Started with REAL Studio
For example in Figure 18, Window1 is selected (highlighted) in the Project Editor
and the Properties pane shows various properties of this window, such as its name,
frame type, height, and width. For more information about the Properties pane, see
the section“Using a Window’s Properties Pane” on page 100 and “Changing a
Control’s Properties with the Properties Pane” on page 126.

Figure 18. The Project Editor with Window1 selected.

If you want to maximize the area of the IDE window devoted to the editor, you can
choose Window . Hide Properties. This menu command removes the Properties
pane from the display, allocating all the horizontal space to the editor.

The Properties
pane shows the
properties
belonging to the
selected item in
the project

Selected item
43REALbasic User’s Guide

Getting Started with REAL Studio
Figure 19. The Project Editor after choosing Hide Properties.

When you choose Hide Properties, the menu command changes to Show Properties.
Choose Show Properties to revert to the previous display. The Show Properties
command remembers the previous position of the divider.

Displaying the
Properties
pane in its own
window

By default, the Properties pane is shown on the right side of each editor’s panel. If
you wish, you can display the properties in a separate floating window.

To do so, choose Edit . Options (REAL Studio . Preferences on Macintosh) to
display the Options dialog box (Preferences dialog on Macintosh). Select the
General topic and select the Floating Properties Palette option.
44 REALbasic User’s Guide

Getting Started with REAL Studio
Figure 20. General Preferences with the Floating Properties Palette option selected.

With this option selected, the Properties pane for all the editors will appear in a
separate floating window.

Figure 21 shows the Project Editor of a project with the Floating Properties Palette
option selected. The Properties palette shows the properties of the Window1 item,
since it is selected in the Project Editor. The Tabbed Editing option is also selected.
45REALbasic User’s Guide

Getting Started with REAL Studio
Figure 21. The Project Editor with a floating Properties palette.

The Code
Editor

Use the Code Editor to add programming code to items in your project, such as con-
trols, classes, and windows. The Code Editor has a browser area that makes it easy to
locate the object to which you want to add code. The Code Editor is shown in
Figure 24.

Figure 22. The Code Editor for a control in a window.

This Code Editor is for a window named Window1. It currently displays code for a
PushButton control in that window.
46 REALbasic User’s Guide

Getting Started with REAL Studio
Each Window Editor has two views: The Layout editor view (for example, Figure 13
on page 38) and the Code Editor view (for example, Figure 22). As you build your
application, you move back and forth between these views. You design your
interface with the Layout Editor view and then add code to windows and controls in
the window by switching to the window’s Code Editor.

You switch between the Code Editor and Layout Editor views using the
View . Show Code or View . Show Layout menu commands or with the Edit Mode
buttons in the editor’s Toolbar. By default, these buttons are shown on the extreme
left of the Window Editor toolbar and are illustrated in Figure 23 (The Window
Editor toolbar can be customized; for more information, see the section
“Customizing the Window Editor Toolbar” on page 105).

On Macintosh and Linux, the selected icon has the system highlight color; on Win-
dows the selected icon is in its depressed state.

Figure 23. The Edit Mode buttons.

You can configure the REAL Studio IDE so that each window’s Layout and Code
Editors get their own tab in the Tabs bar. For example, in Figure 24 the two views
for Window1 both have tabs in the Tabs bar. The Code Editor view is in front and
the Layout Editor tab is in the middle of the Tabs bar. They are both identified by
the name of the window and are distinguished by the small icon in the tab. The
Layout Editor small icon has a mini Title bar, while the small icon for the Code
Editor view depicts lines of code only. With this configuration of the Tabs bar, you
can switch to either the Layout or Code views from the Tabs bar.

Layout Editor
Selected

Code Editor
Selected
47REALbasic User’s Guide

Getting Started with REAL Studio
Figure 24. The Code Editor for a control in a window with its own tab.

A Tabs bar with both Window Editor tabs is shown in Figure 25.

Figure 25. A Tabs bar with both the Layout view and Code Editor views for
Window1.

At that point, both views belonging to the window are available from the Tab bar.
If you are working with another editor, you can go to either view directly by
clicking its tab.

You can select this configuration in the Options dialog box (Preferences on
Macintosh). Choose Edit . Options (REAL Studio . Preferences on Macintosh),
select the General topic, and deselect the Code and Window Editors Share a Tab
preference.

Layout view Code Editor view
48 REALbasic User’s Guide

Getting Started with REAL Studio
Figure 26. Configuring the IDE for separate Window Editor tabs.

If this option is selected, each window gets one tab in the Tabs bar and the tab for
the window gets the Layout Editor small icon for both the Layout and Code Editor
views. This configuration of the IDE window was the only option available prior to
REAL Studio 2006 Release 3.

If the Code Editor and Layout Editor get their own tabs, then the Edit Mode
buttons perform the same functions as the Code and Layout Editor tabs.

For a detailed description of the Code Editor, see the section “Using The Code
Editor” on page 273.

The Menu
Editor

You use the Menu Editor to create the menus and menu items that will be displayed
when your application runs. The Menu Editor is shown in Figure 27.
49REALbasic User’s Guide

Getting Started with REAL Studio
Figure 27. The Menu Editor.

When you click on a menu or menu item in the Menu Editor, the Properties pane
changes to show the properties of the item. The Text property of the menu item is
the text that is displayed by the menu item. You can also assign keyboard shortcuts
to menu items and even create sub-menus (a menu item that is actually just another
menu). REAL Studio adds File, and Edit menus for you by default. For Mac OS X, it
also adds the Apple and Application menus.

The row of icons on the left side of the Menu Editor toolbar allows you to preview
the look of the menu system under every possible operating system on which you
can build the application. Click on one of the View Mode buttons to preview the
menu system on that platform.

Figure 28. The Menu Editor’s View Mode buttons (Linux selected).
50 REALbasic User’s Guide

Getting Started with REAL Studio
Configuring the IDE for Multiple Windows
By default, the Tabs bar is populated with tabs for each editor as you open new
editors. The tabs appear in the order that you open the editors. This mode is called
Tabbed Editing. The entire project and all of its editors is organized into one
window. All of the editors for the project are accessed via tabs in the Tabs bar. Also,
the Debugger appears as a tabbed editor window. For more information about the
Debugger, see Chapter 12, “Debugging Your Code” on page 631.

If you wish, you can configure the REAL Studio IDE so that each editor appears in
its own window. In this case, clicking an item in the Project Editor opens its editor
(or viewer) in its own window and each Tabs bar only has one tab. You do this by
turning Tabbed Editing off.

To turn off Tabbed Editing, choose Edit . Options (REAL Studio . Preferences on
Macintosh) to display the Options dialog box (Preferences on Macintosh). Select the
General topic and deselect the Enable Tabbed Editing preference. This turns
Tabbed Editing off globally; each IDE editor will now open in a separate editing
window.

Figure 29. Disabling Tabbed Editing in the Options (aka Preferences) dialog box.

Figure 30 shows the default window in its Window Editor with Tabbed Editing off
and the Project Editor is in its own window. The window that contains the Window
Editor does not have a main toolbar or a Bookmarks bar.

Disabling Tabbed Editing
opens editors in their own
windows
51REALbasic User’s Guide

Getting Started with REAL Studio
Figure 30. The Window Editor with Tabbed Editing off.

When you turn Tabbed Editing off, then all Editors are displayed in separate
windows. If you want to use the main IDE window for most editors and display only
one or some editors in their own windows, then you can instead drag a tab out of the
IDE window. For more information, see the section “Dragging a Tab” on page 54.

When Tabbed Editing is on, double-clicking a window in the Project Editor opens
the window ‘s Layout Editor in its own window. Shift-double-click to open the
window’s Code Editor in its own window.

You can optionally open an editor in the main IDE window. Hold down the Control
key (Command key on Macintosh) and double-click the editor’s name in the Project
Editor. Click Shift+Control (Shift-Command on Macintosh) to open the window’s
Code Editor in the IDE window.

If an editor is already open in a tab, you can drag that tab out of the IDE window. It
will then open in its own window. For more information, see the section “Dragging
a Tab” on page 54.
52 REALbasic User’s Guide

Getting Started with REAL Studio
Working with the Tabs bar
Except for the Project Editor, each tab has a close box that you can use to close that
screen. Closing a close box only closes the screen; it does not delete the item.

The
Contextual
Menu

Each tab in the Tabs bar has a contextual menu that has the following menu
commands:

n Open in New Window: The Editor for that tab opens in its own window and is
removed from the current IDE window. You can also do this by dragging the tab
out of the IDE window.

n Close Tab: The Editor is closed, leaving the other tabs in the Tabs bar. This
command is not available for the Project Editor tab.

n Close Other Tabs: Closes all Editors except the Project Editor and the current
editor. This leaves the IDE window with two tabs, the current tab and the Project
Editor tab, or, if the current tab is the Project Editor, only the Project Editor. If the
Project Editor tab is the only “other” tab, then this menu item is disabled.

n Close All Tabs: Closes all the Editors except the Project Editor.

n Select Tab: Displays a submenu with the names of all the tabs, enabling you to
choose a tab to move to the front. The name of the current Editor has a checkmark
to its left.

n Show on Disk: Available only for items that are stored on disk, such as the Project
Editor and any external project items. Opens the folder containing the item and
selects it.

If you right+click (Command-click on Macintosh) on the Tabs bar itself not a tab,
the contextual menu has three items:

n Close Other Tabs: Closes all Editors except the frontmost Editor and the Project
Editor.

n Close all Tabs: Closes all Editors except the Project Editor. If the only tab in the
window is not the Project Editor, then it closes the window.

n Select Tab: Displays a submenu with the names of all the tabs, enabling you to
choose a tab to move to the front. The name of the Editor that is currently in front
has a checkmark to its left.

Hiding the
Tabs bar

If you like, you can hide the Tabs bar when only one editor is open. When this
option is on, the initial view of the IDE would be shown without a Tabs bar.
However, when you double-click an item in the Project Editor, a tab for the item is
added to the IDE window, assuming Tabbed Editing is on. If Tabbed Editing is off,
the editor opens in a new window.
53REALbasic User’s Guide

Getting Started with REAL Studio
If you use this option in conjunction with the multiple windows option, each editor
window will be displayed without a Tabs bar.

To hide the Tabs bar for IDE windows with one editor, choose Edit . Options
(REAL Studio . Preferences on Macintosh) to display the Options dialog box (Pref-
erences on Macintosh). Select the General topic and deselect the Always Show Tabs
option. This option shows the tabs bar when Tabbed Editing is on and more than
one Editor is open.

In Figure 31, the Tabbed Editing and Always Show Tabs options are both off. As in
Figure 32, window1 is shown in its own Layout Editor window, but the Tabs bar is
not shown in either the Project or Layout Editor windows.

Figure 31. A project with Always Show Tabs turned off.

Dragging a
Tab

When you have several tabs in the Tab bar, you can rearrange the tabs by dragging a
tab to the left or right. As you drag over an existing tab, its text changes to the text
of the tab being dragged. Drop the tab to put it in its new position.

When there is more than one tab in the Tabs bar, you can drag a tab out of the IDE
window to the desktop. The editor whose tab you drag will be redisplayed in its
own window.

For example, in Figure 32, the tab for the default window’s Window Layout Editor
has been dragged out of the IDE window. It is now displayed in its own window.
Note that the project is in Tabbed Editing mode; the main IDE window has tabs for
the Menu Editor and another window’s editor.
54 REALbasic User’s Guide

Getting Started with REAL Studio
Figure 32. A project after dragging the default window’s Window Layout Editor out
of the IDE window.

In the case of the Window Layout Editor, you can open the Code Editor for an item
in a new window by holding down Ctrl (Command on Macintosh) and double-click-
ing the item. For example, if you want to display the Code Editor for one of the
PushButtons shown in Figure 32, you would Ctrl+Double-click on the PushBut-
ton. If you double-click, you will switch to the Code Editor within the same IDE
window.

The Main Toolbar
The REAL Studio Main Toolbar has items for navigating among editors in your
project, for testing your project, and for building a standalone application. Figure 33
shows the default Main Toolbar.

Figure 33. The default IDE Main Toolbar.

n Back and Forward buttons: The Back and Forward buttons work exactly like the
Back and Forward buttons in a Web browser; they move backwards and forwards
among IDE screens in the order that you viewed them. This list of screens is also
displayed as items in the History menu. You can use the History menu to jump to
any previously visited page.

n Run button: Click the Run button to compile the project and test it. When you
click Run, REAL Studio attempts to compile your application. If the project com-
piles successfully, the application launches in its own window and REAL Studio
adds a new screen in the IDE window for real-time debugging that’s called the
55REALbasic User’s Guide

Getting Started with REAL Studio
“Run” screen. Click Stop in the Run screen’s Editor toolbar to halt execution of the
application.

By default, REAL Studio saves the compiled application in the Temp folder for your
computer’s operating system and launches it automatically. If you wish, you can
choose another location in the Build Process panel of the Options dialog box.
Choose Edit . Options (REAL Studio . Preferences on Macintosh), click the Build
Process icon, and then modify the path in the “Build unsaved apps in” field.

Figure 34. The Build Process Options screen.

You can switch to another editor in the IDE and continue working on your applica-
tion without quitting the debugging application, but your changes won’t be
reflected until you stop the debugging application and rerun it.

If REAL Studio finds any syntax errors, the attempt to compile and launch the
application will stop and REAL Studio will display the errors in an Issues screen or
in the Code Editor in which it found the error. You need to fix all the syntax errors
to allow REAL Studio to successfully compile and run the application. For
information about checking for syntax errors, see the section “Syntactical Bugs” on
page 632.

For information on testing and debugging the application within the IDE, see
Chapter 12, “Debugging Your Code” on page 631.

n Build Button: Click the Build button to build a standalone (double-clickable)
application based on the current Build settings. The difference between “Run” and
“Build” is that the result of a “Build” is a standalone double-clickable application
that doesn’t need the REAL Studio application at all. A “Run” is a test-run of your
program that is intended for debugging inside the REAL Studio IDE. See Chapter
56 REALbasic User’s Guide

Getting Started with REAL Studio
15, “Building Stand-Alone Applications” on page 693 for information on Build
Settings and building standalone applications. The attempt to build will fail if there
are any syntax errors.

n Add Bookmark button: Click the Add Bookmark button to add the current item
to either the list of Bookmarks in the Bookmarks menu or to the Bookmarks bar.
An item can be an entire editor, a method, a property, a control, a file type set, and
so forth. This list is displayed in the Bookmarks menu and the Bookmarks bar is
just above the Tabs bar and below the Main Toolbar. When you choose this menu
item, the dialog box shown in Figure 35 appears:

Figure 35. The Bookmarks dialog box.

Choose Global Bookmarks from the Create In drop-down list to add the item’s
name to the Bookmarks menu. It’s called “global” because the bookmark will
appear in all of your projects. Choose Local Bookmarks bar to place it in the current
project’s Bookmarks bar. Each project has its own Bookmarks bar.

If you have created bookmark folders, they will also be offered as choices in the
Create In drop-down list. This enables you to place a new bookmark directly in a
folder.

You can navigate directly to a bookmarked item by choosing its name from the
Bookmarks menu or clicking on its name in the Bookmarks bar.

n Location area: Use the Location area in the same way you use the URL area in a
Web browser. Enter the name of an item and press Enter (Return on Macintosh) to
go to it. You can enter “(Issues)” to display an open Issues tab, “(Search)” to display
an open Search Results list, or “(Super)” to display a class’s super class. Please refer
to Chapter 10, “Creating Reusable Objects with Classes” on page 531 for
information on classes and super classes.

The Location area uses the autocomplete feature of REAL Studio. As you type,
REAL Studio attempts to complete the term that you are typing. Its guess is shown
in gray. If it has more than one guess, it shows three dots and you can press Tab to
see a contextual menu of the possibilities.

Figure 36. Using Autocomplete in the Location area.

For more information about autocomplete, see the section “Autocomplete” on
page 291.
57REALbasic User’s Guide

Getting Started with REAL Studio
n Search area: Use the Search area to find items in your code. A pop-up menu lets
you choose among searching the whole project, the current item, or the current
method (if applicable). On Mac OS X, it also offers to search your computer using
Spotlight.

Customizing
the Main
Toolbar

If you like, you can add, remove, or reposition the items in the Main Toolbar. To do
so, choose View . Main Toolbar . Customize. The Customize Main Toolbar dialog
box appears.

Figure 37. The Customize Main Toolbar dialog box.

The Customize Main Toolbar dialog box uses a “mover” interface to configure the
toolbar. Listed in the right panel are the current items in the toolbar. Listed on the
left are optional items that can be added to the toolbar.

The following operations are available:

n To add an item, highlight it in the left panel and click the Add button (shown in
Figure 37).

n To remove an item, highlight it in the right panel and click the Remove button.
This moves the item to the list on the left.

n To reorder an item, highlight it in the right panel and click either Move Up or
Move Down or click the item you want to move, drag it to the desired location, and
58 REALbasic User’s Guide

Getting Started with REAL Studio
then drop it between two items. The order in which the items are listed is the left-
to-right order in the toolbar.

n To change the appearance of the items in the toolbar, choose an item from the
Display As drop-down list. Your choices are:

n Big icons with labels.

n Small icons with labels,

n Big icons (no labels),

n Small icons (no labels),

n Labels only.

n To reset the toolbar to the default toolbar, click the Reset button (Windows and
Linux) or Reset Defaults button (Macintosh).

The Bookmarks Bar
The Bookmarks bar, which is just below the Main toolbar, displays the locations
that you have added to the local bookmarked locations. You can go to a bookmarked
location simply by clicking on the item in this toolbar.

Figure 38. The Bookmarks bar.

To add an item to the Bookmarks bar, click the Add Bookmark button in the Main
Toolbar or choose Bookmarks . Add Bookmark. The Add Bookmark dialog box
shown in Figure 39 appears.

Bookmarks bar
59REALbasic User’s Guide

Getting Started with REAL Studio
Figure 39. The Add Bookmark dialog box.

By default, the Create In drop-down list offers two choices:

n Global Bookmarks: Global bookmarks appear as items in the Bookmarks menu.
They are global in the sense that they appear in all of your projects.

n Local Bookmarks bar: Local bookmarks appear in the Bookmarks bar in the
project’s IDE window. When you add a bookmark to the Bookmarks bar, it is local
to that project; it does not appear in the Bookmarks bar of your other projects.

You can also add methods and properties to the Bookmarks bar by dragging the name
of the method or property from the Code Editor browser list to the Bookmarks bar.
When the item to be added to the Bookmarks bar is over the Bookmarks bar, it shows
a selection rectangle, indicating that it can accept the dragged item.

If you have created bookmark folders for the Bookmarks menu, they will also be
offered as choices in the Create In drop-down list. This enables you to place a new
bookmark directly into a folder. When you add a item to a folder, the Bookmarks
menu shows the folder’s name as a menu item and the items in the folder as
submenu items.

You can also modify existing bookmarks. To do so, right+click (Control-click on
Macintosh) on the Bookmarks bar to display the Bookmarks bar’s contextual menu
and choose Customize. The Edit Bookmarks dialog box appears:

Figure 40. The Edit Bookmarks dialog box.

With the Edit Bookmarks dialog box, you can modify the names and locations of
your bookmarks. You can edit the name to make it easier to recognize.

Locations use the “dot” syntax to specify the project and Editor, and item names.
That is, the syntax is projectname.editorname.itemName. If it is a control on a window,
60 REALbasic User’s Guide

Getting Started with REAL Studio
the dot syntax is extended: projectname.editorname.controlname. For windows, the
window name refers to the Code Editor view and “window name Layout” refers to the
Window Editor for the window. When you create the bookmark, REAL Studio
suggests the name that will work, so you can simply accept the default name.

To modify either the name or location, click twice in the text to get an insertion
point and type the replacement text.

REAL Studio IDE Menus
The REAL Studio IDE has the following menus: File, Edit, Project, View, History,
Bookmarks, Window, and Help. The Macintosh version adds the standard Apple
and REAL Studio menus.

The File Menu The File Menu has menu items for creating, opening, and saving items.

n New Project: Creates a new project. It first gives you a choice of built-in or user-
defined templates. See the section “Creating Project Templates” on page 87 for
information on defining new project templates. When you make your choice, REAL
Studio opens a new IDE window for the project. The Project Editor contains the
items specified in the selected template. You can have more than one project open at
the same time. For more information about Desktop and Console applications and
custom templates, see the section “Creating a New Project” on page 74.

n New Window: Opens a new REAL Studio IDE window for the current project.
The new window includes the Project Editor and the editor that was frontmost
when you chose New Window. Use this menu command to view two or more
editors in your project simultaneously. Changes in one window cause the others to
be updated.

n Open: Displays an open-file dialog box that allows you to open an existing REAL
Studio project or a REAL Studio script. You can open standard REAL Studio
projects or projects saved in the XML or Version Control Project formats. For
information on the XML and Version Control formats, see the sections “Saving as
XML” on page 85 and “Saving as a Version Control Project” on page 85. The Save
and Save As menu commands give you a choice of formats in which to save your
project. When you select a project, it opens in its own IDE window, keeping the
current IDE window open. This menu command enables you to have several
projects open at once. A REAL Studio script is created with the IDE Script editor
(see the File . IDE Scripts menu command) and is used to automate the REAL
Studio IDE.

n Open Recent: Open Recent has a submenu of recently opened REAL Studio
projects. When you choose a project from the submenu, it opens in its own REAL
Studio IDE window while keeping the current IDE window open. The Startup
screen of the Options dialog (Preferences on Macintosh) contains a preference to
open the most recently opened project automatically when REAL Studio starts up.
61REALbasic User’s Guide

Getting Started with REAL Studio
n Close Tab: Closes the tab panel that is currently in front. You can also close a Tab
by clicking the Tab’s close box. If you close the Project tab, REAL Studio will try to
close the project itself. If you have unsaved changes, REAL Studio will give you a
chance to save your changes.

n Close Window: Closes the current IDE window. If you have unsaved changes to
the project, REAL Studio will give you a chance to save your changes.

n Save: Saves the current project or the project whose IDE window is active. A drop-
down list enables you to save in the standard project format, in XML, or in Version
Control Project format (VCP). For information on the XML and Version Control
formats, see the sections “Saving as XML” on page 85 and “Saving as a Version
Control Project” on page 85. The standard REAL Studio project format is the
default and is the recommended format if you have no special need to work with
XML and you are not working with a Version Control system. VCP format should
be used only in conjunction with version control systems. If no changes have been
made since the last save operation, this menu item is dimmed.

n Save As: Saves the current project or project whose IDE window is active under a
new name. A drop-down list enables you to save in the standard project format, in
XML, or in Version Control Project (VCP) format. The standard REAL Studio proj-
ect format is the default and is the recommended format if you have no special need
to work with the XML and you are not using a Version Control system. VCP format
should be used only in conjunction with version control systems.

n Revert to Saved: Reverts the current project or the project whose IDE window is
active (i.e., in the front) to its last saved state. You will lose any changes that you
made since the project was last saved.

n IDE Scripts: Available only for the Studio version of REAL Studio. Used to script
the IDE. The File . IDE Scripts menu command has a submenu with the New IDE
Script command and the names of any existing IDE scripts. Existing scripts must be
in a folder named “Scripts” in the same folder as the IDE or the project in order to
appear as submenu items.The New IDE Script menu command opens an IDE Script
Editor window that enables you to write code that automates the REAL Studio IDE.
You can either type in the code or have the IDE Script Editor record your actions. In
the latter case, click the Record button, perform the actions that you want the script
to automate, and then click it again to stop the recording process. It will generate
the code and add it to the Script Editor. In either case, you use the RBScript
language. See the entry for IDE Scripts in the Language Reference for the list of IDE
Script commands.

n Import/Import as External: Import opens an open-file dialog box that enables you
to import an item into the project. You can import any type of item that can appear
in the Project Editor. This includes object such as windows, classes, modules,
pictures, sounds, and movies. You can also import items by dragging them from the
desktop to the Project Editor. To import an item as an external project item, hold
62 REALbasic User’s Guide

Getting Started with REAL Studio
down the Alt key (Option key on Macintosh) and the Import menu item changes to
Import as External. For more information about external project items, see the
section, “External Project Items” on page 542.

n Export Item...: Exports the contents of the currently selected item. The Save-file
dialog box gives you a choice of the REAL Studio format for the item, the XML
format, or the VCP (Version Control Project) format.

n Export Localizable Values...: Exports all of the dynamic string constants in the
application to a file. This file is readable by REAL Software’s free localization
application, Lingua. Lingua is the utility that you use to localize REAL Studio
applications. When you are finished localizing the string constants in Lingua, you
import this file back into your application with either the File . Import command
or by dragging it into the Project Window. For information about Lingua, see the
section “Using Lingua to Localize your Application” on page 383.

n Page Setup: Displays the Page Setup or Print Setup dialog box for your operating
system.

n Print: Prints the project’s properties, which are shown in the Properties pane for the
App class, and all the project’s code. Source code is printed in color. The Printing
panel of the Options dialog box (Preferences on Macintosh) has an option for
printing in color. For information on the project’s properties, see the section
“Customizing the Standalone Application’s Properties” on page 700.

n Print Item: Prints the selected item according to the current Page Setup settings.

n Exit or Quit: Closes all open IDE windows and Quits the REAL Studio IDE
application. On Macintosh, the Quit menu item is located under the REAL Studio
menu.

The Edit Menu The Edit menu has the standard editing commands and some REAL Studio-specific
commands for working with the Code and Window editors.

n Undo: Undoes the last action. If this is impossible, this item changes to Can’t
Undo.

n Redo: If you have just chosen Undo, the Redo menu item becomes active, offering
to redo the action that was undone. In other cases, this menu item is dimmed.

n Cut: Cuts the selected text or item and places it on the Clipboard.

n Copy: Copies the selected text or item and places it on the Clipboard.

n Paste: Pastes the item on the Clipboard at the insertion point (text) or into the
current object, such as a window in a Window editor.

n Delete: Deletes the selected text or item without putting it on the Clipboard.

n Select All: Selects all of the text or all the items in the current editor. It does not
place the items on the Clipboard.
63REALbasic User’s Guide

Getting Started with REAL Studio
n Deselect All: Deselects all the currently selected items.

n Comment: Valid only for Code Editors. Changes the line in which the text
insertion point is located into a nonexecutable comment line. If the current line is
already a comment, this menu item changes to Uncomment. The Uncomment
menu item changes the line back to a line of executable code. These two menu items
are equivalent to the Comment and Uncomment buttons in the Code Editor
toolbar.

n Encrypt Item: Displays a dialog box for encrypting the selected project item.
Encryption is supported only in the REAL Studio Professional and Studio editions.
Decryption is supported in all editions of REAL Studio. An encrypted item cannot
be viewed or edited in its editor. If the selected project item is already encrypted,
this menu item changes to Decrypt Item. Decrypt Item presents a dialog box
enabling you to decrypt the item. The Encrypt and Decrypt Item menu items
duplicate the functionality of the optional Encrypt and Decrypt buttons that can be
installed in the Project Editor toolbar.

n Property List Behavior: Available only for classes. Displays the ClassName
Property List Behavior dialog. It enables you to customize several aspects of the
Properties list when an instance of the class has been added to a window. For
information, see the section, “Customizing the Properties List” on page 545.

n Duplicate: Duplicates (copies and pastes) the selected text or item.

n Arrange: Displays a submenu for changing the control order of objects in a win-
dow, Bring Forward, Bring to Front, Send Backward, Send to Back. Available only
for Window Layout editors. These choices affect the order in which the user can
move from one control to another by pressing the Tab key. It also affects the display
order for controls that are overlapped. You can display the control order with the
View . Control Order command. Available only for Window and ContainerControl
Editors. These submenu items duplicate the functionality of the Window Editor
toolbar.

n Align: Displays a two-part submenu for aligning objects in a window. The menu
items above the separator align two or more objects by their left edges, right edges,
top edges, and bottom edges. The items below the separator are for spacing three or
more objects evenly, in either the horizontal and vertical directions. These items are
available only for Window Layout and Container Control Editors. These submenu
items duplicate the functionality of the Window Editor toolbar.

n Auto Adjust TabIndexes: Displays a submenu that enables you to change the tab
order to either of two standard configurations: Top-down left-right or Left-right
top-down. For more information, see the section “Auto-Adjustment of the Tab
Order” on page 183.

n Find: Displays a submenu for displaying the Find and Find All dialog boxes for
finding and replacing text in the current method or throughout the project. The
Find submenu item displays a dialog that searches and replaces in the current
64 REALbasic User’s Guide

Getting Started with REAL Studio
project item (e.g., the current method), while the Find All submenu item displays a
dialog with an additional menu item that lets you specify the scope of the search.

Figure 41. The Find dialog box (top) and Find All dialog box.

For information on the Find dialog, see the section “The Find in Project and Find
dialogs” on page 299. You can also find project items using the Search field in the
Main toolbar.

n Find . Go to Search: Moves the insertion point to the Search field in the Main
toolbar. From there, you can enter a search string.

n Options: Displays the Options dialog box for setting application-wide preferences.
On Mac OS X, this item appears in the REAL Studio menu as “Preferences”.

The Project
Menu

The Project menu has items for adding items to the project, testing it within the
IDE, debugging code with the debugger, and building a standalone application.

n Add: The Add menu item has a submenu for adding a window, a class, a class
interface, a container control, a module, a folder, a menu bar, a file type set, a
toolbar, an ActiveX component (Windows OS only), a report, a build automation
step, and a database. The Project Editor’s toolbar duplicates much of the
functionality of the Add menu. Below a separator, the Add menu lists items that are
particular to the type of editor that is currently shown. These menu items duplicate
the functionality of the editor’s toolbar.

n Window: When Window’s Code Editor is shown, the Add menu item has sub-
menu items for adding methods, properties, computed properties, constants,
menu handlers, and notes. These items duplicate the functionality of the Code
Editor toolbar. When a Window Editor’s Layout Editor is shown, these menu
items are not available; the commands that correspond to a Window Editor’s
toolbar are in the Edit menu’s Align and Arrange submenu items.
65REALbasic User’s Guide

Getting Started with REAL Studio
n Menu Bar: When a Menu Editor is shown, the Add menu item has submenu
items for adding a menu, menu item, submenu, and a separator. These submenu
items duplicate the functionality of the Menu Editor toolbar.

n Module: When the Code Editor for a module is shown, the Add menu item has
a submenu for adding methods, properties, event definitions, constants, and
notes. These submenu items duplicate the functionality of the Code Editor tool-
bar for a module.

n Class Interface: When the Code Editor for a class interface is shown, the Add
menu item has a submenu for adding methods and notes. These submenu items
duplicate the functionality of the Code Editor toolbar for a class interface. Other
items that are normally available for a Code Editor are not appropriate for a class
interface. For more information about class interfaces, see the section “Class
Interfaces” on page 585.

n Container Control: When the Code Editor for a Container Control editor is
shown, the Add menu item has submenu items for adding methods, properties,
event definitions, constants, menu handlers, and notes. These items duplicate
the functionality of the Code Editor toolbar. When the Container Control’s Lay-
out editor is shown, the Arrange and Align submenus of the Edit menu contain
the items that duplicate the functionality of its editor toolbar. For information
about container controls, see the section “The Container Control” on page 177.

n Report: Adds a blank Report Layout editor window to the project. Use the
Report Editor to design printed reports. For more information, see the chapter
“Creating Reports” on page 455.

n Build Automation: Adds build scripts to the project. Building a project pro-
duces your standalone application. Use a script to automate the build process,
such as setting properties of the standalone application. For more information,
see the section “Build Automation” on page 707.

n Turn Breakpoint On: The Turn Breakpoint On menu item sets a breakpoint in the
Code Editor in the selected line or the line in which the text insertion point is
located. This is equivalent to clicking in the left margin in the Code Editor to set
the breakpoint. Lines on which you can set a breakpoint are indicated by a dash in
the first column of the Code Editor. When a Breakpoint is set in a line, this menu
item changes to Turn Breakpoint Off. For information on setting breakpoints, see
the section “You Have Set A Breakpoint In Your Code” on page 637.

n Clear All Breakpoints: The Clear All Breakpoints item removes all breakpoints in
the project. It is available only for Code Editors and only when at least one
breakpoint is set.

n Break on Exceptions: If the Break on Exceptions menu item is selected (has a
checkmark to its left), the REAL Studio compiler will break into the Debugger
when it encounters a runtime exception error. For information on the Break on
Exceptions option, see the section “Runtime Exception Errors” on page 652.
66 REALbasic User’s Guide

Getting Started with REAL Studio
n Profile Code: If checked, it enables the REAL Studio Profiler. The Profiler
monitors the built application while it is running. It measures the amount of time
spent in each method and it also reports how many times the method is called. The
Profiler is available only in the Studio version of REAL Studio. If you don’t own the
Studio version, this command is not available. For more information, see the section
“Profiling your Project” on page 655.

n Warnings: Displays the Issue Type dialog box. This dialog is used in conjunction
with the Analyze Project feature of REAL Studio. It enables you to choose the types
of issues that you wish to be warned about. Deselect the items that you wish
Analyze Project to ignore. For more information about Analyze Project, see the
section “Analyzing the Project” on page 632.

n Run Paused: Used for debugging REAL Studio plug-ins at the same time as
debugging REAL Studio code. Run Paused builds the application and starts the
debugger but it will not launch the executable. This allows you to debug the REAL
Studio project but have an external entity responsible for launching the executable.
For more information, see the section “The Debugger” on page 636.

n Run: Attempts to compile the application and launch it. If REAL Studio is
successful, the application is launched and a new Debugger screen labeled “Run” is
added to the IDE window. If the attempt to compile is unsuccessful, REAL Studio
will display the syntax errors that prevented compilation. This item is equivalent to
the Run button in the Toolbar. Use Run to test and debug your application. For
more information, see Chapter 12, “Debugging Your Code” on page 631.

n Run Remotely: Available only in the Professional and Studio versions of REAL
Studio. The Run Remotely item has submenus that enable you to test the
application on another computer. Most often you will use the Run Remotely feature
to test the application on another platform. It has at least one submenu item, Setup,
and submenu items for each remote computer that is set up for remote debugging.
The Setup menu item displays a dialog box in which you can choose the remote
machines on which you will debug. Each target machine must be visible on your
network and have the Remote Debugger Stub utility configured and running. For
more information, see the section “Remote Debugging” on page 657.

n Pause: This menu item pauses execution of the test application in the debugger. It
is enabled only if you are testing the application in the debugger. For more
information on this command, see the section “Controlling Execution” on page 647.

n Stop Debugging: This menu item stops execution of the test application in the
debugger and returns to the IDE. This item is dimmed when you are not running a
test application (i.e., by clicking the Run button). For more information on this
command, see the section “Controlling Execution” on page 647.

n Step: Use the Step command with the Debugger to step through your code line by
line. Step has submenu items for stepping over, into, and out of a method. This item
is dimmed when you are not running a test application (i.e., by clicking the Run
67REALbasic User’s Guide

Getting Started with REAL Studio
button). This duplicates the functionality available in the Debugger toolbar. For
information on the Step options, see the section “Controlling Execution” on
page 647.

n Analyze Project: Analyzes the project for syntactical errors and problems that may
cause the built application to behave unexpectedly. If it finds issues, REAL Studio
opens an Issues tab that lists the errors. If it finds no issues, it reports that no
problems were found in the Tips bar. It does not build the application. For more
information, see the section “Analyzing the Project” on page 699.

n Analyze Item: Analyzes Item for syntactical errors and issues that may cause the
application to behave unexpectedly. Item is the project item in the frontmost tab. If
it finds issues, REAL Studio opens an Issues tab that lists the errors. If it finds no
errors, it reports that no errors were found in the Tips bar. It does not build the
application.For more information, see the section “Analyzing the Project” on
page 699.

n Build Settings: Displays the Build Settings dialog box. Use this dialog box to
choose the platform or platforms for which you will build standalone applications.
You can build for all platforms that REAL Studio supports. For information on the
Build Settings dialog box, see the section “Choosing a Target Platform” on
page 694.

n Build Application: The Build Application item is equivalent to the Build button
in the Main Toolbar. It builds your application according to the current Build
Settings and App object’s properties. If you have selected more than one target
platform in Build Settings, it builds for all the selected platforms simultaneously.
The built application will be created in a “Builds” folder for that project. It will
contain subfolders for each selected platform. For more information about the build
process, see the section“Building Your Application” on page 695.

The View
Menu

The View menu has IDE configuration options that enable you to show, hide, and
customize the toolbars and maximize the area of the window used by the current
editor:

n Editor Only: If the Editor Only menu item is selected (has a checkmark to its left),
the area of the window devoted to the editor is maximized, hiding the toolbars and
minimizing any panes to the left and right of the editor area. It applies to all editors
until it is turned off. For all editors, it hides the Main and Editor toolbars and the
Bookmarks bar. It also minimizes the Properties pane and Controls pane, if
appropriate for that editor. Figure 42 shows a Window Editor in its maximized state.
For a Code Editor, the Editor Only command reduces the Browser area to a little
sliver, like the Controls pane in Figure 42. If Editor Only is selected, you can revert
to the “normal” view by deselecting this menu item. If you have resized the panes
prior to selecting Editor Only, REAL Studio remembers your settings when you
deselect Editor Only.
68 REALbasic User’s Guide

Getting Started with REAL Studio
Figure 42. A Window Editor in Editor Only mode.

n Show Code/Show Layout: Available only for Window and Container Control
Editors. If the Layout editor for a window or container control is shown, the Show
Code menu item switches to its Code Editor; if the Code Editor is shown, the Show
Layout menu item switches to the Layout Editor view. These menu items are the
equivalents of the Code Editor and Window Editor icons on the left side of the
Window Editor and Code Editor toolbars. If the Code and Layout Editors for a
window are shown in separate tabs, then this menu item brings the selected Editor
to the front, leaving the current tab unchanged.

n Show/Hide Empty Events: Available only for Code Editors. By default, Show
Empty Events is selected and all event handlers are listed in the browser area of the
Code Editor. The Hide Empty Events command suppresses the event handlers that
have no code in them. If Hide Empty Events is selected, this menu item changes to
Show Empty Events. For more information on showing/hiding empty events, see
the section “Showing and Hiding Empty Events” on page 280.

n Tab Order: Available only for Window and Container Control Layout Editor views.
The Tab Order is the order in which controls are selected as the user presses the Tab
key repeatedly. If the Tab Order menu item is selected (has a CheckBox to its left),
the Tab Order for the controls in the window are shown as numbered badges. To
hide this information, deselect the Tab Order menu item. There are several ways to
change the Tab Order. You can use the Arrange submenu items in the Edit menu,
change the value of the TabIndex property in the Properties pane for each control,
69REALbasic User’s Guide

Getting Started with REAL Studio
use the Edit . Auto Adjust TabIndexes menu item, or change the value of the
TabIndex property via code.

n List Bindings: Available only for Window and Container Control Layout Editor
views and for layouts that contain bindings. It displays a list of object bindings in
the layout in a separate window. REAL Studio bindings were deprecated in REAL
Studio 2007 Release 5. Object bindings can no longer be created. This menu item
can be used to identify bindings that were created with previous versions of REAL
Studio.

n Menu Layout: Available only for a Menu Editor. It has submenu items for
previewing the current menubar on any of the platforms on which you can build the
application: Windows, Mac OS X, or Linux. These submenu items are equivalent to
the Preview Mode icons on the left side of the Menu Editor toolbar.

n Main Toolbar: The Main Toolbar menu item has a submenu for hiding and
customizing the Main Toolbar. The Customize submenu item displays a “mover”
dialog box that you can use to add or subtract items from the Main Toolbar.

n Bookmarks ToolBar: The Bookmarks ToolBar submenu has items for hiding and
customizing the Bookmarks ToolBar. This is the row of local bookmarks that you
have added to the current project via the Add Bookmark button or the
Bookmarks . Add Bookmark menu item. The Customize submenu item displays a
dialog box in which you can edit the text and location of the bookmarked items.

n Editor Toolbar: The Editor Toolbar is just below the row of tabs and has buttons
for adding items to the object being edited. Each editor has its own toolbar, so this
menu item pertains to the current editor’s toolbar. The Editor Toolbar menu item
has a submenu for hiding and customizing the current Editor Toolbar.

The History
Menu

The History menu keeps track of the screens that you use as you work on your
project. As you work, it automatically adds the names of the screens to the menu.
You can go directly to any screen that you have previously visited by choosing its
name from the History menu.

The History menu also includes menu commands for the navigation-related items
in the Toolbar:

n Backward: Moves to the previously-viewed screen. This is equivalent to the Back
button in the Toolbar.

n Forward: Moves to the next screen that you viewed (assuming that you have moved
backwards in the list of viewed screens). This is equivalent to the Forward button in
the Toolbar.

n Home: Moves to the Project Editor, the screen that you see when you double-click
the REAL Studio IDE application or choose File . New Project. This is equivalent
to the optional Home button that can be added to the Main Toolbar.
70 REALbasic User’s Guide

Getting Started with REAL Studio
n Go to Location: Allows you to enter the name of an Editor or an item. This is
equivalent to entering the item name into the Location area in the Main Toolbar. If
the Location area is shown when this menu item is selected, it moves the text
insertion point into the Location area. Otherwise, it opens a dialog box or sheet
window into which you can enter the location. Figure 43 shows the Go To Location
dialog box that is displayed only when the Main toolbar is hidden.

Figure 43. The Go To Location dialog box.

When you are in a Code Editor window and want to go to the definition of an item,
you can hold down Ctrl and double-click the item (hold down Command on
Macintosh).

The
Bookmarks
Menu

The Bookmarks menu contains commands for bookmarking individual items in
your projects. As you add bookmarks, the names of the bookmarked items are added
to the Bookmarks menu. Go to a bookmarked item by choosing its name from the
Bookmarks menu or clicking it in the Bookmarks bar.

You can bookmark items from several projects and they will be available in all open
REAL Studio IDE windows. The syntax that REAL Studio uses is
projectname.editorname, that is, the name of the project on disk, followed by a dot,
followed by the name of the editor. If the item is a control in a window, the dot
syntax is extended: projectname.editorname.controlname. If the project name is omitted,
the current project is assumed. Use the Global Bookmarks option when you want
the bookmark to be available in all of your projects. This makes it easy to navigate
to an item in another project.

n Show all Bookmarks: Opens a dialog box that lists all the global bookmarks
available. You can edit the names and/or locations of your global bookmarks from
this dialog box. It works the same way as the Edit Bookmarks dialog box for your
local bookmarks in the Bookmarks bar. For information on editing bookmarks, see
the section “The Bookmarks Bar” on page 59.

n Add Bookmark: Adds the current item to either the Bookmarks menu or the
current Bookmarks bar. If you have added a Bookmark Folder to either the menu or
the bar, you can also add the current item to any folder. For information on adding a
bookmark, see the section “The Bookmarks Bar” on page 59.

n Add Bookmark Folder: Displays a dialog box that enables you to name and add a
folder to either the Global or Local Bookmarks menu (this assumes that both Global
and Local bookmarks exist). When you choose Add Bookmark Folder, the following
dialog box appears:
71REALbasic User’s Guide

Getting Started with REAL Studio
Figure 44. The Add Bookmark Folder dialog box.

After you have created a bookmark folder, the Add Bookmark dialog’s Create In
drop-down list offers to add the new bookmark to either the Global or Local
Bookmarks folder.

n Global Bookmarks: Displays a submenu of the global bookmarks that you have
added, if any. Select a global bookmark to go to that location.

The Window
Menu

The Window menu has items for managing the REAL Studio IDE window and its
contents. You can have more than one window open for the same project and you
can have multiple projects open. It also has items for selecting among tabs in the
current window.

n Minimize: Minimizes the IDE window to the Taskbar (Windows and Linux) or the
Dock (Mac OS X). This is equivalent to clicking the Minimize button in the
window’s Title bar. When the IDE window is minimized, you can click on its name
or icon to restore the window to its previous size and position.

n Maximize/Zoom: Maximizes the IDE window to fill the screen. It is called “Zoom”
on Macintosh. This is equivalent to clicking the Maximize button in the IDE win-
dow’s Title bar. When the window is maximized, this menu item changes to Restore.
Choose Restore to return the IDE window to its previous size and position.

n Show/Hide Properties: Available only for the Project and Window Editors. Shows
or hides the Properties pane in the window. When the Properties pane is hidden,
the menu command changes to Show Properties.

n Builds: Opens the Build Progress dialog box. It lists all the builds since the session
started or since you last cleared the list. For more information on the Build Progress
dialog box, see the section “Building Your Application” on page 695.

n Next Tab: Next Tab is equivalent to clicking on the tab to the right of the current
tab in the Tab bar.

n Previous Tab: Previous Tab is equivalent to clicking on the tab to the left of the
current tab in the Tab bar.

n Bring All to Front: Available only on Macintosh. If more than one REAL Studio
window is open, it brings all of them to the front with respect to other application
and Finder windows.
72 REALbasic User’s Guide

Getting Started with REAL Studio
Below these menu items, the Windows menu displays a menu item for each open
window. Each item includes the name of the project and the name of the currently
displayed editor.

The Help
Menu

The Help menu provides easy access to the built-in REAL Studio documentation as
well as online information from the REAL Studio web site. The Help menu has the
following menu items:

n Getting Started: Opens the REAL Studio QuickStart using Adobe Acrobat
Reader. If the QuickStart file is not installed, this menu command displays a dialog
box enabling you to download it from the REAL Software web site.

n Tutorial: Opens the REAL Studio Tutorial in a new window using Adobe Acrobat
Reader. If the Tutorial file is not installed, this menu command displays a dialog
box enabling you to download it from the REAL Software web site.

n User’s Guide: Opens the REAL Studio User’s Guide in a new window using Adobe
Acrobat Reader. If the User’s Guide file is not installed, this menu command
displays a dialog box enabling you to download it from the REAL Software web site.

n Language Reference: Opens the online Language Reference. Use it to read
descriptions of REAL Studio objects, check syntax, and use code examples. For more
information about the online Language Reference, see the section “Using the On-
Line Help” on page 23.

n REAL Studio on the Web: Opens your default web browser application to REAL
Software’s home page on the web.

n REAL Studio Feedback: Opens the REAL Studio Feedback page, where you can
enter bug reports and feature requests and search the Feedback database by keyword.

n About REAL Studio: Opens a window that provides information on the version of
REAL Studio that is running and identifies the licensed user. On Mac OS X, the
About REAL Studio menu item is in the REAL Studio menu.

n Enter License Key: Opens a dialog box that allows you to enter your license code
into a your copy of REAL Studio. On Mac OS X, the Enter License Key menu item
is in the REAL Studio menu.

Working with Projects
All of the windows, menus, modules, pictures, sounds, movies, plug-ins, databases, and
programming code that make up an application are stored in a Project document. Projects
give you a convenient way to organize the objects that make up your application. You can
have several projects open at once and you can have several windows open per project.

Projects can contain any of the following items:

n Windows

n Menu bars
73REALbasic User’s Guide

Getting Started with REAL Studio
n Classes

n Class interfaces

n Modules

n File Type sets

n Container Controls

n Pictures

n Sounds

n Movies

n Databases

n AppleScripts (Mac OS only)

n Resource files (Mac OS only)

n Cursor resources

n Folders

n Documents of other types, which are treated as text strings

Each item is denoted by an icon that denotes its type and, in some cases, its subtype.
For example, different window types have their own icon.

If some of these items are not familiar to you, don’t worry. You will learn more
about them in later chapters.

Double-clicking on an item in the Project Editor will either display the item in its
editor or a viewer for the item, if REAL Studio has no editor for that type of item.

NOTE: There is one exception to this rule. You can encrypt an item in the Project Editor to
prevent others from accessing the item and any code associated with it. An encrypted item func-
tions normally in the built application, but it cannot be viewed or edited within the REAL Stu-
dio IDE. Encrypted items have a small key in the lower-right corner of its icon. When you
double-click an encrypted item, REAL Studio displays an alert that tells you that the item is
encrypted. For more information, see “Encrypting Your Source Code” on page 307.

Creating a
New Project

When you open REAL Studio by double-clicking on the REAL Studio application icon,
either a new project is created for you automatically or the most recent project is opened.
Optionally, REAL Studio will display a Quickstart screen that leads to an introduction
to REAL Studio. These options are controlled by the Startup options screen in REAL
Studio options. To set your options, choose Edit . Options (or REAL
Studio . Preferences on Macintosh). Scroll the left panel down and click the Startup
icon. The following screen appears.
74 REALbasic User’s Guide

Getting Started with REAL Studio
Figure 45. The REAL Studio Startup options screen.

If you select the Show Quickstart at Launch option, then the following screen is
presented in front of the REAL Studio IDE.

Figure 46. The Quickstart options screen.

By default, the Quickstart screen is shown the first time you launch REAL Studio.
After you have viewed the demo and finished the Quickstart, you can deselect it in
the Startup options screen.
75REALbasic User’s Guide

Getting Started with REAL Studio
If you turn off the Quickstart screen, REAL Studio will either open a new untitled
project or your most recently opened project. It will do the latter if you select the
Open Most Recent Project in the Startup screen in the Options dialog (see
Figure 15 on page 40). By default, the new project is a Desktop Application project
but you can change the type of project. For more information, see the section
“Creating Project Templates” on page 87.

If you immediately resize the IDE window after creating a new project, REAL
Studio will remember this size and use it as the default IDE window size for
subsequent new projects.

If you have a project open and wish to begin a new one, simply choose File . New
Project. REAL Studio presents the New Project dialog box. It enables you to choose
the type of project template that you want to base your new project on. By default,
it contains four items. The first two items are built into REAL Studio and have no
user-modifiable templates. They are:

n Desktop Application: This is the default template for any standard REAL Studio
application that uses a graphical user interface (GUI). A REAL Studio Desktop
Application project has a window and a menubar. The Desktop Application
template includes these two items. Except where noted, the User’s Guide deals only
with Desktop Applications. When it refers to a REAL Studio project, it means
Desktop Application project.

n Console Application: This is the default template for a REAL Studio application
that runs only in the Terminal window (Mac OS X and Linux), the command line
(Windows), or completely in the background. A Console Application cannot have a
menubar or windows. These items are omitted from the Console Application
template. Use this option only when you want to create an application that has no
graphical user interface of its own. For example, a web or mail server application can
be written so that it has no graphical user interface. For more information on
console projects, see the entries in the Language Reference for the ConsoleApplication
and ServiceApplication classes.

By default, a new Desktop Application project contains three items, Window1, the
main window, MenuBar1, the default menu bar and menus, and a special class
called the App class, which you can use to manage application-wide properties and
functions of the application. For information about this class, see the section “The
Application Class” on page 580.

The default project for a Console Application lacks the items that are needed to
build and maintain an interface. It has only one item, the App class. It is based on
the ConsoleApplication class instead of the Application class. Moreover, the
Project . Add submenu does not allow you to add interface items to a console
application project such as windows, menubars, and ContainerControls. For more
information on these classes, see the entries for these classes in the Language Reference
and Chapter 10, “Creating Reusable Objects with Classes” on page 531.
76 REALbasic User’s Guide

Getting Started with REAL Studio
REAL Studio ships with two additional templates that are based on items in the
Project Templates folder. Since you can open and resave these templates, you can
modify them for your own use. They are:

n Empty Service: The template for an Empty Service is designed for an application
with no user interface, such as a web server. Its App class item is based on the
Service Application class rather then the Console Application class. The code for the
Service should be placed in the App class’s Run event handler.

n Event Driven Console: The template for an Event Driven console is for an event-
driven application with no user interface. Its App class is based on the
ConsoleApplication class and has no Project items for building and maintaining a
user interface. The event driven code runs in the Run event of the App class. The
code is in a main DoEvents loop.

When you create a new project from a template, the Project Editor will contain all
the additional objects that were saved with the project when the template project
was created. For more information on adding templates, see “Creating Project
Templates” on page 87.

Figure 47. The New Project dialog box.

Configuring
the Project
Editor Toolbar

The Project Editor Toolbar (just below the row of Tabs) has buttons for adding
items to the project. By default, it has buttons for adding classes, class interfaces,
modules, folders, menubars, and windows. If you like, you can modify the Project
Editor toolbar with the View . Editor Toolbar . Customize submenu. Note that
the Project pane must be selected to customize the Project Editor toolbar rather
than another editor’s toolbar.
77REALbasic User’s Guide

Getting Started with REAL Studio
The following dialog appears:

Figure 48. The Customize Project Editor Toolbar dialog box.

The Customize Project Toolbar dialog box uses a “mover” interface to configure the
toolbar. Listed in the right panel are the current items in the toolbar. Listed on the
left are optional items that can be added to the toolbar.

The following operations are available:

n To add an item, highlight it in the left panel and click the Add button (shown in
Figure 37).

n To remove an item, highlight it in the right panel and click the Remove button.
This moves the item to the list on the left.

n To reorder an item, highlight it in the right panel and click either Move Up or
Move Down or select the item to be moved, drag it to the desired location, and drop
it between two items. The order in which the items are listed is the left-to-right
order in the toolbar.

n To change the appearance of the items in the toolbar, choose an item from the
Display As drop-down menu. Your choices are:

n Big icons with labels.

n Small icons with labels,
78 REALbasic User’s Guide

Getting Started with REAL Studio
n Big icons (no labels),

n Small icons (no labels),

n Labels only.

n To reset the toolbar to the default toolbar, click the Reset button (Windows and
Linux) or the Reset Defaults button (Macintosh).

Adding Items
to Your
Project

The method you use to add items to a project depends on the type of item you wish
to add. You add REAL Studio project items such as windows, classes, class
interfaces, menubars, and modules by clicking on a button in the Project Editor
toolbar (just below the row of tabs) or with the Project . Add submenu.

If you have a picture, sound, movie, or REAL database you wish to use in your
project, you can add with the File . Import menu item. It displays an import-file
dialog box that enables you to navigate to the item to be imported. Choose the item
and click the Import button.

You can also import items by dragging a file from the desktop and dropping it into
the Project Editor. If REAL Studio stores a shortcut (alias on Macintosh) to an
external item, it is displayed in italics within the Project Editor. You will learn in
later chapters how to add each type of item that can appear in the Project Editor.

Dragging to
the Tabs Bar

If the Project Editor is not displayed, you can still import an item into the Project
Editor by dragging. Do this by dragging the item to the Tabs bar. Any item that
can be dragged to the Project Editor can also be dragged to the Tabs bar.

When you complete the drag on Macintosh, the Tabs bar gets a marquee that
indicates that it can accept the dragged item. On Windows and Linux, the pointer
changes to show a marquee.

Organizing
Project Items

If your application has many items in its Project Editor, you may want to organize
them rather than leaving them in the order in which they were created. First, you
can reorder an item by holding the mouse button down on the item and dragging it
up or down. As you drag, you can drop it to a new position. The new position is
indicated by a horizontal line between existing items as you move the dragged item
over it. Release the mouse button to drop the item into its new position.

You can also group items by adding a folder to the Project Editor and storing some
items in the folder. For example, you might want to create a folder to hold all the
movies and another folder for all the sounds. First, create the folder by clicking the
Add Folder button in the Project Editor toolbar or choose Project . Add . Folder.
A folder has one property, its name. Use the Properties pane to give the new folder a
meaningful name. Then drag items that you wish to group together into the folder.
To drag into a closed folder, drag in a diagonal direction to the right to indicate that
the item should be placed in the folder instead of above or below. If you want to add
new items to a folder, open the folder and then click the Add button in the toolbar
for the desired type of item.
79REALbasic User’s Guide

Getting Started with REAL Studio
Note that your use of these two features does not affect the functionality of the
project. They are available as a convenience to you, making it easier to work with
projects with a lot of items.

External
Project Items

It is also possible to include windows, classes, or modules in a project that are actu-
ally stored in external files. This feature allows more than one project to use the
externally stored item. When you modify an external project item in REAL Studio
and then save your project, your changes are written out to the external file on disk.
When you open any other project that refers to the same external file, that project
will reflect your changes. However, REAL Studio does not allow you to open more
than one copy of REAL Studio accessing the same external project item simultane-
ously.

To convert a project item to an external item, select it in the Project Editor and
right+click (Control-click on Macintosh) to display the contextual menu for the
item and choose Make External. REAL Studio will display a Save-file dialog box.
Navigate to the directory in which you want to save the item, name the item, and
click Save. When you have successfully saved the item, it will be shown in the
Project Editor with a shortcut badge and its name will be in italics. This is shown in
Figure 49.

To add an item to a project as an external item, hold down Alt key (Option key on
Macintosh). The File . Import menu command changes to Import as External. Choose
that command and select the item to be imported. You’ll know you’ve done it
correctly because the icon in the Project Editor will have a small shortcut (alias on
Macintosh) badge and the name will be in italics, just like shortcuts on the desktop. In
Figure 49 an externally stored module has been added to the project.

Figure 49. A module as an external project item.

You can add an item to another project as either an external item or a regular item.
To add it as an external item, hold down the Ctrl and Shift keys (x and Option keys
on Macintosh) when dragging to the Project Editor.

An external
project item
80 REALbasic User’s Guide

Getting Started with REAL Studio
When you save a project that contains external items, REAL Studio will display a
Save As dialog box for each external item, followed by the one for the project itself.
This gives you an opportunity to save your modified external project items to a new
location, leaving the original ones intact. External project items that you haven’t
modified are not presented in this way.

If an external project item is set to Read Only in Windows or Linux or locked in the
Finder (on Macintosh), you can’t modify that item within the REAL Studio IDE,
though you can still view it. This provides a convenient way to protect external
items (which may be shared by many projects) from accidental modification. It also
provides a way to use REAL Studio with some version control systems, as long as
these systems can use locking at the OS level to reflect the checked in/out state of
each file. (Note that if an external file is changed on disk by something other than
REAL Studio — such as a version control system — you'll need to re-open the
project to reload that item.)

In addition to REAL Studio items that can be stored either internally or externally,
several other types of items are stored as external items by default. These include
movies, sounds, and pictures.

Removing
Items from
Your Project

You can remove items from a Project by clicking once on the item in the Project
Editor to select it and then pressing the Delete key. You can also select the item and
choose Edit . Cut or Edit . Delete. You can also use the Delete command in the
Project Editor’s contextual menu, described in the following section.

The Project
Editor
Contextual
Menu

The Project Editor has its own contextual menu that makes it easy to perform
actions directly from the Project Editor. Right+click on a project item (Control-
click on Macintosh) or on the blank space in the Project Editor to display a
contextual menu. The items on the menu vary depending on object type and may
include some or all of the following items:

n Add to Project: Has a submenu that offers to add any type of item that can be
added to the Project Editor. Items that can be added include windows, classes, class
interfaces, container controls, modules, toolbars, folders, menu bars, file type sets,
REAL SQL Databases, report, build automation script, and ActiveX controls
(Windows only). This menu item duplicates the functionality of the Project . Add
menu item.

n Add to ModuleName: Available only when the selected item is a module. Has a
submenu that offers to add any type of item that can be added to a module
namespace. Items that can be added are classes, class interfaces, and other modules.
If the contextual menu is displayed while a module’s Code Editor is displayed, the
submenu also offers to create a method, property, computed property, constant,
note, structure, or enum. For information about adding items to modules, see
Chapter 6, “Adding Global Functionality with Modules” on page 367.
81REALbasic User’s Guide

Getting Started with REAL Studio
n Edit Source Code: Opens the Code Editor for editing the item within REAL
Studio. For example, if the item is a module, it opens the Code Editor for the
module. If the item is a movie, it opens the movie using the default media player for
the movie type, if available. You can also open files by simply double-clicking the
item in the Project Editor. (If the object is encrypted, the Edit command is
unavailable).

n Edit Window: Opens the window for editing in a Window Layout Editor. This
item is available only if the item is a window or a container control.

n Find Item: Finds all instances of the selected item in the project. When you choose
Find Item, REAL Studio opens Search Results panel that lists the results of the
search. For more information on the Search Results panel, see the section
“Searching your Project” on page 297.

n Delete: Removes the item from the project. You can undo this action with the
Edit . Undo Delete menu command.

n Duplicate: Duplicates the selected project item.

n Play: Appears only if the item is a sound file. Plays the sound.

n Open File: Opens the file as if double-clicked from the desktop. For example, if the
item is a picture, it opens the item in the application indicated by its file extension
or Type and Creator codes.

n Show on Disk: Opens the file’s folder and highlights the file. For external items
only.

n File Path: Displays a hierarchical menu to the external item, allowing you to open
any folder enclosing the file.

n Relocate: Opens an open-file dialog box, enabling you to reopen the item if it has
been moved from its original location. For external items only.

n Encrypt: Displays the Encrypt… dialog box, allowing you to enter an encryption
password and encrypt the object. Encryption is supported only in REAL Studio
Professional and Studio editions. Decryption is supported in all editions. This
feature is most typically used to hide code in windows, classes, or modules that you
distribute or sell to other developers. For an example, see the section “Encrypting
Modules” on page 403. Available only if the item is not encrypted.

n Decrypt: Displays the Decrypt… dialog box, allowing you to enter the encryption
password to decrypt the object. An encrypted object in the Project Editor has a
small key in the bottom-right corner of its icon. Available only if the item is
encrypted.

n Add to Class: Appears for classes, allowing you to add structures, enums, and
delegates to classes.
82 REALbasic User’s Guide

Getting Started with REAL Studio
n New Subclass: Appears only when the selected item in the Project Editor is a class
or subclass. Creates a new subclass, adds it to the Project Editor, and automatically
sets its super class to the selected class. That is, it creates a subclass of the selected
class. The new subclass is automatically named CustomClassName, where ClassName
is the name of the super class. After creating the subclass, you can use the Properties
pane to make any necessary modifications to the new subclass, including changing
its Super class. See Chapter 10, “Creating Reusable Objects with Classes” on
page 531 for information on classes and subclasses.

n Extract Superclass Opens the Extract Superclass dialog box. Available only for
classes that do not have a superclass. This enables you to create a new superclass
from the current class. You can give the new superclass a name and select some or all
of the methods and properties of the current class to be methods and properties of
the superclass instead. When you accept this dialog, the new superclass is added to
the project and any methods or properties that you selected become methods of the
superclass and are removed from the current class. For information on classes and
superclasses, see “Creating a Superclass from an Existing Class” on page 541.

n Implement Interface: Opens the Implement Interface dialog box. This enables
you to implement a class interface for the selected item. It is available only for
windows and classes. It contains a drop-down list of all the built-in and custom
interfaces in the project. Choose among the types of interfaces presented in the
drop-down list. When you specify a class interface via this dialog box, REAL Studio
will automatically add all the method declarations specified by the class interface to
the item’s Method Editor and will open the Method Editor to the first such method.
A window or class can have more than one class interface. Repeat this process to
specify additional class interfaces for the item. For more information on interfaces,
see the section “Class Interfaces” on page 585.

n Property List Behavior: Available only for classes. Displays the ClassName
Property List dialog box. It enables you to customize several aspects of the
Properties pane when an instance of the class has been added to a window. For
information on the Properties List Behavior dialog, see the section, “Customizing
the Properties List” on page 545.

n Make External: Saves the item to disk as an external project item. The difference
between Make External and Export is that Make External also converts the item
from a “regular” item to an external item for the present project. Like exported
items, the copy on the desktop can be imported into other projects. For information
on external project items, see the section “External Project Items” on page 80.

n Make Internal: Appears only when the selected item in the Project Editor is an
external item. Make Internal converts the item to an internal project item.

n Export: Used to export the item to disk. When you choose Export, a Save-file
dialog appears, enabling you to save the item to disk. You can import the item into
another project by dragging it from the desktop to the Project Editor or importing
83REALbasic User’s Guide

Getting Started with REAL Studio
it as an external item (in which the item remains on disk and can be shared among
projects) by holding down the Ctrl and Shift keys (x and Option keys on Macintosh)
while you drag the item from the desktop to the Project Editor.

n New Implementor: Available only for class interfaces. Creates a new class that
implements the selected class interface. The new class is named
CustomInterfaceName. It has no Super class but implements the methods of the
selected interface. For more information on interfaces, see the section “Class
Interfaces” on page 585.

n Find Implementors: Available only for class interfaces. Searches the project and
finds all classes that implement the current class interface. When it is finished, it
creates a new Search Results tab that lists the results of the search. For more
information on interfaces, see the section “Class Interfaces” on page 585.

n Extract Interface Opens the Extract Interface dialog box. Available only for
windows and classes. This enables you to create a new class interface that uses some
of the methods of the current item in the new class interface and makes the current
class or window an implementor of the new class interface. For more information on
interfaces, see the section “Class Interfaces” on page 585.

n Attributes: Available for project items and methods and properties in the Code
Editor. Opens the Attributes Editor for the item. Attributes are compile-time
properties. An attribute is added to an item via the Attributes Editor in the Project
Editor. They can be accessed by the AttributeInfo class in the language. For more
information on Attributes, see the section “Attributes” on page 237.

Saving Your
Project

When you want to save the changes you have made to your project, choose File . Save.
If you aren’t sure whether you want to keep the changes you have made, you can
choose not to save your project or choose Save As from the File menu and save the
project under another name. This will keep your original project intact.

By default, REAL Studio saves the project in its own binary format. This is the
preferred format for normal project development with REAL Studio. In addition,
you can also save in either the XML or Version Control Project (VCP) formats.
These options are offered in the “Save as Type” or Format (on Macintosh) pop-up
menus in the Save As dialog box.

If you need to save in either alternate format, you can set the default preference in
the General Options screen (Preferences on Macintosh). You can set the default to
the binary format (RBP), XML, or VCP format.
84 REALbasic User’s Guide

Getting Started with REAL Studio
Figure 50. Setting the default format in Preferences.

As noted above, you can save external project items independently of the project via
the items’ contextual menus.

Saving as XML Projects can be saved in XML format using the File . Save or File . Save As com-
mands and then choosing XML from the Save as Type (Windows and Linux) or For-
mat (Macintosh) pop-up menu in the Save-file dialog box. When you save in XML
format, you are really doing an export, not a save; the project stays associated with
its original file location and format.

Opening XML Projects can be imported from XML using the File . Open command. Also, all text
files will appear in the Open dialog, but only those that contain proper XML data
can actually be read. If the open is successful, an IDE for the project appears, just as
if it had been saved in the REAL Studio format.

Saving as a
Version
Control Project

The Version Control format saves the project in a human-readable text format. This
format is intended only for use with a Version Control System to handle version
control and project sharing among multiple programmers. In the Version Control
system, programmers can easily reconcile different versions of the same project by
working with the text files.

Although the Version Control Project format produces editable text files, you
should not attempt to write your code or continue development of the project in a
text editor. Project development is supported only within the REAL Studio IDE.
85REALbasic User’s Guide

Getting Started with REAL Studio
When you save a project in the VCP format, you actually get several files that
collectively represent the information in the project. Here are general descriptions of
the types of files that you get:

n The Project file is store as an .rbvcp file that contains the properties of the
application as a whole. The .rbvcp file can be opened from the REAL Studio IDE via
the File . Open command.

n Source code project items (interfaces, modules, classes, file type sets) are stored in
.rbbas files.

n Each window and container control is stored in a .rbfrm file that contains the
window’s or container control’s contents as well as the source code.

n The menus are stored in an .rbmnu file.

n External items (pictures, sounds, movies, and so forth) don’t generate any extra files
since they’re already external.

n Binary items are saved in a single binary .rbres file. Items such as the application’s
icon, file type icons, encrypted items, and so forth are stored here. This file is not
meant to be human readable.

In a text file, each item begins with a #tag statement that indicates the type of the
item, such as “#Tag=Window”. This is followed by a text representation of the
item. For example, properties are represented as key-value pairs (such as
“Width=350”), methods and menu handlers are stored in a Version Control project,
and so forth. The details of the format are not officially documented, but you will be
able to recognize what each item is.

On the Macintosh a, VCP uses Unix line endings.

To use a version control system, save simply save the project in VCP format. Then
you can check the items in. For detailed information about the VCS “Subversion,”
see http://subversion.tigris.org.

When you delete files or folders from a project in VCP format, they are left on disk.
This is actually useful for Subversion and similar VCS users as it gives you a chance
to manually delete the file from Subversion.

Renaming a project item produces a “.obsolete” file. For example, if you have
Foo.rbbas and rename it to Bar.rbbas, you are left with Foo.rbbas.obsolete. To fix
this in Svn you have to manually (outside of REAL Studio) do the following:

n Rename Bar.rbbas to a temporary name such as Bar.rbbas.hide

n Rename Foo.rbbas.obsolete to Foo.rbbas

n Use Svn to rename Foo.rbbas to Bar.rbbas (no need to commit, just need the rename
operation pending)

n Manually delete Bar.rbbas
86 REALbasic User’s Guide

Getting Started with REAL Studio
n Rename your Bar.rbbas.hide back to Bar.rbbas

n Commit

When you update the project, you should have the project closed. Otherwise, the
IDE may save over what got just got checked out. It does not notice file changes
when the project is open.

Opening a
Version Control
Format Project

The files that are generated by REAL Studio when you save in the Version Control
Project format should be kept in the same directory. To open a project in Version
Control Project format, choose File . Open and choose Version Control Project
from the Format drop-down list (Not needed on Macintosh). Navigate to the correct
directory and then open the .rbvcp file that corresponds to the desired project.

Creating
Project
Templates

If you have several items you commonly use in every project, you can save them in a
project file and make the project file a template for new projects. The template can
include custom windows, classes, modules and other project items.

When you create a new project based on the template, REAL Studio creates a new
untitled project that is an exact copy of the template. The template project itself
remains unchanged. This lets you create a new project using existing project items
without worrying about modifying the original items.

The most efficient way to use a template is to place it in a special directory in the
same directory as REAL Studio called “Project Templates”. If you do so, your list of
templates will be listed in the New Project dialog box whenever you choose
File . New Project.

If you want REAL Studio to use a particular custom template automatically, name
it “Default New Project” and place this template in your Project Templates folder.
This template will be used when REAL Studio is launched.

To use a template to start a new project, do this:

1 Copy the projects you wish to use as templates to the “Project Templates”
folder in the folder that contains the REAL Studio application.

2 Launch REAL Studio and choose File . New Project.
REAL Studio presents the New Project dialog box. It lists all the templates in the
Project Templates directory as well as the templates shipped by REAL Studio.
Figure 51 on page 88 shows the set of default projects. The first two are built into
REAL Studio; the last two are shipped with REAL Studio as editable templates that
are placed in the Project Templates folder.
87REALbasic User’s Guide

Getting Started with REAL Studio
Figure 51. The New Project dialog box.

3 Highlight the desired template and click OK.
REAL Studio will use that item as the basis of the new project. It will open as
“Untitled” but will have all the classes, modules, windows, and so on from the tem-
plate file. Changes to a new project based on a template will not affect the template.
88 REALbasic User’s Guide

CHAPTER 3 Building a User
Interface

Your application’s user interface is probably the most important part of any applica-
tion. The old saying “You don’t get a second chance to make a first impression”
couldn’t be more true when it comes to your application’s user interface. If the
interface is unintuitive and sloppy, the user will react the same way they might
react to someone who has poor communication skills and cares little for his appear-
ance. Using your application will be frustrating at best and, at worst, the user will
give up and look for another solution to his problem. This leaves you with whatever
goals you had for your application unfulfilled.

Fortunately, REAL Studio makes building your application’s user interface so fast
and easy that you can spend the time you need to get the interface just right. REAL
Studio’s built-in Interface Assistant™ actually helps you build a proper, clean
interface.

In this chapter you will learn just about everything you need to know about creating
all of the elements that make up your application’s user interface. You will learn
some guidelines to follow when creating your interface and how to build windows
and menus.
89REALbasic User’s Guide

Building a User Interface
Contents

n Working with windows

n Interacting with the user through controls

n Adding menus

n User interface guidelines

Working with Windows
Typically, most of an application’s user interface will be in the application’s win-
dows. This, of course, is highly application-specific. REAL Studio makes it easy to
create new windows of just about any type. You create your user interface by creat-
ing its windows and adding interface controls such as PushButtons and CheckBoxes.

By default, a REAL Studio Desktop Application project has one window that is dis-
played automatically when the application runs. Typically, you will begin design-
ing your application’s interface by adding controls to this window and enabling the
controls by writing code.

To add additional windows to an application, you follow the following procedure:

n Add a new window to the project by clicking the Add Window button in the
Project Editor toolbar or by choosing the Project . Add . Window command,

n Set the window’s Frame type and other properties using its Properties pane,

n Add controls to the window,

n Add code as needed,

n Add code to display the window in the finished application (see the section
“Opening Windows” on page 313).

The following sections review the types of windows supported by REAL Studio. In
addition to these window types, you can design message dialog boxes without for-
mally creating a window for the message. You do so using the MessageDialog class,
which is described in the section “The MessageDialog Class” on page 109.

Window
Types

REAL Studio supports twelve types of windows. The window type is set by its
Frame property. Some types, however, are rarely used in modern applications and
are retained only for historical reasons. A few specialized windows are supported on
Mac OS X only. The types of windows are:

n Document

n Movable Modal dialog

n Modal dialog

n Floating
90 REALbasic User’s Guide

Building a User Interface
n Plain box

n Shadowed box

n Rounded (functionality was available only on Mac OS 9; it appears as a Document
window on all currently supported platforms)

n Global Floating

n Sheet window (functionality available only on Mac OS X)

n Metal window (functionality available only on Mac OS X 10.2 and above)

n Drawer window (functionality available only on Mac OS X 10.2 and above)

n Modeless Dialog

The type you choose for a particular window depends mostly on how the window
will be used.

Document The Document window is the most common type of window. When you add a new
window to a project, this is the default window type. It is also the window type for
the default window, Window1. Document windows are most often used when the
window should stay open until the user dismisses it by clicking its close box (if it
has one) or clicking a button programmed to close the window. The user can click
on other windows to bring them to the foreground, moving the document window
behind the others. Figure 52 on page 92 shows an example of a small, blank docu-
ment window. When you first launch REAL Studio, the default Desktop Applica-
tion project includes one blank Document window.
91REALbasic User’s Guide

Building a User Interface
Figure 52. Document windows.

Document windows can have a close box, a maximize box, and a grow handle
(making them user-resizable). Mac OS X Document windows have the standard set
of red, yellow, and green buttons in the Title bar.

On Windows and Linux, the default menubar, Menubar1, appears in the window by
default. You can choose to display the window with no menubar by setting the
MenuBar property of the window to None, or, if you have created additional
menubars, choose a different menubar.

When you add a new window to your project, it defaults to the Document Window
type. You can modify its type by setting the Frame property (see “Using a
Window’s Properties Pane” on page 100).

Movable
Modal

This type of window stays in front of the application’s other open windows until it
is closed. Use a Movable Modal window when you need to briefly communicate
with the user without the user’s having access to the rest of the application. Because
the window is movable, the user will be able to drag the window to another location
in case they need to see information in other windows in order to finish what they
are doing in the Movable Modal window. Figure 53 shows examples of a blank
Movable Modal window on each operating system.
92 REALbasic User’s Guide

Building a User Interface
Figure 53. Movable Modal windows.

On Windows, a Movable Modal window has minimize, maximize, and close but-
tons in the Title bar. In Windows MDI interfaces, the window opens in the center
area of the screen rather than in the center area of the MDI window. Therefore, the
Movable Modal window may open outside the MDI window.

On Linux, the window has minimize and close buttons in its Title bar.

On Macintosh, Movable Modal windows do not have a close box, so you need to
include a button that the user can click to dismiss the window unless the window
will dismiss itself after the application finishes a particular task. Also, Macintosh
Movable Modal windows are not resizable by the user and cannot have a maximize
box. This means you will have to consider the amount of available screen space the
user will have in determining the size you will make a Movable Modal window.

NOTE: There is one exception to the rule regarding Movable Modal windows being in front of
all other windows. If a Movable Modal window or one of its controls executes code that opens a
Floating window, the Floating window will be in front of the Movable Modal window. How-
ever, it is poor interface design for a Movable Modal window to open another window because
Movable Modal windows are mostly used in situations where the interaction with the user will
be brief.

Modal Dialog These windows are very similar to Movable Modal windows. The only difference is
that Modal Dialog windows have no Title bar, so they cannot be moved. On Win-
dows, a Modal dialog box has no minimize, maximize, or close buttons. In Win-
dows MDI applications, a Modal Dialog window opens in the center area of the
screen rather than the center area of the MDI window. Therefore, a Modal Dialog
box may open outside of the application’s MDI window. On Linux, Modal Dialogs
are modal but have a Title bar and close and minimize buttons.

The Page Setup dialog box is an example of a Modal Dialog window.
93REALbasic User’s Guide

Building a User Interface
Figure 54. A Modal Dialog window.

NOTE: Because Modal Dialog windows and Movable Modal windows are both modal, the
same exception applies regarding floating windows opening in front of Modal windows. See the
note for Movable Modal windows on page 93.

Floating Like Movable Modal and Modal Dialog windows, a Floating window (also known as
a Windoid) stays in front of all other windows. The difference is that the user can
still click on other windows to access them. If you have more than one Floating win-
dow open, clicking on another Floating window will bring that window to the
front, but all open Floating windows will be in front of all non-floating windows.
Because they are always in front of other types of windows, their size should be kept
to a minimum or they will quickly get in the user’s way. This type of window is
most commonly used to provide tools the user will frequently access.

A Global Floating Window is a Floating window that can float in front of a
particular application’s window or all applications’ windows. They are described in
the section “Global Floating” on page 97.

Figure 55. Floating windows.
94 REALbasic User’s Guide

Building a User Interface
Like Document windows, Floating windows can have a close box and can be user-
resizable. On Linux, Floating windows have minimize and maximize widgets.

In Windows MDI applications, a Floating window can float outside the applica-
tion’s own window. By default, a Windows MDI Floating window opens in the top-
left area of the screen, regardless of the location of the MDI window.

Plain Box These windows function as Modal Dialog windows. The only real difference is their
appearance, as you can see in Figure 56 on page 95. Plain Box windows are com-
monly used for About Box windows and for applications that need to hide the desk-
top.

Figure 56. Plain Box windows.

On Windows MDI applications, a Plain Box window opens in the center area of the
screen rather than the center area of the MDI window. Therefore, a Plain Box
window may open outside the MDI window.

Shadowed Box Like Plain Box windows, Shadowed Box windows function as Modal Dialog win-
dows. The only difference is their appearance, as you can see in Figure 57. Shadowed
Box windows are commonly used for About Box windows.
95REALbasic User’s Guide

Building a User Interface
Figure 57. Shadowed Box windows.

On Windows MDI applications, a Shadowed Box window opens in the center area
of the screen rather than the center area of the MDI window. Therefore, a Shadowed
Box window may open outside the MDI window.

On Mac OS X, a Shadowed Box window works like a Modal Dialog box with a
minimize button.

Rounded Rounded windows act like Document windows, as the true “rounded” window is
obsolete. It existed as a distinct window type on Mac OS 9 and earlier. Currently,
the only differences are appearance (as you can see in Figure 58) and the fact that, on
Macintosh, Rounded windows cannot have a zoom box or be resizable. On Win-
dows, a “Rounded” window has the standard minimize, maximize, and close but-
tons in the Title bar and the corners are not actually rounded.

Rounded windows are not used any more and there is really no reason to choose this
option instead of Document windows. Rounded windows appear as Document
windows in REAL Studio Mac OS X applications.

Figure 58. Rounded windows.
96 REALbasic User’s Guide

Building a User Interface
Global Floating A Global Floating window looks like a Floating window, except that it is able to
float in front of other applications’ windows, even when you bring another applica-
tion window to the front. This doesn’t work for a Floating window. A ‘regular’
Floating window floats only in front of its own application’s windows.

Figure 59. Global Floating windows.

On Windows MDI applications, a Global Floating window can float outside of the
MDI window. By default, it opens in the top-left area of the screen.

Sheet Window A “Sheet window” is the official name for drop-down dialog boxes that were
introduced with Mac OS X. Mac OS X uses them in place of modal dialog boxes.
Figure 60 illustrates an appropriate usage of a Sheet window.

Figure 60. A Sheet window in action.

A Sheet window behaves like a Modal dialog window, except that the animation
makes it appear to drop down from the parent window’s Title bar. It can’t be moved
from that position and it puts the user interface in a modal state. The user must
respond to the choices presented in the Sheet window.

Sheet windows behave as sheets only under Mac OS X. On Windows and Linux,
Sheet windows behave like Movable Modal dialog windows.
97REALbasic User’s Guide

Building a User Interface
Figure 61. Sheet windows on Vista and Linux.

Metal Window A Metal window uses the metallic background that Apple introduced with
Mac OS X and certain Mac OS X software products such as QuickTime, iTunes,
and Safari. A Metal window has a Grow handle and the standard Title bar with
close, minimize, and maximize buttons of a Document window. The Metal window
type requires Mac OS X version 10.2 or above.

In Mac OS X 10.5 Leopard, Apple replaced the metallic look with a gray. This is
reflected in REAL Studio’s Metal window type when it is used under Mac OS X
Leopard.

Figure 62. A blank Metal window under Mac OS X 10.2 and 10.5.

On Windows and Linux, a Metal window looks like a regular Document window.

Drawer
Window

A Drawer window was introduced in Mac OS X. A Drawer slides out of a side or the
top or bottom of a main window to provide supplemental information. For example,
the Mac OS X Mail application uses a Drawer window to display the user’s list of
mailboxes. On Windows and Linux, a window of this type appears as a separate
floating window.

Mac OS X 10.2 Mac OS X 10.5
98 REALbasic User’s Guide

Building a User Interface
Figure 63. A blank Drawer window (Mac OS X).

Display a Drawer window using the Show, ShowWithin, or ShowWithinModal
methods of the Window class. When the Drawer window is displayed, it is in a
modeless state even if it is called by ShowWithinModal. You can also control the
border from which the window slides (either side, top, bottom, or system default, in
which the system figures out where there’s room for the Drawer window).

Modeless
Dialog

The Modeless Dialog window is similar to the Modal Dialog, except that it is paired
with a parent window (usually a Document window). Unlike a Modal Dialog, it
allows you to access the parent window while it is displayed. If you hide the parent
window, the Modeless dialog hides as well. If you show the parent window, the dia-
log reappears.

The Modeless Dialog is supported on Windows and Linux. On Macintosh, it
behaves as a Document window.

Figure 64. Modeless Dialog boxes.

Custom
Window Types

The Window class has a property, MacProcID, that allows you to create custom
window types. This property gives you more options than described in this section.

Drawer window
99REALbasic User’s Guide

Building a User Interface
However, these custom types are supported only on Macintosh. All of the window
types described in this section are cross-platform, with the limitations noted in each
section.

For more information, see the discussion of the MacProcID property of the Window
class in the Language Reference.

Using a
Window’s
Properties
Pane

When you click on a window’s name in the Project Editor, the Properties pane
changes to show the window’s properties that can be set in the development environment
— as opposed to properties that can be set via code. A selected item in the project
and its properties is shown in Figure 65.

Figure 65. A Movable Modal dialog window in the project and its properties.

You change a window’s properties by entering values into the enterable areas in the
Properties pane, by making menu selections, and by selecting or deselecting
CheckBoxes.

When you enter a value into an entry area, press the Return key to commit the
entry. For example, this window’s Title property was changed from the default text,
“Untitled”, to “Find and Replace”. The text of the Title property appears in the
window’s title bar when the window appears. Figure 66 shows the window in the
finished application.
100 REALbasic User’s Guide

Building a User Interface
Figure 66. The value of the Title property in the finished application.

In the Properties pane, drop-down menus are denoted by the downward pointing
arrow on the right side of line. For example, this window’s Frame property was
changed from Document to Movable Modal using the drop-down menu.

Figure 67. Changing the Frame property.

The icon with the ellipsis (Windows and Linux) or (Mac OS X) indicates that
you can enter text by clicking the icon to display a text entry dialog. For example,
the HelpTag property of the selected PushButton accepts text entry.

Title property
101REALbasic User’s Guide

Building a User Interface
Figure 68. The HelpTag property with help text.

You can enter the text directly into the entry area or click the icon to display a
much larger text entry area. An example is shown in Figure 69.

Figure 69. Entering Help text in the Edit Value area.

Creating
Windows

When you create a new Desktop Application project, REAL Studio adds a window
named “Window1” to your project automatically. This is the default project win-
dow. Unless you specify otherwise, it will appear when you launch your compiled
application. For information on changing the default window, see the section “Set-
ting the Default Window” on page 104.

There are several ways to add an additional window to your project. You can click
the Add Window button in the Project Editor toolbar, use a menu command, or a
contextual menu.
102 REALbasic User’s Guide

Building a User Interface
To add a window using the menu command, choose Project . Add . Window. To
use the contextual menu, right+click (on Windows and Linux) or Control-click (on
Macintosh) and choose Add to Project . Window.

Figure 70. Adding a window to the project using the Project Editor’s contextual
menu.

The windows in your project act as templates for windows in your application.
When your application opens one of these windows, it’s really opening a copy of the
window. This means that your application can have several copies of the same win-
dow open at the same time. It’s important to understand this when creating your
user interface because there is no need to go to the extra trouble of duplicating a
window in the IDE if your application needs to open two of them at the same time.

For example, a text processing application uses one window template as the
document window. The File . New command in the finished application allows the
end-user to create as many document windows as needed from the same template.

Removing
Windows

To remove a window from your project, simply click on it once in the Project Editor
to select it and press the Delete key or choose Edit . Delete. You can also
Right+click the window (Control-click on Macintosh) to display the contextual
menu and remove it using the Delete contextual menu item.
103REALbasic User’s Guide

Building a User Interface
Figure 71. Deleting a window via its contextual menu.

You can undo many actions in REAL Studio. For example, if you delete a window
by mistake, choose Edit . Undo (Ctrl+Z or x-Z on Macintosh).

Setting the
Default
Window

By default, the window that is included in a Desktop Application project automati-
cally opens when your application is launched. It is called the default window. If
you have created more than one window, you can make a different window the
default window. Or, you can specify that no windows will open automatically when
the application starts.

You set the default window using the DefaultWindow property of the App class
object. The App class is added to the project automatically when you create a new
Desktop Application project.

To set the default window, do this:

1 Click on the App class in the Project Editor.
The Properties pane changes to show the properties of the App class. The Default-
Window property is in the Appearance group. Its pop-up menu contains all the
windows in the project as well as the choice of “None.”

2 Choose the desired window from the DefaultWindow pop-up menu or, if
you want no window to open, choose None.
104 REALbasic User’s Guide

Building a User Interface
Figure 72. Setting the default window for the project.

When your application launches, the default window (or no window) will open
automatically.

Customizing
the Window
Editor Toolbar

The Window Editor toolbar has buttons for manipulating the controls in the
window. By default, it has buttons for changing the Tab Order (the order in which
controls are selected when the user presses Tab) and aligning controls. To modify
the Window Editor toolbar, choose View . Editor Toolbar . Customize submenu.
(Note that a Window Editor must be selected to customize the Window Editor
toolbar rather than another editor’s toolbar.)

The Customize Window Editor Toolbar dialog box appears:
105REALbasic User’s Guide

Building a User Interface
Figure 73. The Customize Window Editor Toolbar dialog box.

The Customize Window Editor toolbar dialog box uses a “mover” interface to
configure the toolbar. Listed in the right panel are the current items in the toolbar.
The left panel contains any available items.

The following operations are available:

n To add an item, highlight it in the left panel and click the Add button.

n To remove an item, highlight it in the right panel and click the Remove button.
This moves the item to the list on the left.

n To reorder an item, highlight it in the right panel and click either Move Up or
Move Down or select an item, drag it to the desired location, and drop it between
two items. The order in which the items are listed is the left-to-right order in the
toolbar.

n To change the appearance of the items in the toolbar, choose an item from the
Display As drop-down menu. Your choices are:

n Big icons with labels.

n Small icons with labels,

n Big icons (no labels),

n Small icons (no labels),
106 REALbasic User’s Guide

Building a User Interface
n Labels only.

n To reset the toolbar to the default toolbar, click the Reset button (Windows and
Linux) or the Reset Defaults button (Macintosh).

Encrypting
Windows

You can encrypt (protect) or decrypt (unprotect) a window from the Project Editor.
A protected window cannot be opened in a Window Editor and no one can access
any code associated with the window or any of the controls in the window. It’s a
good idea to encrypt any REAL Studio items that you want to sell to others. They
will be able to use the item in their project but cannot modify your code.

Encryption is supported only in the REAL Studio Professional and Studio editions.
Decryption is supported in all editions.

To encrypt a window, you supply a password which can be used to decrypt it later.

To encrypt a window, do this:

1 Right+click on the window in the Project Editor (Control-click on
Macintosh) and choose Encrypt from the contextual menu (see Figure 71 on
page 104) or choose Edit . Encrypt.
The Encrypt Window dialog box appears, as shown in Figure 74.

Figure 74. The Encrypt Window Dialog box.

2 Enter and confirm a password for decryption.
The Encrypt button will not be enabled if the “Confirm” password does not match
the initial entry.

Important: Don’t forget the password.

3 If you want the window to be accessible only to REAL Studio 2006 Release
3 and above, then click the “Use REAL Studio 2006r3 Encryption” checkbox.

4 When you are finished, click Encrypt.

An enrypted window appears in the Project Editor with a small key in the lower
right corner of the window icon. In Figure 75. the “FindDialog” window has been
encrypted.
107REALbasic User’s Guide

Building a User Interface
Figure 75. A project with an encrypted window.

When a user tries to open an encrypted window in a Window Editor, REAL Studio
displays the Decrypt Window dialog box, shown in Figure 76.

To edit the window and/or its code, you must decrypt it using its encryption
password.

To decrypt an encrypted window, do this:

1 Right+click on the window’s name in the Project Editor (Control-click on
Macintosh) and choose Decrypt from the contextual menu or click on the
window’s name and choose Edit . Decrypt.
The Decrypt Window dialog box appears.

Figure 76. The Decrypt Window dialog box.

2 Enter the decryption password and click Decrypt.
In a few moments, the key will disappear from the window’s icon, indicating that it
has been successfully decrypted. If you entered an incorrect password, a dialog box
will inform you of that fact.

If you don’t know the password, there is no way to decrypt the window.

Message Dialog Boxes
REAL Studio offers an especially quick way to create standard message dialog boxes.
There are two built in language commands that create message dialog boxes auto-
108 REALbasic User’s Guide

Building a User Interface
matically. They bypass the process of creating a window, adding it to the project,
and adding controls to it via the Controls pane and the Window Editor. These com-
mands are the MsgBox function and the MessageDialog class.

These commands create only a limited range of window types. The windows are
message boxes that have an icon, some text, and one or more buttons. These com-
mands cannot be used to create dialog boxes or any other type of window that dis-
plays information in a different form. The only user input that is supported is the
selection of a button to click. Also, you do not have the ability to arrange the but-
tons, text, and icon freely. If you need any of these features, you should create a win-
dow and add it to the project.

The MsgBox
function

Of the two commands, the MsgBox function is the simpler one. Use it when you
want to present a brief message to the user in the form of a modal message box.
Simply pass the text that you want to display in the message box to the MsgBox
function. For example, the following message is shown when a file upload has
completed successfully:

This line of code displays a Message box with the message and one button that the
user can click to dismiss the window. This message box looks as shown in Figure 77.

Figure 77. The basic MsgBox message box.

If the string that you pass to MsgBox contains a null character or unprintable char-
acters, you should first filter them out prior to using the MsgBox function. The null
character will terminate the string, no matter where it appears.

The MsgBox function has two optional parameters that provide some customiza-
tion. You can pass an integer that indicates that the function should display addi-
tional buttons, indicate which button is the default button, and set the icon to be
displayed.

If you use the optional parameters, the MsgBox function returns an integer that tells
you which button the user clicked. If you display more than the one button, you
should examine the value returned by the MsgBox function.

The
MessageDialog
Class

Use the MessageDialog class when you need to design more complex message dialog
boxes than shown in Figure 77. With the MessageDialog class, you can present up
to three buttons and control their text and functionality. You can also present
subordinate explanatory text below the main message.

MsgBox "File transfer complete!"
109REALbasic User’s Guide

Building a User Interface
However, since MessageDialog is a class, you cannot accomplish all of this with one
line of code. You need to declare a variable as type MessageDialog, instantiate it, set
its properties, and handle the result returned, which tells you which button the user
pressed.

Before using the MessageDialog class, its best to read about REAL Studio classes
and how they work. Please refer to Chapter 10 for this information. After that, read
the section on the MessageDialog class in the Language Reference. This section is
intended to give you an idea of the features that this class offers.

A MessageDialog can have up to three buttons, which are based on the
ActionButton, CancelButton, and AlternateActionButton classes. They have the
following properties:

By default, only the ActionButton is shown, but you can show the others simply by
setting their Visible properties to True.

In addition, you can set the text of the message, the subordinate explanation, the
type of icon shown in the dialog (no icon, Note, Warning, Stop, or Question), and
the title. Not all of the icons are presented in Mac OS X. The following table shows
how the icons appear on each platform and value of the Icon property.

Property Description

Caption The text displayed in the button.

Visible Set to True to show the button.

Default Set to True to highlight the button as the default button in the
MessageDialog. By default, the ActionButton’s Default property is True.

Cancel Set to True to indicate that the button will respond to the Escape key.
On Macintosh, it will also respond to the Command–. sequence. Only
one button in a dialog can have the its Cancel property set to True.
Some operating systems do not permit one button to be both the
Default button and the Cancel button.

Platform
Value of the Icon Property

0 (Note) 1 (Caution) 2 (Stop) 3 (Question)

Windows

Mac OS X

Linux
110 REALbasic User’s Guide

Building a User Interface
You present the customized alert by calling the ShowModal method of the
MessageDialog class.

The positions of the three buttons and the Message and Explanation properties are
shown in Figure 78.

Figure 78. The positions of the buttons and text.

After the user clicks a button, the MessageDialog returns a MessageDialogButton
object, which is either an ActionButton, CancelButton, or AlternateActionButton.
By determining the type of object that was returned, you learn which button the
user pressed. You can also examine the returned object’s properties, if necessary.

Figure 79 shows a sample MessageDialog box. See the entries in the Language
Reference for the MessageDialog class and the MessageDialogButton classes for
more information and examples.
111REALbasic User’s Guide

Building a User Interface
Figure 79. The customized MessageDialog alert.
112 REALbasic User’s Guide

Building a User Interface
Interacting with the User Through Controls
Users provide information to your application through user interface controls.
REAL Studio provides a tremendous amount of flexibility in this area. Not only are
there many built-in controls, but you can even create your own controls (you will
learn more about this later). REAL Studio’s built-in controls are added to windows
using the Controls pane, shown in Figure 80.

Figure 80. The Controls pane showing the Built-in Controls list.

The Controls drop-down list lets you select among three types of controls for display
in the Controls pane, plus a customizable list of controls. The three types of controls
are Built-In controls, Project controls, and Plug-in controls. You use the Controls
drop-down list to choose the type of controls that is displayed:

n Built-In Controls: The controls that are built into REAL Studio. This is the default
choice. The built-in controls are shown in Figure 80.

n Project Controls: Custom controls that are based on built-in controls. You can cre-
ate customized versions of any of the built-in controls. If you do so, they appear in
this list automatically. Project controls are also listed in the Project Editor as classes.
By default, this list has one item, Object. It is a “placeholder” item that you can
convert to a control or object of any type. You do this by dragging an instance to the
window and changing its Super property to the desired type of object. For informa-
tion on creating custom controls, see the section “Understanding Subclasses” on
page 533 and the section “Creating Custom Interface Controls with Classes” on
page 583.

n Plug-in Controls: Controls that you added to REAL Studio as by installing plug-
ins. Third-parties can create custom controls in the form of plug-ins that are

Built-in controls

Controls drop
down list
113REALbasic User’s Guide

Building a User Interface
installed by placing the plug-in in the Plugins folder in the REAL Studio IDE
folder. This list is empty if you have no control plug-ins installed.

n All Controls: The Built-in, Project, and Plug-in controls in an alphabetized list.

n Favorites Controls: Controls that you have added to your list of favorite controls.
See the following section for information on creating your Favorites list.

A few of the items in the Built-in Controls pane add objects to a window that are
not visible to the end user. Technically, they are not really controls. They are in the
list for your convenience. You can use them to add capabilities to the application
that become available when the window is open. For example, you can use the
TCPSocket control to support network communications via the TCP/IP protocol.
Other controls support Microsoft Office Automation. They enable you to automate
PowerPoint, Excel, and Word via REAL Studio, but don’t add a visible interface
item to your application’s windows. When you add one of these controls to a
window, you then add code to the control.

Favorites
Controls

To make the Controls pane more manageable, you can create a list of frequently
used controls. Your Favorites list can include controls from all three built-in lists,
the Built-In controls, Project controls, and Plug-In controls. A shorter list that is
made up of only the controls you use frequently will be easier to work with. REAL
Studio ships with a short list of frequently used controls in the Favorites list.

If you use Project and Plug-In controls as well as the built-in controls, you can
combine all types of controls in your Favorites list of controls. For example, in
Chapter 10 you will learn how to create a custom TextArea control that is based on
the built-in TextArea control but prohibits the user from copying the text in the
control.

To add a control to your Favorites list, do this:

1 If it is not already displayed, use the Controls drop-down list to switch to
the type of Controls list that contains the control you want to make a
Favorite.

2 Right+click (Control-click on Macintosh) on the desired control.
A contextual menu appears.
114 REALbasic User’s Guide

Building a User Interface
Figure 81. The Add to Favorites contextual menu item.

3 Choose Add to Favorites from the contextual menu.
When you switch to your Favorites list, the selected control will have been added to
the end of the list. (If the control is already in the Favorites list, the contextual menu
item does not appear.)

4 Repeat this process to add additional controls from the current list or
switch to another type of list and add additional controls.
For example, Figure 82 shows both Built-in and Project controls in a Favorites list.

Figure 82. A Favorites list with both Built-in and Project controls.

A Project
control
based on
TextField
115REALbasic User’s Guide

Building a User Interface
To remove a control from your Favorites list, do this:

n Right+click on the control (Control-click on Macintosh) and choose Remove
from Favorites from the contextual menu.
The control will still be available from the list that “owns” it—built-in, project, or
plug-in.

Adding,
Changing, and
Removing
Controls

REAL Studio makes adding, changing, and removing controls easy.

Adding
Controls to a
Window

There are several ways to add a new control to a window:

n Drag a control from the Controls pane to the Window Editor,

n Double-click a control in the Controls pane,

n Select a control in the Controls pane and draw a region in the Window Editor,

To add a control by dragging, do this:

1 If the Window Editor for the window is not visible, click its tab or double-
click its name in the Project Editor.

2 Display the desired type of Controls pane with the Controls drop-down list
and then drag the control from the Controls pane to the desired location in
the window and drop it onto the window.
REAL Studio adds an instance of the control at the location of the drop.

To add a control by double-clicking, do this:

1 If the Window Editor for the window is not visible, click its tab or double-
click its name in the Project Editor.

2 Display the desired type of Controls pane with the Controls drop-down list
and double-click the control.
REAL Studio places an instance of the control in the window.

To add a control by selecting, do this:

1 Click once on the control in the Controls pan to select it.

2 Press Enter (Return on Macintosh).
REAL Studio adds an instance of the control at the default location in the window.

To add a control by drawing, do this:

1 If the Window Editor for the window is not visible, click its tab or double-
click its name in the Project Editor.
116 REALbasic User’s Guide

Building a User Interface
2 Display the desired type of Controls pane with the Controls drop-down list.

3 Click once on the control to select it and then use the pointer to draw a
region in the window.

REAL Studio places an instance of the control at the specified location and in the
specified size.

The last way of adding a control is especially convenient when the default size of the
control is not appropriate. Suppose you want to add a TextArea control to a window.
If you use either of the first two methods of adding the control, REAL Studio will
use the default size for the TextArea. You will need to resize the control in another
step. However, if you draw the region, you can specify both the location and size of
the control in one step. Here is a comparison:

Figure 83. TextAreas created by dragging and by drawing an area.

To use the contextual menu to add a control, do this:

1 Right+click the mouse button in the window (Control-click on Macintosh).
A contextual menu appears. The Add item is at the top level of a hierarchical menu
of objects that can be added to the project. It displays the full REAL Studio object
hierarchy in the form of a hierarchical menu.

2 Use the Add menu item to choose the control you wish to add from the list
of built-in controls.

The Add submenu item enables you to add any object to a window. The submenu
command exposes the list of REAL Studio classes and the REAL Studio object
hierarchy, which is indicated by multiple levels of submenus. The visible controls
are in the Add . Control . RectControl submenu.

Created by
dragging

Created by
drawing
117REALbasic User’s Guide

Building a User Interface
When you choose an object that is not a control, the object is represented in the
window by a generic REAL Studio icon. When you click on the generic icon, it is
selected in the window’s Code Editor, just as if it were a visible control. Of course, it
will not be visible in the built application.

You can modify its properties in the Properties pane and add code to the object
using the Code Editor, providing it has built-in events.

Selecting
Controls

Controls can be selected in one of three ways: using the mouse button, the Tab key,
or the contextual menu. The easiest way to select an individual control is to click on
it. If you click on a control, it will be selected.

The contextual menu contains two items for selecting controls, Select and
Select All. The Select All command selects all controls in the window and Select has
a submenu that lists all of the window’s controls. This enables you to select any
control in the window even if it is not currently visible (see “Selecting Invisible
Controls” on page 119 for more information). Choose a control from the submenu to
select it.

Figure 84. Selecting a control with the window’s contextual menu.

You can also move through the controls in a window by pressing the Tab key. Each
time you press the Tab key, REAL Studio will move from one control to another.
This is also the order the user will move through the controls when using the Tab
key. For more information, see “Changing The Tab Order” on page 179. Holding
down the Shift key while pressing the Tab key selects controls in reverse Tab order.
If only one control is selected, REAL Studio draws resize handles at each corner of
118 REALbasic User’s Guide

Building a User Interface
the control. You can select several controls by holding down the Shift key as you
click on the controls. You can also draw a marquee around a group of controls to
select them.

NOTE: You can also choose Edit . Select All to select all the controls in the window. After
all the controls are selected, you can Ctrl+click (Command-click on Macintosh) on a control to
remove it from the selection.

You can select two or more controls by clicking on one control and then holding
down the Ctrl key (Command key on Macintosh) and continue clicking on other
controls. All the controls you click on are then selected.

If the controls you wish to select are next to one another, you can draw a selection
rectangle around them using the mouse. Drag diagonally (i.e., from top-left to
bottom-right) and release the mouse button. A translucent marquee surrounds the
selected controls.

Figure 85. Selecting two controls using a selection rectangle.

Selecting
Invisible
Controls

It’s possible for a control to disappear. For example, if you give a control a large
enough negative or positive Left or Top property, it will disappear off the edge of
the window. Or, if you give it Width and Height properties of zero, it will remain
in its position but become invisible. You would have a tough time clicking on it to
select it.

Negative values of the Left property are not recommended. If you want to
temporarily move a control off the window, a preferred strategy is to move it to the
right of the window and onto the visible pasteboard (the gray area that surrounds
the window itself in the Layout editor). Enlarge the IDE window, if necessary, so
119REALbasic User’s Guide

Building a User Interface
that the control is still visible. Do not move the control further to the right than
needed, as REAL Studio needs to use memory to remember its exact location.

Another recommended strategy is to set the Visible property of the control to False
instead of using the pasteboard.

However, you can always use the window’s contextual menu to select an invisible
control. The Select submenu will always list all controls that belong to the window
even if they are not visible. In Figure 86, a Text that has its Width and Height
properties set to zero is selected in this manner. When selected, only a selection handle
appears. Once it is selected, the Properties pane changes to show its properties. You
can then use the Properties pane to change its position and size properties (see
Figure 86. below and the following section).

Figure 86. Selecting a TextField that has zero width and height.
120 REALbasic User’s Guide

Building a User Interface
In the second illustration in Figure 86, notice that the Properties pane has changed
to show the invisible TextField’s properties. Its Width and Height properties are
both zero. You can now change its Width and Height properties so that it will
become visible.

Changing a
Control’s
Position

A control’s position can be changed by dragging the control using the mouse, by
using the arrow keys (to move it one pixel at a time in the horizontal or vertical
directions) and by changing the properties in the Position group in the Properties
pane.

The Left and Top properties determine the location of the top-left corner of the
control, while the Width and Height properties determine its size. You can always
use these properties to position and size controls precisely. For example, the
invisible TextField in Figure 86 can be repositioned by changing its Left and Top
properties.

Using
Alignment
Guides

When you drag a control, you can align it with other objects in the window by
taking advantage of built-in horizontal and vertical alignment guides. When the
object you are dragging is near the horizontal and/or vertical side of another object,
alignment guides temporarily appear, allowing you to position the object precisely.
Figure 87 on page 121 illustrates the process of aligning a PushButton with the
baseline of another PushButton and the right side of a TextArea control.

Figure 87. Alignment guides help you position objects.

Control being
moved and
aligned
121REALbasic User’s Guide

Building a User Interface
Using the
“Lock”
Properties to
Set a Control’s
Position

Any visible control has four Boolean properties that you can use to “lock” the con-
trol’s horizontal or vertical edges to the corresponding horizontal or vertical edges of
the window. These properties are LockLeft, LockRight, LockTop, and LockBottom.
When one of these properties is turned on, the space between the designated edge of
the control and the corresponding edge of the window remains the same when the
user resizes the window.

Beginning with REAL Studio 2009r5, when you add a new control to a window,
LockLeft and LockTop are True by default. By default, LockRight and LockBottom
are False for new controls.

You use these properties to tell REAL Studio to resize or move the control when the
user resizes the parent window. For example, if you use a TextArea as a text
processing window, you will want to align the edges of the control to the window
and then use the LockLeft, LockRight, LockTop, and LockBottom properties to
resize the control automatically when the user resizes the window. Figure 88 on
page 122 illustrates this:

Figure 88. A TextArea used as a text processor.

Figure 89 shows how these four properties work.
122 REALbasic User’s Guide

Building a User Interface
Figure 89. Resizing the window with the “Lock x” properties on and off.

In this example, if only the LockRight and LockBottom properties are set, the
TextArea will move down and to the right as the window’s grow box is moved in
that direction.

Figure 90. Enlarging a window when LockLeft and LockTop are not set.

The situation gets more interesting as we add another control. Consider the layout
in Figure 91.

Figure 91. A PushButton below the TextArea.

Lock properties off: the
TextArea maintains its size
and position when the
window is resized.

Lock properties on: the
TextArea grows and shrinks
as the window is resized.

Only the TextField’s
bottom and right sides
are locked.
123REALbasic User’s Guide

Building a User Interface
The PushButton should be locked to the bottom and right side of the window only;
we want it to maintain its relative position to the TextArea. However, we do not
want to resize the PushButton as the window is resized. This is illustrated in
Figure 92.

Figure 92. Effects of resizing a window when a PushButton is locked.

An unusual effect is achieved if the user reduces either the horizontal or vertical
dimension of the window when the PushButton is locked to the sides that are getting
closer to each other. In Figure 93 on page 125 the vertical dimension is decreasing and
the control is locked to both the top and bottom.

Since the PushButton is supposed to maintain its distance from both the top and
bottom, the control can appear to be pushed right out of existence as the height of
the window is reduced. In Figure 93 on page 125, the PushButton is trying to
maintain its distance from both the top and bottom edges of the window
simultaneously as the height of the window decreases. Eventually, it will collapse
into REAL Studio’s version of a Black Hole. In the right image in Figure 93, the
PushButton has folded up upon itself (i.e. in effect, its bottom edge is above its top
edge).

The PushButton is locked to the
bottom and right side; it maintains its
shape and relative position to the
TextField as the window is enlarged.

The PushButton is locked to all four
sides; it maintains the vertical and
horizontal distances to the left and
top of the window, forcing it to grow
as the window is enlarged.
124 REALbasic User’s Guide

Building a User Interface
Figure 93. Effect of reducing the height of a window on a PushButton that is locked
to both the top and bottom.

This happens because there is space both above and below the PushButton. The
TextArea, on the other hand, doesn’t get pushed out of existence because there is no
space between the top of the control and the top of the window in Figure 91 on
page 123.

Locking a
Control to its
Absolute
Position

When you are finished adjusting a control’s location in a window, you can lock it
into place. This will prevent you from accidentally moving it when you select it to
read or change its properties. When a control is locked to its position, its size is also
locked. To lock a control, right+click on the control and choose Lock Position from
its contextual menu (You can also add the Lock/Unlock button to the Window Edi-
tor toolbar. For more information, see the section “Customizing the Window Editor
Toolbar” on page 105.).

Figure 94. Locking a control into position.

Going... going... gone.
125REALbasic User’s Guide

Building a User Interface
A locked control is shown in the Window Editor with a padlock. You can continue
to select the locked control, read and edit its properties, and adjust its Tab Order (if
applicable). A locked control can be selected but not moved.

Figure 95. A locked control in a window.

If you lock a child control, it will keep its position relative to its parent, but it will
move if you move the parent control. For example, if you lock RadioButtons inside
a GroupBox, you can move the GroupBox and the RadioButtons will move along
with the GroupBox. However, you cannot move a locked RadioButton inside the
GroupBox.

You can unlock the control by right+clicking on it and choosing Unlock Control
from the contextual menu.

Changing a
Control’s
Properties with
the Properties
Pane

Some changes to a control can be made without the Properties pane. For example,
controls can be rearranged by simply dragging them from one place to another
inside the window. However, most of the changes you make to controls will be
made using the Properties pane.

The Properties pane displays the properties of the currently selected control that can
be changed from the Development environment. If more than one control is selected, the
Properties pane displays only those properties common to all of the selected
controls.

Some properties are entered by typing, while others with on/off-type values are
represented by a CheckBox. If the property is set by typing, you can use either the
Enter or the Return key to commit the new value. Some controls’ Caption or Text
properties can be set selecting the control in the Window Editor and typing the new
text immediately.
126 REALbasic User’s Guide

Building a User Interface
Figure 96. Changing the Caption property of a PushButton.

Numeric
Properties

If the property you want to set is numeric — such as the Left, Top, Width, or
Height properties or the number of columns in a ListBox — you can either enter a
number or an expression that evaluates to a number.

If you want to enter an expression, your available operators are: +, -, *, /, \ (integer
division), % (mod), and ^ (power). You can also use parentheses to control the order
in which subexpressions are evaluated. You can also use references to property values
by name, allowing you to write expressions such as “Top*2” or “Width+Left.”

If an expression is invalid on its own, the current value of that property will be
prepended; this allows you to (for example) enter “*2” as a handy shortcut for
doubling the current value when multiple objects are selected. To add a value to the
current value, use “+ +value”. For example, to add 10 use “+ + 10”, since “+10” will
be treated as “10”.

Boolean
Properties

The values of Boolean properties are shown as CheckBoxes in the Properties pane. A
value of False is indicated by an unchecked CheckBox and a value of True is indi-
cated by a checked CheckBox.

You change a value from False to True or vice versa by clicking on the CheckBox.
Or, you can select the boolean property by clicking on its name and then pressing
the Spacebar. In Figure 97 the user has selected the Border property by clicking on
its name. Pressing SpaceBar will toggle this property’s value.

The default
caption,
“Untitled” was
replaced by
“Delete”.
127REALbasic User’s Guide

Building a User Interface
Figure 97. Selecting a Boolean property.

Text Properties Properties such as the text that appears in a TextField or the caption of a
PushButton are entered simply by typing into the text area. If the text you want to
enter is long, you can click the text icon to bring up a modal window into which
you can enter more lengthy text. A typical Text window is shown in Figure 98.

Figure 98. Entering text for HelpTag in a separate window.

Constants You can also choose to enter a constant as a value in the Properties pane. For exam-
ple, you can create a constant that contains the caption for all of the “Accept” Push-
Buttons in your application. If you want to change the caption, you only need to
change the value of the constant rather than edit the values for each PushButton.

With the HasHead-
ing property
selected, you can
press Spacebar to
change its value
from True to False

Click to enter
long text
128 REALbasic User’s Guide

Building a User Interface
Constants are especially useful for applications that are deployed in more than one
language. Instead of using literal text as property values, you use constants for all
text that the user sees. This includes menus and menu items as well as windows.
REAL Studio enables you to use different values of each constant for different lan-
guages.

A good place to create constants for this purpose is in a module. For information on
how to create a constant, see the section “Adding a Constant to a Module” on
page 376. A constant can be given Global scope only in modules. In Figure 99, a
global constant is being created in a module and then referred to in the Caption
property of a PushButton.

To use a constant, precede the name of the constant by the number sign, #, as the
value for a property in the Properties pane. For example, if you want to use a global
constant (in a module) named “Save”, you would refer to it in the Properties pane as
“#Save”. If it were a public constant in Module1, you would refer to in the
Properties pane as “#Module1.Save’.

Here are the Appearance properties of a PushButton that references the Global
constant named “Save.”

Figure 99. Setting the Caption property of a PushButton using a constant.

The constant “Save” is
defined as the string
“OK” in a module...

...and is used as the
Caption property of
a PushButton

The control in the
Window Editor
shows the value of
the constant as
defined in the
module
129REALbasic User’s Guide

Building a User Interface
In the built application, the PushButton uses the value of the “Save” constant.

For information about creating constants and using them to localize your applica-
tion, see the section “Using Constants to Localize your Application” on page 378.

Choice Lists Some properties that require you to choose a value from a fixed list are displayed as
pop-up menus. Such properties have a downward-pointing arrow to the right.
Simply choose the desired value from the pop-up menu. In Figure 100, the “Right
of Graphic” value is being assigned to the CaptionPlacement property of a
BevelButton control.

Figure 100. Choosing a value from a Property pop-up menu.

For controls that accept a picture as a property value, you can select the picture by
choosing from the pop-up menu associated with the property. All pictures that have
been added to the project are listed automatically. In addition, the last menu item is
“Browse.” If the desired picture has not been added to the project, you can choose
Browse to locate the picture via an open-file dialog box. When you assign a picture
to the property in this way, the picture that you select is automatically added to the
Project Editor.

Color Properties Color properties display the selected color. These colors can be changed by clicking
on the color in the Properties pane and using the Color Picker to choose a color. If
you wish, you can enter the color value by supplying RGB (Red-Green-Blue) values
using the & operator.

For example, the Rectangle and Rounded Rectangle controls have properties that
control the border and fill colors. You can set these colors by clicking on the three
dots in the Properties pane for the color property to display the Color Picker.
Choose the color using the Color Picker. In Figure 101 the RGB value of the color is
also shown in the FillColor and BorderColor properties.

For information on setting the color by specifying the RGB color model, see the
section “Color” on page 215.
130 REALbasic User’s Guide

Building a User Interface
Figure 101. The Properties pane for a Rounded Rectangle.

Removing
Controls

You can remove a control from a window using the control’s contextual menu or a
menu command.

To remove a control from a window, do this:

1 Bring the window that contains the control to the front. If it’s not open,
double-click on it in the Project Editor to open it.

2 Click on the control to select it.

3 Choose Edit . Cut (Ctrl+X or x-X on Macintosh), or Edit . Delete or press
the Delete key, or right+click on the control (Control-click on Macintosh)
and choose Cut or Delete from the contextual menu.
If you want a copy of the deleted control on the Clipboard, use Cut instead of
Delete.

Understanding
Control Layers

Each control in a window has its own layer. This layer is like a sheet of transparent
plastic on which each control is placed. It determines whether one control is in front
of the other. The Window Editor toolbar provides commands for moving a control
forward one layer, to the front, backwards one layer, and to the very back of the lay-
ers. These commands are also available in the Edit. Arrange submenu.

Control layers determine the order in which your application selects the controls as the
user presses the Tab key. For more information, see the section “Changing The Tab
Order” on page 179 for more details. Control layers may also be important when
controls overlap.
131REALbasic User’s Guide

Building a User Interface
Understanding
The Focus

The focus is a visual cue that tells the user which control receives keystrokes. Text-
Fields and TextAreas, ComboBoxes, Canvas controls, PushButtons, and ListBoxes
can receive the focus on Macintosh. In addition, Sliders, PopupMenus, and Check-
Boxes can also receive the focus on Windows. On Linux, TextFields and TextAreas,
ComboBoxes, CheckBoxes, PushButtons, PopupMenus, and Sliders can receive the
focus.

TextFields TextFields on any platform display the focus by showing a blinking insertion point
and accepting text entry. The behavior of the TextField when the Tab key is pressed
is controlled by the AcceptTabs property. If this property is False, pressing the Tab
causes the TextField to lose the focus and the next control in the entry order gains
the focus. If AcceptTabs is True, the TextField accepts the Tab character for data
entry, just as any text character. The TextField keeps the focus. By default,
AcceptTabs is False.

In Figure 102, the First Name TextField has the focus. On Windows and Linux, the
TextField does not get a focus ring; the focus is indicated only by the blinking
insertion point.

Figure 102. TextFields with and without the Focus.

ComboBoxes ComboBoxes on any platform display the focus by highlighting the selected item
and showing a blinking insertion point. On Macintosh, a ComboBox with the focus
also has a focus ring. In other words, a ComboBox with the focus acts like a
TextField that has a pop-up menu attached to it.

Figure 103. ComboBoxes with and without the focus.

When a ComboBox has the focus, you can scroll through the list of choices with the
up and down arrow keys and select an item by pressing the Return key. Of course,
you can also edit or replace the selected item.

ListBoxes When a ListBox has focus on Macintosh, REAL Studio draws a focus ring around
the ListBox.
132 REALbasic User’s Guide

Building a User Interface
Figure 104. A ListBox on Macintosh.

When a ListBox gets the focus on Windows or Linux, REAL Studio either draws a
marquee around the previously selected item (i.e., the highlighted item) or the first
item in the ListBox if there is no previously selected item. The marquee may be
difficult to see because the item is also highlighted. If the previously selected item is
not currently displayed (i.e., the user has scrolled it out of view), there is no visible
change in the appearance of the ListBox.

Figure 105. A ListBox with the focus (Windows and Linux).

When a ListBox has the focus, it responds to the Up and Down arrow keys. Pressing
either arrow key changes the selected (highlighted) text. It also receives any other
keys the user types. This allows you to provide type selection functionality where
typing selects the item that matches the characters being typed. An example of type
selection is provided with REAL Studio.

NOTE: If a ListBox is the only control in the window that can get the focus, it will initially
get the focus and keep it.

Canvas
Controls

Since the Canvas control can get the focus, you can use it to create custom controls
of any type that can get the focus. For example, you can use the Canvas to simulate
controls that don’t get the focus on Macintosh, such as buttons and pop-up menus.
Unlike other controls that can get the focus, the ability of a Canvas to accept the

With the
Focus

Without
the Focus

Macintosh

Windows, no
previous selection

Windows, previous
selection

Linux, no previous
selection

Linux, previous
selection
133REALbasic User’s Guide

Building a User Interface
focus is turned off by default. In order for a Canvas control to receive the focus, you
must set the AcceptFocus property to True. This can be done either in code or in the
Properties pane. The Canvas control also has an AcceptTabs property that indicates
whether pressing Tab selects the next control in the window or sends the Tab
keystroke to the Canvas control for processing. If AcceptTabs is off, pressing Tab
causes the Canvas control to lose the focus. The next control in the entry order gets
the focus. If AcceptTabs is on, the Canvas control detects the Tab key as if it were
any other key and allows your code to detect and respond to the Tab key.

Figure 106. The Canvas Control’s “Behavior” properties relating to focus.

If the AcceptFocus and UseFocusRing properties are set to True, the Canvas control
indicates focus on Macintosh by drawing a border around the control. This is shown
in Figure 107.

Figure 107. Canvas controls with and without the focus (Mac OS X).

On Windows and Linux, unfortunately, the UseFocusRing property has no effect.
There is no visual indicator of focus that works automatically. However, it is easy to
simulate a focus ring using the language. See the Canvas control entry in the
Language Reference for an example of how to do this.

PopupMenus On Windows, when a PopupMenu receives the focus the currently selected item is
highlighted. Like the ListBox, it also responds to the up and down arrow keys and
provides the same type selection functionality. Figure 108 on page 135 shows a
PopupMenu loaded with the list of states shown in the ListBoxes in Figure 104 on
page 133 with and without the focus. If the user types an “O” while the
134 REALbasic User’s Guide

Building a User Interface
PopupMenu has the focus, the state of Michigan is selected; typing an “O” selects
Ohio, and so forth.

Figure 108. A PopupMenu with and without the focus on Windows Vista.

When a PopupMenu gets the focus on Linux, the currently selected item is
highlighted. You can change the selected menu item with the up and down arrow
keys.

Figure 109. A PopupMenu with and without the focus on Linux.

CheckBoxes When a CheckBox gets the focus, a marquee surrounds the CheckBox label.
Pressing the Spacebar while the CheckBox has the focus toggles the control between
its unchecked and checked states.

Figure 110. A CheckBox with and without the focus on Vista and Linux.

PushButtons When a PushButton gets the focus, a marquee surrounds the PushButton’s caption.
Pressing the Spacebar while the PushButton has the focus pushes the button, i.e.,
executes its Action event handler.

Without the FocusWith the Focus

With the Focus Without the Focus

With the Focus Without the Focus
135REALbasic User’s Guide

Building a User Interface
Figure 111. A PushButton with and without the focus on Vista and Linux.

Sliders and
Scrollbars

When a Slider gets the focus, a marquee surrounds the control. Pressing the Up or
Left arrow key decreases the value of the Slider and pressing the Down or Right
arrow key increases the value of the Slider. The amount that the value is changed by
each keypress is controlled by the Slider’s LineStep property. By default, the Slider
has a range of 0 to 100 and LineStep is 1. The user can also click anywhere along the
slider’s track to change the slider’s value. The amount that the slider moves with
each click is controlled by the Slider’s PageStep property. The default value of
PageStep is 20.

Figure 112. A Slider control with and without the focus (Vista and Linux).

When a ScrollBar gets the focus on Vista, the thumb’s color changes. This is shown
in Figure 113.

Figure 113. A ScrollBar with and without the focus on Vista.

The ability of a ScrollBar to get the focus can be turned off by deselecting its
AcceptFocus property.

BevelButtons When a BevelButton gets the focus, a selection rectangle surrounds its label. When
it has the focus, the user can press the button by pressing either the Spacebar or the
Enter key. BevelButtons can get the focus on Windows and Linux. You must set the
AcceptFocus property to True to enable a BevelButton to get the focus.

With the Focus Without the Focus

With the Focus Without the Focus

Without the FocusWith the Focus
136 REALbasic User’s Guide

Building a User Interface
Figure 114. A BevelButton with (left) and without the focus.

Disclosure
Triangle

When a DisclosureTriangle gets the focus, a selection rectangle appears around the
control. The user can toggle its state by pressing either the Spacebar or the Enter
key. You must set the AcceptFocus property to True to enable a DisclosureTriangle
to get the focus. DisclosureTriangles can get the focus only on Windows.

Figure 115. A DisclosureTriangle with (left) and without the focus.

UpDownArrows When an UpDownArrows control gets the focus, a selection rectangle appears
around the control. The user can press the Up and Down arrow keys on the key-
board to press the top and bottom arrows in the control. You must set the Accept-
Focus property to True to enable an UpDownArrows control to get the focus.
UpDownArrows can get the focus only on Windows.

Figure 116. An UpDownArrows control with (left) and without the focus.

Full Keyboard
Access

Mac OS X includes a system-wide feature called full keyboard access. This feature
enables a user to do work with only the keyboard that ordinarily is done using both
the keyboard and the mouse. For example, the standard Mac OS X interface calls for
mouse gestures to operate the menu system and the dock. With full keyboard
access, when the menu bar has the focus, menu items can be highlighted by the up
and down arrow keys and an item is selected by pressing Spacebar.

Full Keyboard Access is enabled in the Keyboard Shortcuts panel of the Keyboard
and Mouse System Preference. Click the All Controls radio button, shown in
Figure 117, to enable Full Keyboard Access.
137REALbasic User’s Guide

Building a User Interface
Figure 117. Enabling Full Keyboard Access (Mac OS 10.4 to 10.5).

In Mac OS X10.6, the dialog has been reorganized so that you choose a topic from
the left list and then make changes to the items on the right.

Figure 118. The Full Keyboard access dialog in Mac OS X Snow Leopard.

When full keyboard access is on, you can select and set values for controls via the
keyboard that normally do not have the focus. When a control accepts keystrokes via
138 REALbasic User’s Guide

Building a User Interface
full keyboard access, it has a halo. For example, when full keyboard access is on, the
user can select radio buttons via the keyboard only.

In the example shown in Figure 119, full keyboard access is on and radio buttons
can get the focus. The user can press Tab to change the focus. In Figure 119 the
“DVD” radio button accepts keystrokes. Pressing the Spacebar key sets the value of
the radio button with the focus.

Figure 119. Selecting a radio button with full keyboard access.

When full keyboard access is on, PushButtons can be selected by pressing the Tab
key and “clicked” by pressing the Spacebar. In Figure 120, the Don’t Save button
has the focus, denoting that it accepts keystrokes but the Save button is the default
button. Pressing Spacebar with the dialog box in this state is equivalent to clicking
the Don’t Save button.

Figure 120. Selecting the Don’t Save button via the keyboard.

To “click” a MessageDialog button using full keyboard access, press and hold down
the Spacebar. Pressing the Spacebar once will highlight the button as if pressed but
will not dismiss the dialog.

Please note that full keyboard access is a Mac OS X system-wide option that the
end-user must select on his machine. The Mac OS X version of REAL Studio
supports full keyboard access if the user chooses to turn it on. However, you cannot
turn it on for them, so you can’t assume that all (or any) of your users will be using
full keyboard access.

Duplicating
Controls

You can duplicate the selected control or controls by choosing Edit . Duplicate
(Ctrl+D or x-D on Macintosh) or by holding down the Control key (Option key on
Macintosh) and dragging the selected control.

The Object
Hierarchy

Since controls are objects and REAL Studio is an object-oriented language, all
controls are derived from other classes. Among other things, this means that each

Pressing Tab changes
the radio button that
accepts keystrokes
139REALbasic User’s Guide

Building a User Interface
control inherits properties from the class that it is derived from. Built-in controls
that are visible are subclassed from the RectControl class. This means that each such
control inherits a group of properties from the RectControl class automatically. (A
few of the built-in controls are not visible in built applications, such as the Timer
and TCPSocket.)

In the Language Reference, the parent class for a control is listed as the Super Class and
has a hyperlink to the Super Class. To view all the properties and methods for a
control, you need to check out the properties and methods of the Super Class as well
as the properties and methods that are unique to the control. If a control’s Super
Class has another Super Class, then you need to keep going up the hierarchy.

For example, the RectControl class is the Super Class for visible controls. It has the
properties Width, Height, Top, and Left which are used to establish the position
and size of the RectControl in the window. Since all controls that are derived from
RectControl have these properties automatically, they are not repeated for each
subclass of RectControl in the Language Reference.

To see the object hierarchy in the REAL Studio IDE, use a Window Editor’s contex-
tual menu and choose the Add Menu Item. The object hierarchy is shown as a hier-
archical menu system.

Button
Controls for
Performing
Actions

There are four controls that are commonly used to perform actions when clicked: the
CheckBox, the PushButton, the BevelButton, and the RadioButton. They are
derived from the RectControl class.

PushButton When clicked, a PushButton appears to depress giving the user feedback that they
have clicked it. PushButtons are typically used to take an immediate and obvious
action when pressed, like printing a report or closing a window. PushButtons can
have the focus on Windows.

Figure 121. A PushButton pressed and unpressed.

Mac OS X

Windows

Linux
140 REALbasic User’s Guide

Building a User Interface
BevelButton The BevelButton control provides very similar functionality as the PushButton and
adds several additional powerful features. You can, for example:

n Add an image to the control,

n Control the alignment of the button’s text and/or the positioning of the text with
respect to the graphic,

n Add a popup menu to the control,

n Control the feedback the user receives when the BevelButton is clicked.

The usage of a BevelButton control as a pop-up menu is described in the section
“BevelButton” on page 154. Note that you can combine an image with a pop-up
menu.

Here are several examples of BevelButton options:

Figure 122. Icon, Text, and ‘combo’ BevelButtons.

In Figure 122, the speaker image was saved as a transparent PNG file and the
BackColor property of the BevelButton was used to provide the neutral gray
background. In that way, the BackColor is the background for both the text and the
picture (rightmost image). BackColor is supported on Windows and Linux only.

Figure 123. Bevel Sizes.

On Windows only, the ‘No Bevel’ option supports ‘mouse-over’ effects. When the
mouse is not in the region of the button, only the button text is visible. When the
mouse enters the region of the button, the button itself is shown. On all non-
Windows operating systems, the ‘No Bevel’ option appears the same as ‘Small’ in
Figure 123. On Windows, a BevelButton with the ‘No Bevel’ size selected behaves
as shown in Figure 124.

Mac OS X and Linux
(bevel size has no effect)

Windows
141REALbasic User’s Guide

Building a User Interface
Figure 124. A BevelButton on Windows Vista with the ‘No Bevel’ style.

On Mac OS X only, four additional bevel styles are available: Rounded, Round, Large
Round, and Disclosure. When clicked, the Disclosure bevel style toggles between two
states: upward and downward pointing arrows. The others highlight when clicked. If
deployed on other platforms, these bevel styles all look like a standard Small bevel
BevelButton. The Mac OS X-only bevel styles are illustrated in Figure 125.

Figure 125. The Mac OS X-only BevelButton bevel styles.

CheckBox Use CheckBoxes to let the user choose a preference that has three possible states,
where one of the states can be selected by default. A CheckBox can be in one of three
states: Unchecked, Checked, and Indeterminate. CheckBoxes should not cause an
immediate and obvious action to occur except perhaps to enable or disable other
controls.

A Checkbox has a State property that stores one of the three values and a Value
property that indicates whether the CheckBox is checked or unchecked. An
indeterminate state is treated the same as a Value of Checked, but the State property
retains the Indeterminate setting.

The three values are displayed as shown in Figure 121 for Macintosh, Windows
Vista, and Ubuntu Linux.
142 REALbasic User’s Guide

Building a User Interface
Figure 126. Checked, Unchecked, and Indeterminate Checkboxes.

RadioButton RadioButtons are used to present the user with two or more choices, where one of the
choices can be selected by default. Selecting one RadioButton causes the RadioBut-
ton that is currently selected to become unselected. They are called RadioButtons
because they act just like the row of buttons for changing radio stations on car radios.
Pushing one button deselects the current radio station and selects the new station.
RadioButtons should always be displayed in groups of at least two.

Figure 127. A group of RadioButtons with one selected.

If you are creating a window that will have two or more independent sets of
RadioButtons, you will need to use a GroupBox control to make your RadioButton
groups respond independently. See “GroupBox” on page 155.

Controls for
Displaying
and Entering
Text

REAL Studio provides controls that let you display text the user can’t select, display
text the user can select but not edit, and display text the user can both select and
edit. These controls are also derived from RectControl.

StaticText Used to display text that the user cannot select or edit. StaticText controls are com-
monly used to label other controls (like PopupMenus) or provide titles for groups of
controls. The text of the label can be controlled via code (it is the Text property of
the control), so you can use it to display dynamic text that is “read only.” For exam-
ple, read-only fields from a REAL database can easily be displayed with a StaticText
control. An easy way to do this is to use the StaticText control in conjunction with a
DataControl. The DataControl enables you to “bind” the StaticText to a field in the
database and display the contents of the field as the user navigates among records.

Mac OS X LinuxVista

Mac OS X Windows Linux
143REALbasic User’s Guide

Building a User Interface
Figure 128. A StaticText control used to label a PopupMenu control

TextField TextFields display text that can be modified by the user. It works as a “single line”
field, such as a database field. In contrast, the The TextArea control is a multiline
field, such as a word processor field.

The TextField supports the Edit menu’s Cut, Copy, and Paste menu items and
keyboard shortcuts automatically. This functionality is built into the default
Desktop Application project. If you rename or otherwise modify the Cut, Copy, and
Paste menu items, you can break this functionality.

A single-line TextField can be configured as a “password” field — displaying a
bullet for each character that is entered. You can also specify a mask for the
TextField which filters data entry on a character-by-character basis. For example, if
you are using a TextField for a telephone number entry area, you can specify that
only numbers can be entered and you can restrict the entry to the correct number of
characters.

The CueText property of the TextField enables you to specify a prompt text string
that suggests a data entry value. A user can enter the cue text themselves or enter
another value. It does not serve as a default value. In the following screen, a
company name TextField has the CueText property specified.

Figure 129. The CueText property for a Company Name field.

The value for the field must be supplied by the user.

StaticText

Mac OS X

Windows

Linux
144 REALbasic User’s Guide

Building a User Interface
Figure 130. TextFields used for read/write access to database fields.

TextArea The TextArea control is a multiline text field, such as a word processor field. In con-
trast to at TextField, it can contain multiple lines and style text. A TextArea field
with the Styled property set can display text in multiple fonts, styles, and sizes and
have both horizontal and vertical scrollbars. Individual paragraphs can be left, cen-
tered, or right aligned via the StyledText class. See the entry in the Language Refer-
ence for the StyledText class for more information on how to create the example
shown in Figure 130.

Figure 131. A TextArea with multiple fonts, styles, sizes, colors and paragraph
alignments.

The TextArea supports the Edit menu’s Cut, Copy, and Paste menu items and
keyboard shortcuts automatically. This functionality is built into the default
Desktop Application project. If you rename or otherwise modify the Cut, Copy, and
Paste menu items, you can break the automatic functionality.

ComboBox The ComboBox control works like a combination of a TextField and a pop-up
menu. The user can either enter text in the ComboBox or choose an item from the
attached pop-up menu. Also a menu selection can be selected and modified. Unlike
a real TextField, you cannot use a mask to filter data entry or operate it as a
Password field.

 TextArea

TextFields
145REALbasic User’s Guide

Building a User Interface
Figure 132. A ComboBox on Macintosh, Windows, and Linux.

For some examples and information about using a ComboBox to present a list of
choices, see the section “ComboBox” on page 154.

HTMLViewer The HTMLViewer control renders HTML (like any web browser application) and
provides basic navigation functions. Using the language, you can pass it an HTML
file, the HTML text itself, or tell it to load the HMTL specified by a URL. If the
HTML is valid, it renders it. The REAL Studio Online Language Reference uses the
HTMLViewer control.

The following example is a very simple web browser that uses an HTMLViewer
control. The user types in a URL into the TextField at the top of the window and
clicks the Go button. If it is a valid URL, the web page appears in the HTMLViewer
control.

Figure 133. A very simple web browser that uses an HTMLViewer control.

Mac OS X

Windows

Linux
146 REALbasic User’s Guide

Building a User Interface
Controls for
Displaying
and Entering
Numeric
Values

REAL Studio provides controls that can be used to let the user choose a numeric
value from a range or to display a numeric value from a range. In some cases, these
controls can also be used to control the display of another control. For example, a
ScrollBar control might be used to determine which portion of a picture in a Canvas
control is displayed (in other words, act as the Canvas control’s scrollbar).

ScrollBar ScrollBars can be presented vertically or horizontally. To make a vertical ScrollBar,
simply resize the ScrollBar object so that the height is greater than the width.

The default thickness of a ScrollBar is 16 pixels, but you can narrow the short side of
the ScrollBar to turn it into a mini-scrollbar. You can either drag the object in the
Window Layout Editor or change the control’s property. As you narrow the control,
it will “snap” to its mini thickness.

Figure 134. Standard and mini ScrollBars on Macintosh.

Figure 135. Horizontal and vertical ScrollBars.

ScrollBars can get the focus on Windows only and have Windows-only properties
that you can use to determine when a ScrollBar gets and loses the focus.

Slider The Slider has the same functionality as a ScrollBar control. However, ScrollBar
controls have come to be associated with scrolling text or a picture and less with
assigning numeric values. The Slider control provides an interface that is clearly for
increasing or decreasing a numeric value. Like the ScrollBar, the Slider control can
appear horizontally (which is the default) or vertically. You can create a vertical
Slider by changing its height so that it is greater than its width. Unlike the Scroll-
Bar control, the Slider control automatically maintains the correct proportions
regardless of the dimensions you give it.
147REALbasic User’s Guide

Building a User Interface
Figure 136. Horizontal and vertical Slider controls.

The Slider can have tick marks on the left or right (vertical orientation) or the top or
bottom (horizontal orientation). When tick marks are used, the indicator points in
the direction of the marks. Fix shows top and bottom tick marks for the horizontal
orientation.

Figure 137. Horizontal tick marks for a Slider control.

Sliders can get the focus on Linux and Windows. For those platforms, you can use
events to determine when a Slider gets and loses the focus.

ProgressBar ProgressBars are designed to indicate that some function of your application is
progressing (hence the name) towards its goal or to show capacity. Unlike ScrollBars
and Sliders, ProgressBars are designed to display a value. They cannot be used for
data entry. Also, they appear only in a horizontal orientation. When using a
ProgressBar to show duration, the ProgressBar can be configured to show progress
where the length is determinate or indeterminate. Indeterminate ProgressBars are
sometimes referred to as “Barber Poles” since they look like barber poles on
Macintosh.

On Windows and Linux, an indeterminate progress bar takes the form of a single
block that moves back and forth.
148 REALbasic User’s Guide

Building a User Interface
Figure 138. Determinate and indeterminate ProgressBars.

Controls for
Presenting a
List of
Choices

RadioButton and CheckBox controls can, of course, be used to provide the user with a
limited list of choices. There are situations, however, when using these controls is either
an inefficient use of space or impossible. Some of these situations are:

n When the number of choice items is quite long, making it difficult or impossible to
use RadioButton or CheckBox controls,

n When the choices change dynamically based on the application’s logic,

n When the choice items need to display more than one column of information.

If your situation doesn’t match one of these cases, consider using RadioButton or
CheckBox controls. They are easier for a new computer user to use because all of
their choices will be right in front of them.

ListBox ListBox controls display a scrolling list of values. The user can use the mouse or the
arrow keys to choose an item. ListBox controls can contain one or more columns of
data, can be hierarchical, and can allow one row selection or multiple row selection.

However, you can change the number of columns of any ListBox simply by setting
the ColumnCount property in the Properties pane. You can use either icon and
modify the number of columns after adding the ListBox to a window.

Mac OS X

Windows XP

Linux

Windows Vista
149REALbasic User’s Guide

Building a User Interface
Figure 139. Examples of ListBoxes.

Checkbox-style cells in ListBoxes can store one of three states: Checked, Unchecked
(as shown in Figure 139), and Indeterminate. They work the same way as the
CheckBox control. For more information, see the section, “CheckBox” on page 142.

You can also shade cells, rows, and columns programmatically. For example, in
Figure 140, alternating rows are shaded differently and the selected row has a
custom shading to indicate that it is selected.

Figure 140. An example of custom shading.

You can also customize row and column borders. Figure 141 on page 151 illustrates
the four types of horizontal and vertical rules that can be drawn programmatically.
The Default style is “None.”

Single column
and multiple
column

Multiple column
with headers and
CheckBoxes

Two column
hierarchical
150 REALbasic User’s Guide

Building a User Interface
Figure 141. Four styles of Custom borders.

You can also apply these ruling styles to selected cells or even selected cell borders.
For example, in Figure 142, a cell containing a phone number is highlighted using
Thick Solid borders while the remainder of the ListBox uses Thin Dotted rules:

Figure 142. A custom border around a selected cell.

When you can add a header with column labels to a ListBox, the user can sort the
data in the ListBox by clicking on a column header or you can sort the rows of the
ListBox programmatically. The sort direction is indicated by a sort direction arrow
in the header area.

Figure 143. A ListBox sorted by the Name column.

The default sorting method works for alphabetic values, but does not produce valid
results for numbers and dates. If you need to sort these data types, you can do so

Thin Dotted Thin Solid

Thick Solid Double Thin Solid
151REALbasic User’s Guide

Building a User Interface
using the CompareRows event of the ListBox. In the following example, code that
compares the values of adjacent rows in the Age column is used to get the desired
sort order.

Figure 144. Default and custom sorting on a number column.

For multicolumn ListBoxes, you can control whether the user can resize columns by
dragging column borders. You can enable column resizing on a column-by-column
basis or for the entire ListBox. If user resizing is enabled, you can also specify mini-
mum and maximum column sizes. If resizing is enabled, the pointer turns to a column
resizing pointer when it is moved to a column border. For example, in Figure 145 the
Name column is being resized to make more room for the Email column.

Figure 145. A column being resized.

You can also permit data entry in ListBoxes. You can programatically switch a cell’s
mode from normal (i.e., view only) to inline editable. When the cell is editable, it
has the focus and has a focus ring around it. The contents of the cell are initially
selected and typing replaces the entry. When the user clicks on another cell or tabs
out of the editable cell, the cell’s contents are saved and its mode reverts to view
only.

Figure 146. An editable cell in a ListBox.

For both single and multicolumn ListBoxes, you can allow the user to drag columns
to rearrange the rows. When you drag, the target for the drop is indicated by a solid

Default Sort Custom Sort
152 REALbasic User’s Guide

Building a User Interface
line between rows. For example, in Figure 147 the row for Milton is being dropped
between Herbert and Julius.

Figure 147. Dragging a row in a ListBox.

A ListBox can be scrolled either horizontally or vertically. The ListBox control has
built-in scrollbars. You can choose to add either or both to a ListBox via its
Properties pane. If you want to customize the scrollbar area, you can deselect the
built in scrollbar and instead place a Scrollbar control and other controls in the
scrollbar’s area.

For example, the following illustration shows a Scrollbar control that is used as the
horizontal scrollbar and a BevelButton control that is used as a pop-up menu. The
pop-up menu enables the user to select between single-line and multi-line selection
in the Listbox. The vertical scrollbar is the built-in scrollbar that was added via the
ListBox’s Properties pane.

Figure 148. A customized horizontal scrollbar in a ListBox.

See the entry in the Language Reference for the ListBox control for the code that is
used in this example.

PopupMenu PopupMenu controls are useful when you have a single column of data to present in
a limited amount of space. It presents a list of items and the user can choose one
item. When the user displays the PopupMenu’s items, the selected item is indicated
by a checkmark.
153REALbasic User’s Guide

Building a User Interface
Figure 149. A PopupMenu control.

You populate the list by entering them in the InitialValue property in the Proper-
ties pane or by calling the AddRow method before the PopupMenu is displayed, for
example, in its Open event handler. You can read the value the user has selected (or
change the value via code) with the ListIndex property.

ComboBox A ComboBox combines the features of a PopupMenu and a TextField. The user can
either choose an item on the list or enter a different item. Of course, they should be
used instead of PopupMenus when you want to allow the user to enter an item that
is not on the list.

Figure 150. A ComboBox control.

You can populate the list the same way as with a PopupMenu control. The
ListIndex property indicates which item the user has selected, but it does not
change if the user has typed a value into the ComboBox. Read the value of the Text
property to get the current text, which can be either an item on the menu or text
entered by the user.

The user can use the down arrow key to display the list when text (or nothing) is
displayed in the ComboBox. When the ComboBox has the focus, the user can
change the selected item on the list using the up and down arrow keys. The Return
key selects the highlighted item in the list and the Escape key closes the popup
menu without selecting the highlighted item on the list.

BevelButton A BevelButton control can be configured to operate as a pop-up menu. Simply set
the HasMenu property to 1 or 2 (Normal menu or Menu on Right). See the entry for
the BevelButton control in the Language Reference for the list of a BevelButton’s
properties.

IDE

Built application

IDE

The user can choose an item on the list (left)
or type an item.
154 REALbasic User’s Guide

Building a User Interface
The BevelButton menu shown in Figure 151 was created with this code in the Open
event of the BevelButton:

You would use the MenuValue property to determine which menu item the user has
selected.

Figure 151. A BevelButton popup menu.

Controls for
Visually
Grouping
Other
Controls

If a window contains groups of controls in which each group of controls serves a dif-
ferent purpose, it can be confusing to the user to see all of these groups lumped
together in a window. It often makes sense (and is sometimes necessary) to group
related controls. Fortunately, REAL Studio provides several built-in controls to
make grouping controls simple.

Separator The Separator control simply places a vertical or horizontal line in the window that
you can use to help organize other objects.

Figure 152. A Separator control

GroupBox A GroupBox can be displayed with or without a caption. If a window has more than
one group of RadioButton controls, one of the groups must be contained within a
GroupBox control in order for the RadioButton groups to function independently.
In Mac OS X 10.3 Apple gave GroupBoxes a 3D “sunken” look.

me.captionalign=0 //caption aligned flush left
me.hasMenu=2 //menu on right
me.caption="Platform"
me.addRow("Macintosh")
me.addRow("Windows")
me.addRow("Linux")
me.addseparator
me.addRow("Other")
155REALbasic User’s Guide

Building a User Interface
Figure 153. GroupBox controls with and without a caption.

TabPanel When you have several groups of controls and space is very limited, TabPanels are
appropriate. A TabPanel presents each group of controls in a separate panel. When
the user clicks on a tab in the TabPanel, REAL Studio automatically hides the con-
trols on the current panel and displays the controls on the panel the user selected. In
Figure 154, both “Find” and “Find and Replace” functionality is built into the same
dialog box using a TabPanel control.

Figure 154. A two-panel TabPanel control.

In the built application, the control looks like this:

Mac OS X 10.3
and above

Mac OS X 10.2

Windows

Linux
156 REALbasic User’s Guide

Building a User Interface
Figure 155. The two-panel TabPanel control (Linux).

By default, a TabPanel control has two panels. You add, modify, rearrange, or delete
tabs and tab labels using the Tab Panel Editor. Click the value of the Panels
property of the TabPanel to display the Tab Panel editor.

Figure 156. Opening the Tab Panel Editor.

With the Tab Panel Editor, you can:

n Rename a tab: Click once on its name to select it and then click again to get an
insertion point. When you get the insertion point, replace the current label with the
new label.

n Add a new tab: Click the Add button. A new tab appears in the list with a default
name. The default name is selected, so you can rename it by typing.

n Delete a tab: Click once on it to select in and then click the Delete button.

n Rearrange the tabs: Highlight a tab you want to move and then click the Up or
Down buttons.

After you have added the desired tabs to the TabPanel, you can add other controls to
each page. Click on a tab in the Window Editor and then drag the necessary
controls to that page. Repeat the process for each page.

PagePanel The PagePanel control implements the same idea as the TabPanel, except that the
PagePanel control itself is not visible to the end-user. It has no tabs or other
navigation widgets, nor does it have a visible border. Only the controls on each page
are visible. You are responsible for providing the method of navigating from one page
to another. You can do so by setting the value of its Value property programmatically.
157REALbasic User’s Guide

Building a User Interface
In the IDE, you navigate among pages in a PagePanel control using a widgets at the
bottom of the control. This is shown in Figure 157.

There are two ways to navigate among existing pages. The Go to Page command
displays a submenu of page numbers. Select a page number from this menu to go
directly to a page. Click in the center of the navigation widget to get the drop-down
list of page numbers. Or, click the left or right arrows to the left or right of the page
number to go to the next or previous page.

Figure 157. The PagePanel’s pop-up menu (IDE).

You add, delete, and reorder pages using the PagePanel Editor, shown in Figure 158.
You can display the PagePanel editor by clicking the Panels property of the Page-
Panel in the Properties pane. This is identical to the process illustrated in Figure 156
on page 157 for the TabPanel. The PagePanel editor uses the same interface as the
TabPanel editor, except that you cannot name PagePanels. With that exception, the
buttons in the PagePanel editor work as described for the TabPanel.
158 REALbasic User’s Guide

Building a User Interface
Figure 158. The PagePanel editor.

Here is a simple example of the use of a PagePanel control. The user wants to
present two versions of an interface — the ‘Basic’ version, which shown by default
— and an Advanced version, which is shown only if the user chooses to reveal it. A
PopupMenu control is used as the widget that controls which page is shown.

Figure 159 shows the two pages in the IDE.

Figure 159. The ‘Basic’ and ‘Advanced’ pages in the IDE.

In the built application, the two pages look like this.

Figure 160. The Basic and Advanced settings pages in the built application.
159REALbasic User’s Guide

Building a User Interface
Code in the Change event of each pop-up menu controls the page that is displayed
and the setting of the pop-up menu on the other page. For example, the code for the
pop-up menu on the ‘Basic’ page is:

Controls for
Displaying
Graphics and
Pictures

REAL Studio is very flexible when it comes to displaying graphics and pictures.
You can use the built-in graphic controls, display pictures from documents, or draw
the graphics using REAL Studio’s programming language.

Line A Line control draws a line that can be of any length, width, color, and direction. By
default, lines are 100 pixels in length, 1 pixel in width, black, and horizontal.

In Figure 161, a Line control is used to divide two areas of a complex dialog box
used for data input.

Figure 161. A Line control used to divide two sections in a dialog box.

Rectangle A Rectangle control draws a rectangle that can be of any length, width, border
color, and fill color. By default, rectangles are 100 pixels in length and width, with
a black border that is 1 pixel thick and a white center. Because you can control the
color of the left and top borders independently from the right and bottom borders,
you can easily create rectangles that appear to be sunken or raised. The example code
is in the entry for the Rectangle control in the Language Reference.

pagePanel1.value=me.listindex
popupMenu2.listindex=me.listindex
160 REALbasic User’s Guide

Building a User Interface
Figure 162. A Rectangle with default, sunken and raised appearances.

RoundRectangle RoundRectangles are similar to regular Rectangle controls. The differences are that
you don’t have the independent color control for the border (because it is one con-
tinuous line) but you can control the width and height of the arcs that make up the
round corners.

Figure 163. A RoundRectangle control.

Oval Draws an oval with a single pixel, black border, and filled with white. All of these
properties can be modified. The “ovalness” of the Oval is controlled by its height
and width. For example, an Oval with the same width and height is a perfect circle.

Figure 164. An Oval control.

Canvas A Canvas control can be used to display a picture from a file or a picture drawn
using REAL Studio’s programming language. If your application requires a type of
control that is not built-in, you can use a Canvas control and REAL Studio drawing
commands to create the controls you need. The Canvas control has access to the
drawing tools belonging to the Graphics class; with these tools you can program-
matically draw objects within the Canvas.
161REALbasic User’s Guide

Building a User Interface
The Canvas control can get the focus, so you can emulate any other type of control
that you would like to get the focus.

Canvas controls can be used to create extremely sophisticated controls. In
Figure 165, a Canvas control is used to provide a table of data with rows that can be
selected and columns that can be sorted by clicking on the column title.

Figure 165. A sophisticated control created using a Canvas control.

The Table control above was created by Björn Eiríksson.

ImageWell The ImageWell control provides an area in which you can display a BMP or PNG
image on Windows and Linux or a PICT image on Macintosh. You can easily pro-
gram the ImageWell control to accept a dragged picture.

Figure 166. An ImageWell.

OpenGLSurface The OpenGLSurface control enables an OpenGL programmer to create an OpenGL
object in a REAL Studio application. It provides an interface for OpenGL drawing.
You will need to be familiar with the OpenGL language in order to program this
control. Information on OpenGL is found at http://www.opengl.org.
162 REALbasic User’s Guide

Building a User Interface
Controls for
Playing
Movies,
Music, and
Animation

The MoviePlayer control plays movies using a built-in movieplayer. QuickTime™
is the default player on Macintosh and Windows Media Player is the default on
Windows. On Linux, the MoviePlayer uses GStreamer by default (it requires version
0.10+) and uses Xine if GStreamer is not available.

MoviePlayer The MoviePlayer control displays the standard movie controller for your platform.

Figure 167. A MoviePlayer control in the IDE and an application (QT3D movie shown).

From the IDE, you can select the movie that will be associated with a particular
MoviePlayer control. You can also determine the default appearance of the movie
controller. Your choices are: the controller is displayed, a badge (a small icon that,
when clicked, reveals the controller) is displayed, or no controls are displayed.
163REALbasic User’s Guide

Building a User Interface
Assigning a movie to a MoviePlayer control is easy. The Movie property of the Mov-
iePlayer stores the movie that the MoviePlayer will play. It has a pop-up menu that
lists all the movies that have been added to the Project Editor. You can add a movie
to the Project by either dragging it from the desktop or with the File . Import
menu command.

If you did not add the movie to the Project Editor, you can locate it from the
Window Editor. Choose Browse from the Movie property’s pop-up menu. An open-
file dialog box appears. Select the movie you want to play. When you do so, the
movie is also added to the Project Editor.

You can then add Stop and Play PushButtons to the window or let the users use the
built in controls in the player.

If you wish to provide Stop and Play controls, add two PushButtons to the window and
label them “Stop” and “Play,” as shown in Figure 167. In the Action event for the “Stop”
button, use the code:

The Action event for the “Play” button is:

The result is a fully functional MoviePlayer application shown below the IDE in
Figure 167 on page 163.

Miscellaneous
Controls

PopupArrow
Control

The PopupArrow controls places an arrow in the window that points in any of four
directions. Two sizes of arrows are available.

You control both the direction and size of the popup arrow using one property, the
Facing property. You get a choice of four orientations (North, South, East, and
West) and two sizes, standard and small. Typically, you would use a PopupArrow
control as part of a custom control. The orientation of the arrow indicates whether
the custom control can display additional information or options. Figure 168 shows
all four orientations and both sizes.

Figure 168. Examples of the PopupArrow Control.

MoviePlayer1.Stop

MoviePlayer1.Play
164 REALbasic User’s Guide

Building a User Interface
Disclosure
Triangle
Control

A disclosure triangle control is used to display hierarchical lists, i.e., the List view of
files and folders in a Finder window. In REAL Studio, you can control the direction
of the DisclosureTriangle (left or right) and whether it is in the ‘disclosed’ (down)
state.

Figure 169. Disclosure Triangles.

UpDownArrows
Control

The UpDownArrows control is commonly used as an interface for scrolling. You use
two events, Up and Down, to determine whether the user has clicked an arrow.

Figure 170. The UpDownArrows Control (Windows, Linux, and Macintosh).

ProgressWheel
Control

The ProgressWheel control is often displayed to indicate that a time-consuming
operation is in progress. The ProgressWheel control appears when its Visible prop-
erty is set to True. It is animated automatically.

Figure 171. The ProgressWheel Control (Windows, Linux, and Macintosh).

RBScript
Control

The RBScript control allows the end user to write and execute REAL Studio code
within a compiled application. Scripts are compiled into machine code.

You pass the REAL Studio code that you want to run via the Source property and
execute it by issuing the Run method. Please see the Language Reference for details on
the functions, control structures, and commands supported by the RBScript control.

IDE Scripts You can also automate the IDE itself via IDE scripts. Any menu command or
toolbar button can be automated. You can also get and set property values, navigate
among panels in the IDE, manipulate code in the Code Editor, and automate the
build process among other things. To script the IDE, use the File . IDE
Scripts . New IDE Script command to open the IDE Script editor. See the entry for
IDE Scripts in the Language Reference for the commands used in IDE scripting. IDE
scripting is a Studio-only feature of REAL Studio.

Controls for
Handling
Communications

REAL Studio provides controls that allow your application to communicate through
the serial port (for communicating via a modem or through a serial cable to another
165REALbasic User’s Guide

Building a User Interface
device) and over a network to other computers using TCP/IP, the Internet’s commu-
nication protocol.

Serial Although the Serial control displays an icon when placed in a window in the Win-
dow Editor, it is not visible in the built application. It is designed only for execut-
ing code to communicate via the serial port. For more information, see the Serial
control in the Language Reference for more details.

The Serial control can be instantiated via code since it is not a subclass of Control.
This allows you to easily write code that does communications without adding the
control to a window.

TCPSocket Although the TCPSocket control displays an icon when placed in a window in the
Window Editor, it has no interface. It is designed only for executing code to com-
municate with other computers on the Intranet or Internet using TCP/IP.

The TCPSocket control can be instantiated via code since it is not a subclass of
Control. This allows you to easily write code that does communications without
adding the control to a window.

For more information, see the section on the TCPSocket control in the Language
Reference.

SSLSocket The SSLSocket control is similar to the TCPSocket. The SSLSocket implements
Secure Sockets Layer communication via TCP/IP. It supports SSL versions 2 and 3 as
well as TLS (Transport Layer Security) version 1.

However, it does not have an icon of its own in the Controls pane. You can also add
it to a window via the window’s contextual menu or create an instance of an
SSLSocket via code.

To establish an SSL connection with the SSLSocket, set the Secure property to True
and use the Connect method.

The SSLSocket is available in the Professional and Studio versions of REAL Studio;
the Personal version of REAL Studio does not compile references to the SSLSocket.

For more information, see the section on the SSLSocket control in the Language
Reference.

ServerSocket The ServerSocket class enables you to support multiple TCP/IP connections on the
same port. When a connection is made on that port, the ServerSocket hands the
connection off to another socket, and continues listening on the same port. It
includes the ability to replenish its supply of TCPSockets as connections are made.
Without the ServerSocket, it is difficult to implement this functionality due to the
latency between a connection coming in, being handed off, creating a new listening
socket, and restarting the listening process. If you had two connections coming in at
166 REALbasic User’s Guide

Building a User Interface
about the same time, one of the connections may be dropped because there was no
listening socket available on that port.

The ServerSocket is available in the Professional and Studio versions of REAL
Studio. For more information, see the section on the ServerSocket class in the
Language Reference.

UDPSocket The UDPSocket supports communications via a UDP (User Datagram Protocol)
connection. It also can be created via code because it is not derived from the Control
class.

UDP is the basis for most high speed, highly distributed network traffic. It is a
connectionless protocol that has very low overhead, but is not as secure as TCP.
Since there is no connection, you do not need to take nearly as many steps to prepare
when you wish to use a UDP socket.

UDP sockets can operate in various modes, which are all very similar, but have
vastly different uses. Perhaps the most common use is “multicasting.” Multicasting
is a lot like a chat room: you enter the chatroom, and are able to hold conversations
with everyone else in the chatroom.

For more information, see the section on the UDPSocket class in the Language
Reference.

IPC Socket The IPCSocket performs interprocess communications between two REAL Studio
applications running on the same computer. Use it to send and receive messages.

Like other sockets, the IPCSocket control displays an icon when placed in a window
in the Window Editor but has no interface.

The IPCSocket can be instantiated via code since it is not a subclass of Control. This
allows you to easily write code that does communications without adding the
control to a window.

For an example of the use of the IPCSocket, see the example application and the
section on the IPCSocket control in the Language Reference.

“Easy”
Communications

The REAL Studio language includes “easy” versions of the UDPSocket and
TCPSocket classes that are designed for communication among REAL Studio
applications on a network. They are called the EasyUDPSocket and EasyTCPSocket
classes. Also, AutoDiscovery class can automatically poll the network and return the
IP addresses of the computers that are logged in for “easy” communications. Once
this is done, it is very easy for members to send messages to one another.

These classes make it easy to set up a network of REAL Studio users, but they are
not designed for more generic communication with other applications, such as an
FTP or HTTP server.
167REALbasic User’s Guide

Building a User Interface
For more information on the “Easy” communication classes, see the section “Making
Networking Easy” on page 679 and the entries for the classes in the Language
Reference.

Toolbar
Control

The Toolbar control enables you to create cross-platform toolbars. Support for
toolbars consists of the Toolbar control itself and two supporting classes, ToolItem
and ToolButton. Each item in a toolbar is a ToolButton. It can be a pushbutton, a
button that a toggles, a vertical separator, a drop-down list, or a fixed or flexible
space. A pushbutton returns to its unpressed state when the user releases the mouse
button, but the toggle button remains depressed until clicked again.

You create one ToolButton for each item that appears in the toolbar. For buttons
and drop-down lists, you can pass the picture that it will use as its icon and enter
the label that will appear below the button. It is convenient to add all the pictures
that will be used by the toolbar to the Project Editor beforehand.

When you are finished creating all the toolbar items, you add the finished toolbar to
each window that uses it. You then must write an event handler for the toolbar’s
Action event.

In the IDE, you can create a complete toolbar via the Toolbar Editor. You can also
create a toolbar via the language, using the Toolbar, ToolItem, and ToolButton
classes. For an example of a toolbar that was created via code, see the entry for the
Toolbar control in the Language Reference.

To create a toolbar in the IDE, follow these steps:

1 In the Project Editor, click the Add Toolbar button in the Project Editor
toolbar or choose Project . Add . Toolbar.
REAL Studio adds a class based on the Toolbar class to the project.

2 Double-click the Toolbar class in the Project Editor.
The Toolbar Editor appears.

Figure 172. The Toolbar Editor.
168 REALbasic User’s Guide

Building a User Interface
3 Click Add Tool Item to add the first toolbar item.
The Toolbar Editor adds the toolbar to the editor and places a new blank item in the
first position.

Figure 173. The Toolbar Editor with the first item added.

The Properties pane changes to show the properties of this item. You create the
finished item by specifying its properties. The type of button is determined by its
Style property. Your choices are shown in Figure 174.

Figure 174. The Style drop-down list.

Here are descriptions of each button style:

n Push Button: The ToolButton is a standard PushButton. Use the Caption and Icon
properties to assign the PushButton’s label and icon. To set the Icon property, add
the image of the icon to the Project Editor. This will populate the Icon drop-down
menu in the Properties pane.

n Separator: The ToolButton is a separator. It draws a vertical line in the toolbar.
169REALbasic User’s Guide

Building a User Interface
n Toggle Button: The ToolButton is a button that toggles between its normal and
depressed state. Use the Caption and Icon properties to assign the Toggle button’s
label and icon. Toggling a Toggle button does not affect the state of other toggle
buttons in the toolbar. That is, a group of Toggle buttons behave like Checkboxes,
not RadioButtons.

n Drop-Down Button: The ToolButton is a drop-down list. On Windows, an arrow
is drawn by default. Use the Caption and Icon properties to assign the button’s label
and icon. If the Drop-down button has no arrow, the user can click on the text or
icon to display the drop-down menu.

To specify the menu, you need to create a menu and assign it to the
DropDownMenu property of the ToolButton class. Handle the selected menu item
in the DropDownMenuAction event of the Toolbar class. See the example for the
ToolButton class in the Language Reference.

n Separate Drop-Down button: The ToolButton is a drop-down menu with a
separate down arrow on its right. Use the Caption and Icon properties to assign the
Toggle button’s label and icon.

To specify the menu, assign it to the DropDownMenu property of the ToolButton
class. Handle the selected menu item in the DropDownMenuAction event of the
Toolbar class. See the example for the ToolButton class in the Language Reference.

n Space: The ToolButton is a fixed-width space between ToolButtons. This is not
supported on Windows, so no extra button or space appears.

Figure 175. A Fixed-Width Space button between the Save and Cities Toolbuttons.

n Flexible Space: The ToolButton is a variable-width space between ToolButtons. It
right-aligns the buttons to its right as the window is resized. This is not supported
on Windows, so no extra space or button will be inserted.

The difference between fixed and flexible spaces is illustrated in Figures 175 and
176. In both cases, the window has been enlarged by the user. As the window is
enlarged, the fixed-space maintains the spacing between the buttons to its left and
right. The flexible space expands as the window is enlarged.
170 REALbasic User’s Guide

Building a User Interface
Figure 176. A Flexible Space button between the Save and Cities ToolButtons.

4 Use the Properties pane to choose the Style of the item and, if necessary,
the values of the Caption and Icon properties.
You do not need to specify an Icon for the Separator style.

5 (Optional) Change the Name of the item (you use the Name property to
refer to the item in code) and the HelpTag. Deselect the Enabled property if
you want the item to be disabled when the window opens.
The HelpTag is displayed when the mouse hovers over the item but the mouse but-
ton is not pressed.

Figure 177 shows a completed toolbar with Open and Save buttons.

Figure 177. A completed toolbar with two Push buttons.

In Figure 177, the Save button is selected, so the Properties pane shows its
properties.

After adding items to the toolbar, you can reorder them by dragging an item to the
left or right. You can preview the toolbar on other platforms by clicking one of the
Toolbar preview mode buttons in the Toolbar’s toolbar.

Figure 178. The Toolbar preview mode buttons.
171REALbasic User’s Guide

Building a User Interface
Adding the
Toolbar to a
Window

The completed toolbar in the Project Editor will also appear in the list of Project
Controls in the project’s Window Layout Editors. Choose Project Controls from the
Controls drop-down list in a Window Editor and drag the toolbar to the desired
position in the window.

To make the toolbar work, you need to handle the toolbar’s Action event. It occurs when
the user interacts with buttons or drop-down lists. If the user clicks a button or a menu,
the item that was clicked is passed to the Action event handler of the Toolbar. In the
Action event, you can test which item was clicked and take appropriate action. For
example, here is the Action event handler for the simple toolbar that is shown in
Figure 177. It tests the Name property; this was set in the Properties pane for each item.

If you have used either type of Drop-down list button, you need to handle the user’s
menu selection. You do this in the ToolButton’s DropDownMenuAction event
handler. It is passed the item in the toolbar and the menu item that was selected.
For example, here is an event handler for a drop-down menu with three items.

Please see the sections in Chapter 5 on events and event handlers and the Language
Reference entries for the Toolbar, ToolButton, and ToolItem classes.

The completed toolbar in the Project Editor will also appear in the list of Project
controls in the project’s Window Layout Editors. Choose Project Controls from the
Controls drop-down list in a Window Editor and drag the toolbar to the desired
position in the window.

To make the toolbar work, you need to handle the toolbar’s Action event. It occurs
when any item is clicked. The item that was clicked is passed to the Action event han-
dler, so you can test which item was clicked and take appropriate action. For example,

Sub Action (Item as ToolItem)
Select Case Item.Name
Case "OpenButton"
MsgBox "You clicked the Open Button."
Case "SaveButton"
MsgBox "You clicked the Save Button."
End Select

DropDownMenuAction(item as ToolItem, hitItem as MenuItem)
Select Case hititem.Text
Case "Grand Blanc"

MsgBox "You chose Grand Blanc from the "+item.Name+" ."
Case "Flint"

MsgBox "You chose Flint from the "+item.Name+" ."
Case "Bad Axe"

MsgBox "you chose Bad Axe from the "+item.Name+" ."
End Select
172 REALbasic User’s Guide

Building a User Interface
here is the Action event handler for the simple toolbar that is shown in Figure 177. It
tests the Name property; this was set in the Properties pane for each item.

The Timer The Timer executes some code once or repeatedly after a period of time has passed.
Although the Timer displays an icon when placed in a window in the Window Edi-
tor, it is not visible in built applications. It is not a control and can be created with
code. See the section on the Timer object in the Language Reference for more details.

Controls for
Working With
Databases

There are two special-purpose controls that are relevant only in projects that access
databases: the DatabaseQuery control and the DataControl control. For more
information about both controls, see “Creating Databases with REAL Studio” on
page 603.

DatabaseQuery The DatabaseQuery control can be used to send SQL queries to the database. This
function can also be done with the language (without using the DatabaseQuery con-
trol at all). When you add a DatabaseQuery control to a window, it is not visible in
the built application.

To use the DatabaseQuery control, you write a SQL statement and assign it to the
SQLQuery property of the control. The SQLQuery is executed automatically when
its window appears. It also has one method, RunQuery, which runs the query stored
in the SQLQuery property.

DataControl The DataControl control is a “composite” control that provides a very easy way to
build a front-end interface to a database. It consists of four record navigation but-
tons (First Record, Previous Record, Next Record, and Last Record) and a caption.

Sub Action (Item as ToolItem)
Select Case Item.Name
Case "OpenButton"
MsgBox "You clicked the Open Button."
Case "SaveButton"
MsgBox "You clicked the Save Button."
End Select
173REALbasic User’s Guide

Building a User Interface
Figure 179. A DataControl control used for navigating among records.

When linked to a database and controls that display data, you can create a fully-
functional database front-end with no programming. See the example in the section
“The DataControl Control” on page 618.

The Spotlight
Query Control

Mac OS X 10.4 introduced a sophisticated search engine known as “Spotlight.” It
relies on metadata attributes of items to do its searches. The SpotlightQuery class in
the REAL Studio language provides access to the Apple Spotlight API so that you
can incorporate Spotlight searches in your REAL Studio applications. You can pass
queries to Spotlight, determine when it has results, and then display those results in
standard REAL Studio controls such as ListBoxes and TextFields.

Of course, these capabilities are supported only for users who are running Mac OS X
10.4 and above. On all other operating systems, the SpotlightQuery control and
your Spotlight-related code will do nothing.

You use the SpotlightQuery class to perform these searches. Use the Query property
of this class to pass your Spotlight query to the API. The SpotlightQuery class is
listed in the Built-in Controls list to make it convenient to add it to a window, but
it is not subclassed from the Control class. The SpotlightQuery class is not based on
the Control class so you can also create SpotlightQuery objects via code and
implement your Spotlight support that way.

The entry for SpotlightQuery in the Language Reference has examples of Spotlight
support both with and without a SpotlightQuery control in a window.

ActiveX
Controls

The Windows version of REAL Studio allows you to add ActiveX controls to the
Controls pane. They are added as Project controls. Once added to the Controls pane,
an ActiveX control can be added to your application as if it were a part of REAL
Studio.

DataControl
control
174 REALbasic User’s Guide

Building a User Interface
Figure 180. ActiveX controls in the Project Controls list.

To add an ActiveX control, do this:

1 In the Windows version of REAL Studio, click the Add ActiveX Component
button in the Project Editor toolbar or choose Project . Add . ActiveX
Component.
The COM Components dialog appears, listing all the ActiveX controls and automa-
tion objects that are currently installed on your computer.

Figure 181. The ActiveX Components dialog box.

2 Select the controls or automation objects that you wish to add to your
Project Controls list and click OK.

ActiveX controls
175REALbasic User’s Guide

Building a User Interface
The selected controls or objects are added to the items in the Project Editor. If they
are ActiveX controls, they are also added to the list of Project controls in the all the
Window Editors in your project. Controls generally have their own icon, while pro-
grammable objects use the icon for the OLE Container control.

The ActiveX components that you add in this manner become part of the current
project rather than your copy of REAL Studio. To add the ActiveX components to
other projects, repeat this process.

You add an ActiveX control to a window just as any built-in control. Drag it to a
window and use the Code Editor to add code to the ActiveX control. Please refer to
Microsoft documentation for information about programming ActiveX components
and the specific ActiveX components you want to use. Microsoft documentation is
in the MSDN library at:

COM
Component
Help

When you add a COM Component to your project, a COM Component menuitem
is added to the Help menu. It has submenus for each ActiveX component that you
have added to your project. This is the ActiveX online Language Reference. For
example, Figure 182 is the page for the QT Plugin component:

Figure 182. The QuickTime Component reference page.

OLEContainer
Control

The OLEContainer control enables you to embed ActiveX controls in your interface.
ActiveX is a Windows-only feature. The ActiveX controls that you add to your
project are derived from OLEContainer class.

http://msdn.microsoft.com/library/
176 REALbasic User’s Guide

Building a User Interface
The Container
Control

The Container Control is a special type of control that can contain all other types of
controls and other Container Controls. The ContainerControl is available only in the
Professional and Studio versions of REAL Studio.

A Container Control itself is invisible in built applications. Think of it as a blank
canvas onto which you can place visible controls. It enables you to organize several
controls into groups and manage dynamic layouts. Container Controls have
multiple uses, You can:

n Organize groups of controls into reusable interface components,

n Create custom controls made up of several constituent controls,

n Increase encapsulation of complex window layouts,

n Create dynamic layouts.

Unlike other controls, the Container Control does not appear in the list of controls in
the Window Editor. It appears instead in the Project Editor toolbar or in the
Project . Add submenu item in the Project Editor.

To create a Container Control, add a Container Control to the Project Editor.
Double-click it to open its Container Control Editor. Its editor looks like a Window
Editor except that the Container Control is represented by a rectangle. A Container
Control has no frame and no window widgets, such as the Minimize, Maximize, and
Close buttons of a document window.

You place controls in a Container Control just as if it were a window in a Window
Editor. Controls that are placed in a Container Control have a Tab Order that works
inside the parent Container Control. If you wish, you can convert a
ContainerControl to a Window by changing its Super class to Window in the
Project Editor. Conversely, you can convert a window to a ContainerControl by
changing its Super class to ContainerControl. However, you cannot convert the
default window of a project.

To use a Container Control in your project, follow these general steps:

n Add a Container Control to your project by clicking the Add Container Control
button in the Project Editor toolbar or using the Project . Add . Container
Control menu item,

n Rename it using its Properties pane (optional),

n Double-click the Container Control in the Project Editor to open its editor and then
design the instance of the Container Control in its Container Control Editor,

n Display the window in which you want to display the Container Control in its
Window Editor. Use the Control pane’s drop-down list to switch to Project
Controls. Your Container Controls will be listed in the Project Controls, not the
Built-in Controls.

n Add the Container Control to the window.
177REALbasic User’s Guide

Building a User Interface
Figure 183 is an example Container Control in its editor that will be used in a
Find/Replace dialog box. It consists of two StaticText controls and two TextFields.

Figure 183. The Container Control in its Container Control Editor.

You can also place and position it via the language. This feature enables you to
create dynamic screens.

In the Figure 184, the Container Control shown in Figure 183 has been placed
inside a TabPanel control in a Find and Replace dialog box.

Figure 184. A Container Control in a window.

Opening an
Old Project

When you open a project that was built with an early version of REAL Studio, it
may contain controls and other project items that have since been deprecated. In
178 REALbasic User’s Guide

Building a User Interface
general, the deprecated items have been replaced with new items that provide
equivalent or superior functionality. For example, the ChasingArrows control has
been replaced with the ProgressWheel.

If you open an old project that contains a deprecated control, REAL Studio detects the
deprecated control and offers you the opportunity to convert it to a supported control.
As the project is about to be opened, you will see a dialog such as this.

Figure 185. A Convert Control dialog.

In this case, the project contains a ChasingArrows control and a Socket control.

Highlight the control to be converted to enable the Resolve button and then click
Resolve. The icon on the left becomes a check. In this example, the Socket control is
converted to a TCPSocket.

Resolve each item and then click Close to put away the dialog and open the project.
When you do so, you will find that the deprecated controls have kept their original
names but their super class has been updated.

Changing The Tab Order
The order in which the user moves through controls that receive the focus when he
presses the Tab key is called the Tab Order. When a window opens, REAL Studio
gives the focus to the control that is farthest back that can also receive the focus. A
control is said to be in the back when another control can cover it up when it is
moved to the same location. It is the first control in the Tab Order.

You can change the Tab Order in several ways in the Window Editor.

Using the
Window Edi-
tor Toolbar

The Window Editor toolbar has four buttons that you can use to move the selected
control backwards or forwards in the tab order: Forward, Front, Backward, or Back.
All visible controls also have a property, TabIndex, which denotes its position in the
tab order. A control’s position in the Tab Order is also indicated by the value of its
TabIndex property.
179REALbasic User’s Guide

Building a User Interface
The control with a TabIndex value of 0 is first in the tab order. It’s the one in the
back. The Front and Back buttons move the control to the front or back in the
order, while Forward and Backward move it one position up or down.

For example, in Figure 186, the Save button in the layout is selected. The four
buttons in the toolbar are enabled and the Properties pane for the Save button shows
that its TabIndex is 2.

Figure 186. A selected control in the Tab Order.

You can modify the Tab Order by changing the value of the TabIndex property in
the IDE or via code. For example, you can use the line:

in a control’s Open event handler.

Using the Edit
Tab Order
Mode

The Window Editor toolbar menu contains an Edit Tab Order button that changes
the way in which you can modify the Tab Order. When you click Edit Tab Order,
the editor changes to a mode that temporarily prohibits normal Window Editor
actions such as adding and deleting controls or modifying their properties. It also
disables the toolbar buttons.

If the Edit Tab Order button is not shown, add it to the Toolbar by right+clicking
on the Toolbar and choosing Customize.

In this mode, each control that can get the focus on any platform gets a badge that
indicates its current position in the Tab Order, with zero being the first control in
the order.

Me.TabIndex=0
180 REALbasic User’s Guide

Building a User Interface
Figure 187. A Window Editor in its Edit Tab Order mode.

The displayed Tab Order assumes that the control is capable of getting the focus.
Some controls do not receive the focus on Macintosh, but are included in the Tab
Order if they can get the focus on any platform on which REAL Studio can run. For
example, PushButtons, CheckBoxes, and RadioButtons do not get the focus on
Macintosh, but are shown in the Tab Order within the Macintosh IDE.

The displayed Tab Order is valid for Windows and Linux builds of the application.
For Macintosh builds, you need to ignore the Tab Order of a control that will not
receive the focus. The TabIndex property, however, is valid on Macintosh if the user
has the Full Keyboard Access option enabled at the Mac OS X system level.

When Edit Tab Order is on, the pointer changes to a crosshairs. You can change the
Tab Order for a control by clicking on its badge to change its value. This is shown
in Figure 188. The Tab Order for the Save button is being changed.
181REALbasic User’s Guide

Building a User Interface
Figure 188. Changing the Tab Order in Edit Tab Order mode.

Click on a control to change its Tab Order. Continue clicking on controls until the
resulting Tab Order is satisfactory. You don’t necessarily need to click on all the
controls.

To leave Edit Tab Order mode, click on the Hide Tab Order button. The window
will then return to the normal editing mode.

If any of the controls in the window are within other controls, then the Tab Order
numbering system uses “dot” notation to describe the Tab Order within a control.

Tab Panels, Page Panels, and GroupBoxes generally serve as parent controls.
Controls that are nested within the parent get a decimal tab order number.

That is, the parent control gets an integer denoting its Tab Order relative to other
controls, while the nested controls get a decimal number indicating the Tab Order
within the parent. The dot notation indicates the control hierarchy. In Figure 188,
for example, the Tab Panel has a badge of 3 and the three child TextFields have
badges that display 3.0, 3.1, and 3.2. The Properties panes for the three child
controls will show TabIndex values of 0, 1, and 2.

That is, the Properties pane displays the local Tab Order within the Parent control.
This indicates shows how the nested controls are selected when the parent gets the
focus.

When you are in Edit Tab Order mode, you can switch tabs on a Tab Panel or pages
on a Page Panel by holding down the Control key (Windows and Linux) or Option
key (Macintosh) while clicking on the tab or page indicator.
182 REALbasic User’s Guide

Building a User Interface
Auto-
Adjustment of
the Tab Order

If you only want to set the Tab Order to a simple Top-left to Bottom-right order,
REAL Studio offers a convenient way to do this. Two automatics sort orders are
available. One favors the rows and the other favors the columns. That is, one order
starts at the top-left control and next chooses the control to its right; the other
chooses the top-left control and then chooses the control below it.

You can assign either of these orders via the Edit . Auto Adjust TabIndexes menu
item. It offers two choices: Top-down Left-right and Left-right Top-down. The
choices are illustrated below.

Figure 189. Setting the Tab Order automatically.

Aligning Controls with Other Controls
REAL Studio’s Interface Assistant makes it easy to align a particular control with
another control. Simply drag the control until it is close to being aligned with the
other control. When you get close to aligning the two controls, horizontal and/or
vertical alignment rules will appear. When you release the mouse button, REAL
Studio will snap the control you are dragging into place.

To align controls that have already been placed in the window, you use the
Alignment icons on the right side of the Window Editor’s toolbar. You can also use
the equivalent menu command in the Edit . Align submenu.

Figure 190. The Window Editor’s Alignment and Spacing icons.

Initial State (out of
order)

Tab order is by rows, then columns Tab order is by columns, then rows

Right edges Bottom edgesLeft edges Top edges

Space vertically Space horizontally
183REALbasic User’s Guide

Building a User Interface
The icons align the selected objects as shown in Figure 190. The Edit . Align
submenu has the same commands.

The Space Vertically and Space Horizontally commands distribute three or more
objects evenly. They are described in the section that follows immediately.

If you need to align several controls, do this:

1 Click on the control whose position is already correct to select it.

2 Click the Back button in the Window Editor toolbar or choose
Edit . Arrange . Send to Back to insure that the selected control remains in
place while the other controls move to align with it.
You can also move the control to the back by setting its ControlOrder property to
zero using the Properties pane.

3 While holding down the Ctrl key (Command key on Macintosh), select each
of the controls you wish to align or draw a selection rectangle around the
controls to be aligned.

4 Click the desired alignment icon in the Window Editor toolbar or choose
the equivalent menu command from the Edit . Align submenu.

Spacing
Controls
Evenly

REAL Studio provides an easy way to reposition controls to evenly distribute empty
space between them. The row of alignment icons (Figure 190) also contain icons for
distributing controls evenly along the horizontal and vertical axes.

To distribute the controls evenly, do this:

1 Click on a control to select it.

2 Hold down the Ctrl key (Command key on Macintosh) and select at least
two other controls or draw a selection rectangle around the additional
controls.

3 To distribute the controls horizontally, click the Space Horizontally icon or
choose Edit . Align . Space Horizontally.

4 To distribute the controls vertically, click the Space Vertically icon or choose
Edit . Align . Space Vertically.
Your selected controls will now be equally spaced in either the horizontal or vertical
axis.

The Control Hierarchy
In some cases you build portions of your interface by placing some controls within
another control. For example, you use the GroupBox control to organize other
controls, usually RadioButtons, CheckBoxes, PopupMenus, and
TextFields/TextAreas. The TabPanel and PagePanel controls also designed to
enclose other controls. The Control Hierarchy in the IDE enables you to work with
all the controls as a group.
184 REALbasic User’s Guide

Building a User Interface
The control that encloses the others is known as the parent control and the controls
that are entirely within its borders are the child controls. This works automatically if
you create the controls in the order of: parent-child. That is, first create the control
that encloses the others, then create the child controls or duplicate existing child
controls and keep them inside the parent control.

If you create the control that is supposed to be the parent after creating some of the
other controls, you can convert it to the parent by moving it to the back in the Tab
Order. Do this by selecting the control that is supposed to be the parent and click
the Back button in the Window Editor toolbar or choose Edit . Arrange . Send to
Back, or change the value of the TabIndex property to zero in the Properties pane.

When you drag a child control to a parent and then drop it into place, a marquee
surrounds the parent. This gives you visual confirmation that you are, in fact,
adding a child to a parent. For example, in Figure 191 a StaticText control is being
dropped onto a TabPanel.

Figure 191. Adding a child control to a parent.

By default, a marquee also surrounds the parent control whenever you select an
existing child control. For example, in Figure 192 the user clicked the second
StaticText control and is aligning it with the top StaticText. A marquee surrounds
its parent (TabPanel) control as well.
185REALbasic User’s Guide

Building a User Interface
Figure 192. Selecting and aligning a child control.

An option in the Window Editor options panel turns this feature on or off. By default,
this feature is enabled; to disable the feature, choose Edit . Options (REAL
Studio . Preferences on Macintosh) and select the Window Editor panel and deselect
Highlight Parent Control.

Figure 193. The Window Editor options.

You can additionally select the color of the marquee. Highlight Parent Highlight in
the Control Selection list and click the color sample to display the Color Picker to
select another color. Click Reset to revert to the original color.

Highlight
parent control
color
186 REALbasic User’s Guide

Building a User Interface
If a control is not completely enclosed by another control, then it doesn’t automati-
cally become a child; it simply overlaps the other control.

If you move a child outside its parent, it is no longer a child of that control. If you
move it completely inside another control, it becomes the child of that control.

When you copy a parent control, you copy all its child controls as well.

You can create more than one level of nesting. For example, you can place a
GroupBox within a TabPanel and then place several RadioButtons within the
GroupBox. In this case, the GroupBox is the parent of the RadioButtons and the
TabPanel is the parent of the GroupBox. To make this work automatically, you
must create them in the order that respects the hierarchy: First create the TabPanel,
then the GroupBox, and then the RadioButtons.

However, you cannot nest a TabPanel in another TabPanel or a PagePanel and you
can’t nest a PagePanel in either a TabPanel or another PagePanel.

In the Control Selection area of Window Editor options (Figure 193 on page 186),
you can also set the color of the Window Editor’s pasteboard. The pasteboard is the
area that surrounds the window itself in the Layout editor. In Figure 192, for exam-
ple, the pasteboard is gray.

Clicking the Reset button in the Control Selection area resets the colors to the OS’s
default colors.

Control
Hierarchy
Features

If you duplicate a child control and leave the duplicate within the parent, then it is
automatically a child. However, if you move the duplicate outside the parent, it is
no longer a child. A control must be fully enclosed by the parent to be considered a
child.

In Figure 194 the bottom control was duplicated from the top one, but has been
moved out of the TabPanel. It is no longer a child.

Figure 194. A child and an ‘unrelated’ control.

If you move the bottom TextField back within the TabPanel, it becomes a child of
the TabPanel once again.

Moving a parent control moves its child controls as well. In Figure 195, the
TabPanel shown in Figure 194 was moved down. It takes the top TextField with it,
but leaves the bottom one orphaned.
187REALbasic User’s Guide

Building a User Interface
Figure 195. Moving a parent control.

n Deleting a parent control deletes all child controls.

n Hiding a parent hides all child controls, but retains the previous visibility status of
all children.

n Showing a parent control shows only the child controls whose visibility is set.

n Disabling a parent control disables all its child controls, but retains the previous
visibility status of all children. In the IDE, disabling a container visually disables all
the child controls, but does not update the Enabled property.

In Figure 197, a disabled GroupBox in which two RadioButtons as children is
shown in the IDE. The top GroupBox is enabled and the bottom GroupBox is
disabled.
188 REALbasic User’s Guide

Building a User Interface
Figure 196. A GroupBox disabling its children.

When the GroupBox is disabled, all of its children are disabled.

Enabling a parent control enables only the child controls whose Enabled property is
set. In Figure 197, only the bottom row of child controls have the Enabled property
set. When the GroupBox is enabled, the top row of controls remains disabled.

Figure 197. A enabled GroupBox control.

If this behavior is not desirable, you can break the control hierarchy by setting the
Parent property of any child control to Nil in the Open event of the window. You
can also break the control hierarchy by moving the child control in back of the
parent control in the tab order. The enclosed control with then behave
independently of it former “parent” in the built application.

Adding Menus and Menu Items
REAL Studio has a built-in Menu editor that makes adding menubars, menus, and
menu items to your project easy. The Desktop Application template includes a
menubar that is used as the default menubar for the entire application. You can

Enabled GroupBox

Disabled GroupBox
189REALbasic User’s Guide

Building a User Interface
accept the default or create other menubars that are used for certain windows. In
this case, you can assign a menubar to a window.

The Default
Menubar

The default menubar for a Desktop Application, Menubar1, includes File and Edit
menus and the standard File and Edit menu items. The File menu has one menu
item, Exit (on Windows) or Quit (on Macintosh and Linux). The properties of the
Quit/Exit menu item are supplied, so that the menu item works automatically. You
don’t need to modify or add to the menu item’s properties in order to enable it.

Figure 198. The Quit Menu item’s Properties (Linux).

The menu item’s text is specified via a constant of the App class, as is the keyboard
shortcut. The menu item is subclassed from the QuitMenuItem class rather than the
MenuItem class. This means that it will automatically call the Quit method and
quit the application when it is called.

Similarly, the Edit menu is populated with Undo, Cut, Copy, Paste, Delete, and
Select All menu items.
190 REALbasic User’s Guide

Building a User Interface
Figure 199. The default Edit Menu (Macintosh).

The Cut, Copy, Paste, and Select All menu items work automatically with
TextFields and TextAreas. To take advantage of the built-in functionality, you
should not rename the automatic menu items. You do not need to add code to use
the keyboard equivalents or accelerators (Windows and Linux) or change any other
defaults.

Figure 200. The Cut menu item’s properties.

In Figure 200, the “t” is defined as the accelerator key and Ctrl+X (Command-X on
Macintosh) is defined as the keyboard equivalent.
191REALbasic User’s Guide

Building a User Interface
Adding
Menubars

When you first create a Desktop Application project, the project includes one
window and one menubar, named MenuBar1. This is the application’s default
menubar. By default, it is used for your entire application. However, you can add
additional menubars to your project and associate a menubar with a window. On
Linux and Windows, each window has its own menubar, so each window’s menubar
is always used for that window. On Macintosh, when a window becomes active, the
window’s menubar replaces the current menubar.

To add an additional menubar to your project, do this:

1 If it is not already displayed, click the Project tab to view the Project Editor.

2 Click the Add Menu Bar button or choose Project . Add . Menu Bar.
A new menubar appears in the Project Editor, named MenuBar2.

3 Follow the steps in the following section, “Adding Menus” on page 193 to
add menus and menu items to the menubar.

4 To assign a menubar to a window, use the window’s Properties pane to set
the window’s MenuBar property to the name of the menubar.
The window’s MenuBar property is listed in the Appearance group in the Properties
pane. All the menubars that belong to the project appear in this pop-up menu.

Figure 201. Changing a window’s menubar.

5 (Optional) To change the default global menubar, set the App class’s
MenuBar property to the desired menubar.
192 REALbasic User’s Guide

Building a User Interface
Figure 202. Changing the default global menubar after adding a second menubar.

On Windows MDI applications, the global menubar is used as the enclosing frame’s
menubar.

Adding Menus There are four steps for implementing a menu and its items. These steps are the
same for the default global menubar and any additional menubars that you add to
the project.

n Adding the menu to a menubar using the Menu Editor,

n Adding the menu’s items using the Menu Editor,

n Enabling the menu item. A disabled menu item is grayed out and is not selectable.

n Adding a menu handler. A menu handler is the method that tells REAL Studio
what to do when the user chooses the (enabled) menu item. An enabled menu item
without a menu handler does nothing.

There are two ways to enable a menu item. If the menu item should be enabled all
the time, you should select the menu item’s AutoEnable property in the menu
item’s Properties pane (see Figure 200 on page 191). The AutoEnable property is
selected by default. When you add the menu handler, the menu item becomes
functional. For example, you might want to leave the AutoEnable property selected
for the New menu item in the File menu which creates a new document in the
application.

If the menu item should not be enabled all the time, deselect the AutoEnable
property. In this case, the menu item is disabled by default. You need to tell REAL
Studio when to enable it. For example, you might have an Export menu item that
should be enabled only if the user has selected an item to export.
193REALbasic User’s Guide

Building a User Interface
When AutoEnable is False, the menu item is disabled until the user attempts to
pull down the menu containing the item. At that moment, you can decide if
conditions are right for the menu item to be enabled. For example, a “Save” menu
item would need to check that the document has never been saved or that changes
have been made to the document since the last save operation. For information
about enabling menu items, see the section, “Enabling Menu Items” on page 360.

For information about creating a menu handler, see the section, “Adding Code To a
Menu Handler” on page 359.

Note You can also add or remove menu items via code. For more information, see the
entry for the MenuItem class in the Language Reference.

Desktop Applications normally have a File menu with a Exit (Quit on Macintosh)
menu item. You can remove the Edit menu only if your application has no controls
that could be edited by the Edit menu items.

By default, the Menu Editor previews the menubar and menus for the platform on
which the REAL Studio IDE is running. You can change the preview to another
platform by clicking one of the Preview Mode buttons in the Menu Editor toolbar.

Figure 203. The Preview Mode buttons (Linux selected).

To add a menu to a menubar, do this:

1 If it is not already displayed, click the Project tab.

2 Double-click on a Menubar to open its Menu Editor.
The Menu Editor appears.

Figure 204. The Menu Editor.
194 REALbasic User’s Guide

Building a User Interface
3 Click the Add Menu button or choose Project . Add . Menu.
A new menu is added to the menubar as the last menu, or, if a menu is selected, to
the right of the selected menu. Its properties are shown in the Properties pane.

Figure 205. The Menu Editor after adding a menu.

4 (Optional) If the new menu does not appear in the desired position in the
menubar, drag it horizontally to its new position.
By default, the new menu is added to the right of the existing menu bar menus.

5 In the Properties pane for the new menu, enter the Name of the menu and
the Text that will appear in the menubar.

If you enter the Text property first and then press Return, REAL Studio will
suggest a name.

Figure 206 shows a new menu and its properties in the Properties pane.

Table 1: Properties of a MenuItem.

Name Description

Name The internal name of the Menu used to identify it in programming code.

Super The class of object the Menu control is based on. This will normally be
MenuItem. You can also use PrefsMenuItem, AppleMenuItem, or
QuitMenuItem.

Text The text that will appear in the Menu bar. To designate a keyboard
accelerator for the menu place the “&” prior to the accelerator key. For
more information, see the section “Accelerator keys” on page 198.
195REALbasic User’s Guide

Building a User Interface
Figure 206. A new menu in the Menu Editor.

Adding a Help
Menu

Many applications have a Help menu that is the right-most menu in the applica-
tion. The Help menu may contain menu items that give the user access to an appli-
cation-specific help system. You can add a Help menu to your project.

To add a Help menu, do this:

1 Add a menu to the end of your menubar.

2 Set the Text property of the menu to Help.

Adding Menu
Items

The Menu Editor makes it easy to add menu items to your menus. You can specify
shortcut keys and accelerator keys via the IDE and also build submenus.

Keyboard
Shortcuts

You can assign keyboard shortcuts to menu items, but remember that the operating
system looks for a shortcut starting from the leftmost menu. That means that if you
assign the same keyboard shortcut to two different menu items, one of them won’t
work. There are also several specific keyboard shortcuts that are reserved for specific
functions. These are:

Table 2: Reserved Keyboard Shortcuts

Menu
Keys (Windows
and Linux)

Keys (Macintosh) Command

File Ctrl-N x-N New

File Ctrl-O x-O Open…

File Ctrl-W x-W Close

File Ctrl-S x-S Save

File Ctrl-P x-P Print…

File Ctrl-Q x-Q Quit
196 REALbasic User’s Guide

Building a User Interface
Windows has the following system-wide keyboard equivalents that you should be
aware of:

The MenuItem class has the following properties that you use to specify the
keyboard shortcut:

Edit Ctrl-Z x-Z Undo

Edit Ctrl-X x-X Cut

Edit Ctrl-C x-C Copy

Edit Ctrl-V x-V Paste

Edit Ctrl-A x-A Select All

Edit Esc x-period Terminate an operation

Edit Ctrl-M x-M Minimize

Table 3: Windows keyboard equivalents.

Key Combination Description

Alt+Esc Switches to the next application.

Alt+F4 Closes an application or window.

Alt+hyphen Opens the window menu for a document window.

Alt+Print Screen Copies an image in the active window onto the Clipboard.

Alt+Spacebar Opens the window menu for the application’s main window.

Alt+Tab Switches to the next application.

Ctrl+Esc Switches to the Start menu.

Ctrl+F4 Closes the active group or document window.

F1 Starts the application’s Help file, if it exists.

Print Screen Copies an image of the screen onto the Clipboard

Shift+Alt+Tab Switches to the previous application. The user holds down
both Shift and Alt while pressing Tab.

Table 4: Properties for specifying a keyboard shortcut.

Property Data Type Description

Key String The key that the user presses to trigger the menu
item’s event handler. Enter a single uppercase letter
or the name of a non-printable key, as described
below. It is pressed in combination with one or more
modifier keys, specified with the other properties.

Table 2: Reserved Keyboard Shortcuts (Continued)

Menu
Keys (Windows
and Linux)

Keys (Macintosh) Command
197REALbasic User’s Guide

Building a User Interface
For example, to specify the keyboard shortcut Ctrl+H, enter “H” as the Key
property and select the MenuModifier property. To specify Shift+Ctrl+H, you
would select both the MenuModifier and AlternateMenuModifier properties. The
keyboard shortcut Alt+Ctrl+H requires the PCAlt and MenuModifier key
properties.

When you make your selections, the keyboard equivalent is shown to the right of
the MenuItem’s text in the Menu Editor.

You can also specify non-printable keys. The following choices are available: F1 to
F15, Tab, Enter, Space, Del (Delete), Return, Bksp (Backspace), Esc, Clear, PageUp,
PageDown, Left, Right, Up, Down, Help, and Ins (Insert). When you specify a non-
printable key in the IDE, simply enter its name from this list into the Key property
area and select the desired modifier key by selecting its checkbox.

Accelerator
keys

The Windows and Linux platforms also have the concept of keyboard accelerators.
In addition to the keyboard equivalent, which work on all platforms, you can also
add a keyboard accelerator for each menu and menu item. When you designate a key
as the keyboard accelerator, it is underlined in the menu name or menu item. The
user can display the menu or invoke the menu item by holding down Alt and
pressing the accelerator key. With a comprehensive system of accelerators, a user can
use the menu system without using the mouse at all.

To designate the accelerator key, precede the letter by an ampersand (“&”) in the
menu or Menuitem’s Text property. For example, if you are creating a menu named
“Actions” and you want to make the keyboard accelerator the “a’, you would enter
“&Actions” as the menu’s Text property. To make the “t” the accelerator key, enter

MenuModifier Boolean If True, the user must hold down the Ctrl key
(Windows and Linux) or Command key (Macintosh)
when pressing the Key key. When a value is entered
for the Key property, this property is set to True by
default.

AlternateMe-
nuModifier

Boolean If True, the user must hold down the Shift key when
pressing the Key key.

PCAltKey Boolean If True, the user must hold down the Alt key when
pressing the Key key. This property is for Windows
and Linux only.

MacOptionKey Boolean If True, the user must hold down the Option key
when pressing the Key key. This is a Macintosh-only
property.

MacControlKey Boolean If True, the user must hold down the Control key
when pressing the Key key. This is a Macintosh-only
property.

Table 4: Properties for specifying a keyboard shortcut.

Property Data Type Description
198 REALbasic User’s Guide

Building a User Interface
“Ac&tions”. Keep in mind that accelerators are not shown and do not work on
Macintosh.

To add a menu item to a menu, do this:

1 In the Menu Editor, select the menu you wish to add a menu item to by
clicking on it.

2 Click the Add Menu Item button or choose Project . Add . Menu Item.
A new menu item is added to the selected menu and its properties are shown in the
Properties pane.

Figure 207. A new menu item added to the menu.

3 In the Properties pane, enter the Text property for the menu item and press
Enter.
To create a keyboard accelerator for Windows and Linux, precede the accelerator key
with the “&” symbol.
The Menu Editor will supply a default Name. If you wish, you can replace the sug-
gested Name with a name of your own.

4 If desired, add a keyboard shortcut by assigning a letter (or the name of a
non-printable key) to the Key property and select at least one of the
modifier key properties listed in Table 4 on page 197.

5 If desired, disable the AutoEnable property if you need to enable the menu
item only under certain conditions.

Figure 208 on page 200 shows a Page Break menu item added to the Special menu
with the Keyboard equivalent Shift-Command-B (Shift-Ctrl-B on Windows and
Linux).
199REALbasic User’s Guide

Building a User Interface
Figure 208. A new menu item in the Special menu.

NOTE: Although the Menu Editor allows you to use lowercase characters as keyboard shortcuts,
only uppercase characters should be used.

Adding a
Submenu

Submenus are menu items that display an additional menu to their right. The menu
item itself is not selectable. It acts only as a title for the submenu.

To add a submenu to an existing menu item, do this:

1 Click on the menu item in the Menu Editor to select it.

2 In the Properties pane, place a checkmark in the Submenu property.
The Menu Editor adds an arrow to the right of the menu item to indicate that it is
the parent of a submenu.

Figure 209. A menu item marked as the parent of a submenu.
200 REALbasic User’s Guide

Building a User Interface
3 Click the Add Menu Item button or choose Project . Add . Menu Item.
In the Menu Editor, an item is added to the submenu menu item you selected in
step 1.

Figure 210. A menu item added to the Special . Import menu item.

4 In the Properties pane, enter the Text for the submenu Item and press
Enter.

5 To add an additional submenu item to this submenu, select this submenu
item and click the Add Menu Item button in the Menu Editor toolbar.
In the Menu Editor, REAL Studio adds the new submenu item to the current sub-
menu.

6 Use the Properties pane to enter the Text of this submenu item and press
Enter.
REAL Studio suggests a default name for the new submenu item. If you wish, you
can change it.
201REALbasic User’s Guide

Building a User Interface
Figure 211. A submenu with two submenu items.

If you wish, you can continue to add a submenu to an existing submenu, creating a
three-level hierarchical menu system. However, submenus can be difficult to navi-
gate for the new computer user. They also hide menu items from view. If a user
scans through the menu items looking for a particular menu item, he may not look
at the submenus. Consider the audience for your application before using submenus.
If many of your users will be new computer users, consider displaying a dialog box
to choose the functions you could put in a submenu.

Adding a
Menu Item to
the Mac OS X
Apple and
Application
Menus

Mac OS X applications add a new menu between the Apple menu and the standard
File menu. It automatically takes on the name of the application. When you create a
standalone Mac OS X application, the menu’s name is the name of the Macintosh
version of the application that you entered in the App class’s Properties pane. (see
Figure 506 on page 700).

Although the Application menu appears in the Menu Editor when you use the Mac
OS X preview, you cannot add menu items directly to it or to the Apple menu.
Instead, you use two special MenuItem classes to install menu items onto those
menus, PrefsMenuItem and AppleMenuItem. Use the PrefsMenuItem class to
manage your Preferences menu item.

For your preferences menu item, put the menu item where you want it to appear
under Windows and Linux and set its Super class to PrefsMenuItem. A MenuItem
based on the PrefsMenuItem class will be moved automatically to the Application
menu for the Mac OS X build.

According to Apple’s Mac OS X user interface guidelines, you should use x-,
(Command-comma) as the keyboard shortcut for an application’s Preferences menu
item.
202 REALbasic User’s Guide

Building a User Interface
Similarly, use the AppleMenuItem class for any menu items that should appear in
the application’s menu on Mac OS X. Items subclassed from AppleMenuItem will
move to the application’s menu in the Mac OS X build.

In theory, you could also base a MenuItem on the QuitMenuItem class. MenuItems
that are based on QuitMenuItem automatically call the Quit method and quit the
application. Since a Quit MenuItem is included in the File menu by default, you are
not required to add such an item to your project.

The Exit (or
Quit) menu
item

The QuitMenuItem class is intended only for the Quit (or Exit) menu items and
causes the menu item to move to the application’s menu for Mac OS X builds. Its
default Text and Key properties use constants rather than text literals.

Figure 212. The Quit menuitem’s properties.

Each constant is defined in the App class’s Code Editor.

Figure 213. The menu item constants in the App class.
203REALbasic User’s Guide

Building a User Interface
The kFileQuit constant’s Text is defined as “Quit” by the line:

The interior of the table has one row, which redefines the Text for the Windows
platform. If the platform is Windows, then the Text is “Edit.”

The keyboard shortcut for this menu item is specified by the kFileQuitShortcut
constant of the App class.

Figure 214. The kFileQuitShortcut constant.

For Macintosh, the shortcut is “Cmd+Q”; for Linux, it’s “Ctrl+Q.” For Windows,
no shortcut is defined. This is indicated by the blank default value field in the
constant definition area.

The use of constants for this purpose is discussed in the section “Using Constants to
Localize your Application” on page 378.

Moving
Menus and
Menu Items

A menu item can be moved to a new position in the menu by dragging the menu
item. You can only move a menu item to another position on the same menu. If you
need to move the menu item to another menu, you have to delete it and recreate it
on the other menu.

To move a menu item, do this:

1 Click on the menu item you want to move to select it.

2 Drag the menu item towards the position on the menu where you want it.

3 When the menu item is in the desired position, release the mouse button.

Const kFileQuit ="&Quit"
204 REALbasic User’s Guide

Building a User Interface
You can also move menus within the menu bar. In a similar fashion, drag a menu in
the menu bar and move it to the left or right. Drop the menu when it is between the
desired menus.

Converting a
Menu Item to
a Menu

You can also convert a menu item to a menu. To do so, select the menu item and
then click the Convert To Menu button in the Menu Editor toolbar. The menu item
is then removed from its menu and appears in the menubar. From there you can
drag it to another position in the menu bar if you wish.

Removing
Menu Items

To remove a menu item from a menu, do this:

1 In the Menu Editor, click on the menu item to select it.

2 Press the Delete key or choose Edit . Delete.

Adding A
Menu Item
Separator

Menu item separators are lines that appear in between menu items to logically
group items together. To add a menu item separator, simply select a menu item and
click the Add Separator button in the Menu Editor toolbar or choose the
Project . Add . Separator command. The separator will appear just below the
selected menu item. If you wish, you can drag it vertically to a new location.

Creating
MenuItems on
the Fly

In certain cases, you cannot specify the menu items that belong in a menu in
advance. They may change depending on the context in which the application is
used or on the computer environment in which the application is running.

A common example of this is the Font menu that is normally included in any appli-
cation that supports styled text. The programmer has no way of knowing in advance
which fonts happen to be installed on the user’s computer. The application must
read the user’s fonts and build the Font menu from that information.
The process is similar to creating an array of controls. A menuitem that can act as a
template must already exist. This menu item will be “cloned.” You can then change
the clone’s properties such as the Text, keyboard shortcut, etc.

The initial menuitem must have a value in its Index property in order to be used as
a template. Assign a zero to the Index property of the menuitem. This signifies that
it is the first element of an arrary.

You begin by creating the Menu normally. You then create a menuitm, name it,
and set its Index property to zero. It doesn’t matter what its Text property is.
Figure 215 shows this menuitem after it has been created.
205REALbasic User’s Guide

Building a User Interface
Figure 215. The initial Font menu item.

You then must write code to populate the array with the names of the fonts installed
on the user’s computer. If we assume that fonts won’t be added or deleted while the
application is running, we can build the Font menu’s menuitems when the
application starts up.To do this, place the code in the App class’s Open event
handler. This runs when the application starts up. The App class that is added to
your project by default is the place for this.

The following code populates the Font menu when the application opens. It uses the
built-in Font function which returns the name of the ith font on the user’s
computer. It assumes that the Font menu item that was added manually is named
FontItem and has the Index of zero.

That builds the Font menu on the user’s computer. Next, the menuitems must be
enabled or else they will be dimmed.

Dim m as MenuItem
Dim nFonts as Integer

nFonts=FontCount-1
//build the font menu
FontItem(0).text=Font(0) //name the first Font menuitem
For i as Integer = 1 to nFonts //loop through the remaining fonts
m=New FontItem //create new menu item
m.Text=Font(i) //obtain name of ith font
Next
206 REALbasic User’s Guide

Building a User Interface
You can add code for the EnableMenuItems event handler for the dynamic
menuitems, such as:

If you wish to be able to programmatically remove menu items you have created
dynamically, you need to store the reference that was returned when you created the
menu item. You can then use this reference to remove the menu item by calling the
Close method. Suppose you are storing references to the menu items in a module
property array called “WindowRefs.” You can then remove a particular dynamically
created menu item (the item stored in the fourth array element in this case) using
this syntax:

There is another approach to this problem. It uses a custom MenuItem class. When
you create dynamic menus using this approach, you actually create a custom class
based on the MenuItem class and add each menu item using this subclass. Since this
technique does not rely on the Menu Editor, it will be covered in the chapter on
events and objects.

For more information on this technique, see the section “Creating New Menu Items
On The Fly” on page 362.

Importing and
Exporting
Menus

Menubars can be exported to the desktop and imported into other projects. When
you export a menubar, only the menubar is exported, not the menu items’ menu
handlers.

To export a menubar, do this:

1 In the IDE, click the tab of the menubar you want to export or, if the
menubar is not open, click on it in the Project Editor.

2 Choose File . Export MenubarName, where MenubarName is the name of
the menubar you have selected in the previous step.
A save-file dialog box appears.

3 Navigate to the desired directory, enter a filename, and click Save.
REAL Studio saves the menubar as a .rbm file. Its desktop icon looks like this:

Dim nFonts as Integer = FontCount-1
For i as integer = 0 to nFonts

FontItem(i).Enabled=True
Next

Window Refs(4).Close
207REALbasic User’s Guide

Building a User Interface
Figure 216. An exported menubar.

To import a menubar, do this:

1 From any IDE editor, choose File . Import.
A standard open-file dialog box appears.

2 Navigate to the directory that contains the exported menubar, select it,
and click Import.
REAL Studio adds the imported menubar to the Project Editor. It uses the name it
had in the project from which it was exported.

User Interface Guidelines
The quality of your application’s interface will determine how successful your user
will be in using it. It’s absolutely critical that your users find the interface intuitive.
Studies have shown that if a user can’t accomplish something within the first 15
minutes of using an application, he will give up in frustration. Beyond simply being
intuitive, the more polished an application’s interface is, the more professional it
will appear to the user. Remember that without realizing it, your users will be com-
paring your application’s interface to all of the other applications they have used.

Each platform that REAL Studio supports has its own conventions. User interface
guidelines are available from the following sources:

n Windows: Microsoft’s User Interface guidelines at:

http://msdn.microsoft.com/en-us/library/aa894348.aspx

n Macintosh: Apple Human Interface guidelines:
http://developer.apple.com/documentation/UserExperience/Conceptual/AppleHIG
uidelines/XHIGIntro/XHIGIntro.html

n Linux KDE Desktop: KDE user interface guidelines:
http://developer.kde.org/documentation/design/ui/

n Linux Gnome Desktop: Gnome user interface guidelines:
http://library.gnome.org/devel/hig-book/stable/

KDE and Gnome are the most popular Linux desktops and are used by default in
several major Linux distributions. However, there are others. Linux supports a
greater degree of desktop customization than Windows and Macintosh.

n REAL Studio’s Interface Assistant™ helps you create a nice interface by making it
easy to align controls with other controls. For example, when you drag a control
208 REALbasic User’s Guide

Building a User Interface
near the edge of the window, REAL Studio displays an alignment line to let you
know where to stop. For the left, right and bottom edges, it stops at 20 pixels and
for the top edge, it stops at 14 pixels. When dragging a control towards another
control, REAL Studio displays an alignment line at 12 pixels (the recommended
distance between controls).

But there is more to a professional, polished interface than simply aligning controls.
We all think we know how to create a nice interface because we have used lots of
applications. But using an interface is a lot different from designing on.
209REALbasic User’s Guide

Building a User Interface
210 REALbasic User’s Guide

CHAPTER 4 BASIC Programming
Concepts

Programming is all about getting the computer to do what you want it to do. The
key is knowing how give the computer instructions in a way it will understand.
That’s where programming languages come in. There are many different program-
ming languages that are designed to make the communication easier in different sit-
uations.

In this chapter you will learn about the BASIC programming language, how it is
different in REAL Studio, and the fundamentals of programming.

Contents

n Data Types

n Storing Values in Properties, Variables, and Constants

n Executing Instructions with Methods

n Executing Instructions Repeatedly with Loops

n Decision Making
211REALbasic User’s Guide

BASIC Programming Concepts
BASIC versus REAL Studio
The BASIC language was created in the 1960’s for the purpose of teaching people
programming. Most of what made other languages difficult to master was removed
from BASIC to make learning it easier. In fact, BASIC is an acronym that stands for
Beginners All-Purpose Symbolic Instruction Code.

For a long time BASIC was considered less powerful than other languages, but this
was mostly due to the way it was implemented rather than the language itself.
Spoken languages wouldn’t be considered to be very powerful if you could only
speak one word every 10 minutes. Computers actually only understand two things,
1 and 0. That’s it. That’s all they know. The rest of what a computer does all breaks
down to that fundamental concept. Every command you give your computer is
eventually translated into a series of instructions that consist only of 0’s and 1’s.
These 1’s and 0’s that computers understand are referred to as machine language.

Most versions of BASIC used an interpreter program to execute the code. This
means that each time a program ran, the BASIC interpreter had to turn the BASIC
code into machine language. Other languages had compilers which are special
programs that translate the programing language into machine language all at once.
This makes programs execute faster because the real-time interpretation is removed.

REAL Studio has a compiler built in to it. That means your code runs as fast as
possible. BASIC is a traditional interpreted programming language that starts with
the first line of programming code and continues until the last line. REAL Studio is
a modern, object-oriented version of BASIC. If you are new to programming that
might not mean much now but it will. REAL Studio takes the simplicity of the
BASIC language and adds the power of modern programming through its object-
oriented implementation and compiler. Also, most programming languages require
you to know quite a bit about how to communicate with the computer’s operating
system. REAL Studio abstracts you from all of that making it easier for you to learn
and easier to run your application on computers running operating systems that are
different from the one you created your application on.
212 REALbasic User’s Guide

BASIC Programming Concepts
Storing Values in Properties and Variables
When you need to store information so you can access it again even after you have
shut off your computer, you tell your computer to store the information in a docu-
ment. When a computer needs to store information temporarily, it is stored in the
computer’s memory. The computer’s memory is like a series of organized boxes.
Each box has a location in memory with an address that is used to locate it. These
locations are given names to make them easier to work with. Depending on how
these memory locations are used, they are called variables and properties.

What are
Properties?

The variables that store values that make up the description of an object — such as
a window — are called properties. The title of a window is stored in a property. The
width of the window is a property. When a window is opened, the values of these
properties are copied into memory. You can access them using their names. You can
get values from them and you can store new values in them. For example, if you
wanted the title of a window to change when the user clicks a button, you would set
the title property of the window to the new value.

Each property can hold a certain type of data. Some properties store text (like a
window title) while others store numbers (like the window’s width property). Later
in this chapter, you will learn how to assign values to properties and how to get the
values that are stored in properties.

Variables Sometimes you will need to store a value that isn’t related directly to an object like
a window or a button. In this case you use a variable. A variable is just like a prop-
erty but it isn’t directly related to any particular object. Later in this chapter, you
will learn how to create variables, assign values to them, and get values from them.

Data Types To make programming code execute faster and to provide powerful commands that
save you time when programming, computers have to be able to make certain
assumptions about the information you give them. For example, when you give a
computer a piece of information, the computer needs to know if it’s a number, a
string of characters, a date, etc. If you didn’t tell the computer what kind of data
you are giving it, it wouldn’t know whether you meant 1 plus 1 to be 2 or the string
“11”. In this example, telling the computer that you are giving it numbers will
result in 2. Telling it you are giving it simply a string of typed characters will result
in the string “11”. There are many data types that REAL Studio understands but
there are six data types that are by far the most common. They are String, Integer,
Single, Double, Boolean, and Color.

One important programming convention in REAL Studio is that you must tell
REAL Studio the data type of each variable and property that you create. It does not
“infer” the data type from the way you use your variables and properties.

String A String is just a series (or string) of characters. Basically any kind of information
can be stored as a string. “Jeannie”, “3/17/98”, “45.90” are all examples of strings.
213REALbasic User’s Guide

BASIC Programming Concepts
You might be thinking “Hey, those last two don’t look like strings” but they are.
When you place quotes around information in your code, you are telling REAL Stu-
dio to look at the data as just a string of characters and nothing more. The maxi-
mum length of a string is based only on available memory.

You can combine two strings with the addition symbol (+). For example, the
statement “Big” + “Dog” results in the string “BigDog”. That is really the extent of
the “mathematics” you can perform on strings. However, REAL Studio has many
built-in functions that make processing strings easy. For example, the Lowercase
function takes a string and converts all the characters to lowercase. The Trim
function trims off any leading and trailing whitespace characters.

When you create a string literal by enclosing the string with quote marks, a null
character automatically terminates the string, no matter where the null character
appears. For example, if the string literal begins with a null character, the string
will appear to be empty. If you may have unprintable or null characters in a string
literal, you should filter them out before executing the line of code.

Integer An integer is a whole number. It cannot accept a decimal or fractional value. REAL
Studio offers both signed and unsigned integer data types that use one, two, four, or
eight bytes of memory. The more bytes that are used, the larger the value that can
be stored. A Signed integer can be negative, zero, or positive, while an Unsigned
integer can only be zero or positive. The following table summaries these data types.

REAL Studio’s Integer data type is a signed integer that uses the word length for
the target platform. Currently this is four bytes on all supported platforms.

Because integers are numbers, you can perform mathematical calculations on them.
Unlike strings, integers do not have quotes around them in your code.

Unsigned and signed integer operations, including comparisons, promote
themselves to 64-bit signed integers when performing the operation. This fixes the
problem where an unsigned 32-bit integer compared with a signed 32-bit integer
would produce the wrong result.

Table 5. Integer data types in REAL Studio.

Data Type
Number
of Bytes

Range

Int8 1 -128 to 127

Int16 2 -32,768 to 32,767

Int32 or Integer 4 -2,147,483,648 to 2,147,483,647

Int64 8 -263 to 263-1

UInt8 or Byte 1 0 to 255

UInt16 2 0 to 65535

UInt32 4 0 to 4,294,967,295

UInt64 8 0 to 264-1
214 REALbasic User’s Guide

BASIC Programming Concepts
Single A Single is a number that can contain a decimal value. The range of a Single is
shown in Table 6. In other languages, REAL Studio’s Single may be referred to as a
single precision real number. Because Singles are numbers, you can perform mathe-
matical calculations on them. Single numbers use 4 bytes of memory.

Double A Double is a number that can contain a decimal value. The range of a Double is
shown in Table 6. In other languages, REAL Studio’s Double may be referred to as a
double precision real number. Because Doubles are numbers, you can perform math-
ematical calculations on them. Doubles use 8 bytes of memory. Since Doubles use
more decimal places to represent a number, you would want to use Doubles rather
than Singles if the extra precision is important in your calculations. Calculations on
Singles are generally faster than Doubles, but the difference may not be meaningful
on modern computers.

Table 6 gives the upper and lower limits of integers, singles, and doubles:

Currency This is a 64-bit (8-byte) fixed-point number format that holds 15 digits to the left
of the decimal point and 4 digits to the right. It is scaled by 10,000 to give 4 digits
to the right of the decimal point. It is always accurate to four decimal places. It is
useful for calculations involving money and for calculations where accuracy is very
important. It is compatible with the Currency data type offered in some versions of
Visual Basic.

Boolean A Boolean can take on the values of either True or False. Boolean values are False by
default but can be set to True using REAL Studio’s True function and back to False
using the False function, or by any expression that returns a boolean value. Some of
the properties of objects in REAL Studio are boolean values. For example, most of
the controls have an Enabled property that is boolean.

Color A Color is an intrinsic data type that stores the value of a REAL Studio color. A
Color “value” actually consists of three numeric values that can be set using any of
the three popular color models, Red-Green-Blue, Hue-Saturation-Value, or Cyan-
Magenta-Yellow. Each value is stored as a byte. That means that each number can
take on 256 possible values.

Table 6. Minimum and Maximum values for Integers, Singles, and Doubles.

Data Type Smallest Value Largest Value

Integer (Int32) -2147483648 2147483647

Single 1.175494 e-38 3.402823 e+38

Double 2.2250738585072013 e-308 1.7976931348623157 e+308
215REALbasic User’s Guide

BASIC Programming Concepts
A Color can also be set to a value via one of the three color functions that correspond
to the three color models. Table 7 summarizes your options.

For example, the following code assigns a color to the FillColor property of a
rectangle:

Rectangle1 is the name of a rectangle object in a window and FillColor is one of its
properties. The data type of FillColor is color, so it only takes values that correspond
to a color specification. If you tried to assign a value of a different data type, you
would get an error message.

You can also assign a color using the Red-Green-Blue model using the format:

where RR is the value of Red in hexadecimal, GG is the value of Green in
hexadecimal, and BB is the value of Blue in hexadecimal. Each value ranges from 00
to FF (FF is 255 in hexadecimal). The expression “&c” signals that the next six
characters make up a color value in hexadecimal.

For example, you can write an expression such as:

You can use any of the three color functions interchangably. After you assign a
color, you can read the value of any of its nine properties.

Variant A Variant is a special data type that can store the value of any data type, including
objects and arrays. The Variant’s Type method returns an integer that identifies the
data type that the variant is storing:

Table 7. REAL Studio functions for specifying a color.

Function Color Model Data type and range of Parameters

RGB Red-Green-Blue Integer (0-255)

HSV Hue-Saturation-Value Double (0-1)

CMY Cyan-Magenta-Yellow Double (0-1)

Rectangle1.FillColor=CMY(.35,.9,.6)

&cRRGGBB

Rectangle1.FillColor=&cFF594A

Result Description

0 Nil

2 Integer types of 32 bits or less, signed or unsigned.

3 Int64 or UInt64

4 Single

5 Double

6 Currency
216 REALbasic User’s Guide

BASIC Programming Concepts
If a variant stores an array, Type returns the result shown in the table logically
OR’ed with the data type of an array element. You can get the element type by
calling the ArrayElementType function.

Depending on the data type of the value stored by the Variant, you can use one of
the following properties to convert the value to another data type:

7 Date

8 String

9 Object

11 Boolean

16 Color

18 CString

19 WString

20 PString

21 CFStringRef

22 WindowPtr

23 OSType

26 Ptr

36 Structure

4096, logically
OR’ed with the
element type

Array

Name Description

BooleanValue Returns the value of the Variant as a Boolean.

ColorValue Returns the value of the Variant as a Color.

CStringValue Returns the value of the Variant as a CString.

CurrencyValue Returns the value of the Variant as a Currency.

DateValue Returns the value of the Variant as a Date.
When retrieving the string value of a date, the string is returned
in the SQL date-time format: YYYY-MM-DD HH:MM.

DoubleValue Returns the value of the Variant as a Double.

Int32Value Returns the value of the Variant as an Int32.

Int64Value Returns the value of the Variant as an Int64.

IntegerValue Returns the value of the Variant as an Integer.

ObjectValue Returns the value of the Variant as an Object.

OSTypeValue Returns the value of the Variant as an OSType.

PStringValue Returns the value of the Variant as a PString.

PtrValue Returns the value of the Variant as a Ptr.

Result Description
217REALbasic User’s Guide

BASIC Programming Concepts
Although you use a Date object to store date and date/time values, it is not a data
type. Technically, Date is a class. See the section “Declaring Objects” on page 227
for information on using the Date class.

Ptr A Ptr is a 4-byte pointer to a chunk of memory. You can pass a MemoryBlock object
via this data type and it will be treated as a pointer to the memory contained within
the MemoryBlock.

Delegate A Delegate is a pointer that enables you to refer to a method or function. It encapsu-
lates the memory address of a method in your code. It behaves as a class with a sin-
gle method, named Invoke, whose parameters and return value match the delegate’s
parameters and return type. The Invoke method calls the method the delegate
instance represents. The Delegate data type has an implicit conversion operator to
Ptr.

WindowPtr A WindowPtr is a 4-byte integer that is a synonym for the Handle property of a
Window. You can pass a Window object to this data type and it will be treated as a
pointer to the Window.

CString A CString is an ANSI C string, which is terminated with a Null character. There is
an implicit (automatic) conversion between the REAL Studio String data type and
the CString. When this is done, the Null character is automatically appended to the
CString.

WString A WString is an ANSI Wide C string, which is also terminated with a Null charac-
ter. There is also an implicit conversion between the REAL Studio String data type
and the WString. A Null character is automatically appended to the WString.

PString A PString is a Pascal string. It includes a one-byte length identifier in the first posi-
tion, followed by up to 255 characters. There is also an implicit conversion between
the REAL Studio String data type and the PString.

SingleValue Returns the value of the Variant as a Single.

StringValue Returns the value of the Variant as a String.
If the Variant holds a Date, it is converted to a SQLDateTime
format.

UInt32Value Returns the value of the Variant as an UInt32.

UInt64Value Returns the value of the Variant as an UInt64.

WindowPtrValue Returns the value of the Variant as a WindowPtr.

WStringValue Returns the value of the Variant as a WString.

Name Description
218 REALbasic User’s Guide

BASIC Programming Concepts
CFStringRef A CFStringRef is a Mac OS Core Foundation string object. There is also an implicit
conversion between the REAL Studio String data type and CFStringRef.

OSType The OSType is for passing OSType parameters to Mac OS and QuickTime for Win-
dows functions. If you pass a REAL Studio string of four characters via this data
type, it is automatically converted into a four char code Integer. Also, OSType does
an implicit type conversion to String when you assign an OSType to a String vari-
able.

Structures A structure is a compound data type. It consists of a list of fields, where each field
can have its own data type and each field is of fixed length. It is similar to Visual
Basic’s “user-defined types” and Visual Basic .net’s structures.

Structures can be created only in REAL Studio modules, while all the other data
types discussed in this section can be declared anywhere in REAL Studio. For
information on structures, see the section “Structures” on page 394 in the chapter
on Modules.

Other Data
Types

There are many other data types. You will learn about these in the next chapter.

Changing a
Value From
One Data
Type to
Another

There may be times when you need to change a value from one data type to another.
This is usually because you want to use the value with something that is designed to
work with a different data type. For example, you might want to include a number
in the title of a window. The title of a window is a string, not a number. Conse-
quently, if you try to assign a number to the title of a window, REAL Studio will
display an error message when you run your application. The error will tell you that
the two data types are not compatible (they are different). Since the window title is
a string, you will need to change the number into a string before you can assign it to
the window title.

Fortunately, REAL Studio has a built-in function called Str (which stands for
String) that can change a number into a string. See the Str function in the Language
Reference for more information. There is also a built-in function called Val (which is
short for Value) that changes strings into numbers. See the Val function in the
Language Reference for more information.

Assigning
Values to
Properties

The basic syntax for assigning a value is:

objectName.propertyName=value
219REALbasic User’s Guide

BASIC Programming Concepts
For example, if you have a PushButton named PushButton1, and you want to set its
Caption property to “OK”, you would use the following code:

You can read this as change PushButton1’s caption property to “OK”. This syntax is used
when you want a control in a window to change a property of a control in the same
window. This syntax is sometimes called dot syntax since the dot is used to indicate
that the property to the right of the dot belongs to the object to the left of the dot.

If you want a control to change a property of a control in another open window, you
must include the target window’s name (not its title) in the syntax. That syntax is:

For example, suppose you have two open windows whose names are Window1 and
Window2 respectively. You want a PushButton on Window1 to set the value of
PushButton1’s caption on Window2 to “OK”. The syntax looks like this:

If you didn’t specify the window, REAL Studio would assume you meant the
control called PushButton1 in the window that contains the object executing the
code. If you specify a window that is not open, REAL Studio will open the window
and make the change. If you have more than one copy of the window open that
contains the control you are trying to change, this syntax won’t work because you
won’t be able to tell REAL Studio which copy of the window you are referring to.
You will learn how to deal with this issue in the next chapter.

If a control is going to change a property belonging to its own window, the window
name is not required. The window name is implicit. For example, if you wanted a
PushButton to change its window’s title property to “Hello World” when the user
clicks it, you would use this syntax:

REAL Studio will understand that “Title” is a property of the window.

In some cases, properties are, in effect, grouped hierarchically. That is, one property
gives you access to properties and methods of another object. One example of this
occurs with the Canvas control. This control comes equipped with a set of drawing
tools that allow you to completely customize the appearance of the control. All the
drawing tools are accessible via the Graphics property of the Canvas control. For
example, the line;

PushButton1.Caption="OK"

windowName.objectName.propertyName=value

Window2.PushButton1.caption="OK"

Title="Hello World"

Canvas1.Graphics.DrawRect 0,0,100,50
220 REALbasic User’s Guide

BASIC Programming Concepts
draws a 100 x 50 rectangle starting at the 0,0 coordinates of Canvas1. DrawRect is
actually a method belonging to the Graphics class—not the Canvas class. The
Graphics property of the Canvas class allows you to access this method.

Using Class
Constants to
Assign a Value

In some cases you need to choose a value from a list of specific values. For example,
the Serial class has properties that specify the Baud rate, number of Stop bits, and
Parity for serial communications. The Baud rate should be chosen from the list of
possible values. The Language Reference gives the specific values that each of these
properties can accept. In each instance, it also gives class constants for those values
that are equivalent to the numeric values. Your code will be much more readable if
you use the class constants instead of the numeric values. For example, here are the
class constants for specifying the Baud rate.

To refer to a class constant, use the syntax:

For example, the expression Serial.Baud19200 returns the value of 10.

If you want to assign a baud rate of 57600 to the Serial control named Serial1, you
can write:

instead of

When you use the class constant, the line of code is much more readable. No one has
to go and look up what the 13 means.

Me and Self The REAL Studio language also has two very useful pronouns, Me and Self. Me refers
to the control that you are working with. For example, if you are trying to set the

Baud Rate Value Constant Baud Rate Value Constant

300 0 Baud300 9600 8 Baud9600

600 1 Baud600 14400 9 Baud14400

1200 2 Baud1200 19200 10 Baud19200

1800 3 Baud1800 28800 11 Baud28800

2400 4 Baud2400 38400 12 Baud38400

3600 5 Baud3600 57600 13 Baud57600

4800 6 Baud4800 115200 14 Baud115200

7200 7 Baud7200 230400 15 Baud230400

ClassName.ClassConstant

Serial1.Baud=Serial.Baud57600

Serial1.Baud=13
221REALbasic User’s Guide

BASIC Programming Concepts
Caption property of PushButton1 to “OK” in one of the control’s event handlers,
you could write either:

or

The advantage of using Me is that it makes your code generic. You could use it with
any other PushButton control and it would work without change.

The pronoun Self refers to the control’s parent object. For a control in a window, it
refers to the parent window. You can use it in an event handler for any control
within the window. For example, the lines:

and

and

are all equivalent. In the first example, the Name property of the window is used;
that is, the name of the window is FindDialog. In the second example, the Self
pronoun accomplishes the same thing without “hardcoding” the window’s name.
The last example takes advantage of the fact that the parent window is assumed
when you are coding within one of the window’s controls.

Me refers to the control that fired the current event. Outside an event handler, it
refers to the current object (Self).

Getting
Values From
Properties

You can get a value from a property in almost the same way you store values in
properties. The only difference is that the target of the value (where you want the
value of the property stored) goes on the left side of the equals sign and the object
and property names go on the right. For example, if you had a variable named X and
you wanted to assign PushButton1’s caption to it, the syntax would be:

And just as in setting properties, you can get the property of a control in another
window by including the window’s name. For example, if you want to assign the

PushButton1.Caption="OK"

Me.Caption="OK"

FindDialog.Title="Find"

Self.Title="Find"

Title="Find"

x=PushButton1.Caption
222 REALbasic User’s Guide

BASIC Programming Concepts
variable x to the Caption property of PushButton1 in Window2, you would use this
syntax:

And just like setting properties, if you include only the property name, REAL
Studio assumes you are referring to a property of the window that contains the
control that is executing the code. For example, if you have a PushButton called
PushButton1 and you want it to assign the window title to the variable x when it is
clicked, you would use this syntax:

Getting and
Setting
Values in
Variables

When you need to store a value that is not associated with an object (the way a prop-
erty is associated with a control or window), you use a variable. A variable is nothing
more than a location in memory that stores a value. Variables have names just like
properties do. However, you always have to define a variable and give it its name.
The name you give a variable should describe the purpose of the variable. Suppose
you want to calculate the age of a person in days from the year he was born. You
might have a variable called “Days” to keep track of that information. Variable
names can be any length but must begin with a letter and can contain only alphanu-
meric characters (A-Z, a-z, 0-9) or an underscore. A user-defined variable cannot
begin with an underscore. Variable names are case-insensitive so REAL Studio sees x
and X as the same variable.

You can store values in variables and get values from variables in the same way you
do with properties. To get a value from a variable, it must be on the right side of the
assignment operator (=). Suppose you want to set the caption of a PushButton to the
value in a variable called “ButtonTitle”.

The first thing you do is create the variable and give it a data type. Like the built-in
properties of objects, variables have data types. Before you can use a variable, its data
type must be made known using the Dim statement. Dim is short for Dimension,
which means to make space for the variable in the computer’s memory. You use the
Dim statement to declare the name and data type of the new variable. For that
reason, it is often called a declaration statement.

In this example, you’d use the statement:

This creates the variable “ButtonTitle” in memory and tells REAL Studio that it can
only store a string value. It can store one string, not several distinct strings.

After you’ve created it, you can give it a value and assign its value to another
variable or a property. For example, you can write:

x=Window2.PushButton1.Caption

x=Title

Dim ButtonTitle as String

ButtonTitle="Save"
223REALbasic User’s Guide

BASIC Programming Concepts
After it has a value, you can then assign its value to a property of an existing object.
That is, you can assign it to a property that is also of type String.

The example below accomplishes that:

Conversely, if you wanted to store the value of a property (like the PushButton’s
caption in the last example) in a variable, you would simply reverse the syntax:

In the example below, the variable i is dimensioned (or “dimmed”) as an integer:

If you have several variables of the same type, you can declare them all with one
Dim statement:

If you want to declare variables of different types, you can also declare them in one
Dim statement. For example, the following Dim statement is valid:

When you create a variable with the Dim statement you can also assign it a value.
You do so by following its data type with an equals sign and the value. For example,
the following are valid statements:

You can also mix variables with and without initial values, as in:

In this case, the variable a is declared as an integer but is not assigned a value. If you
examine the value of a, it will be zero. The variable b, on the other hand, gets the
value of 15.

Notice also that the following is valid:

This statement declares three integer variables and assigns all of them the value of
15. Although this is valid, you should be careful about assigning values to more
than one variable in a single Dim statement because you could easily lose track of
some of the variables.

PushButton1.Caption=ButtonTitle

Buttontitle=PushButton1.Caption

Dim i as Integer

Dim i,j,k as Integer

Dim Name,Address as String, ShoeSize as Single

Dim i as Integer =1
Dim Name as String = "Igor",Address as String = "15 Rue de Vallee"

Dim a as Integer, b as Integer = 15

Dim a,b,c as Integer = 15
224 REALbasic User’s Guide

BASIC Programming Concepts
When you assign initial values in a Dim statement you can either use literal values
(as shown in the previous examples), constants, or enumerations. You will learn
about constants in the section “Constants” on page 236 and enumerations in the
section “Adding an Enumeration to a Module” on page 397. A constant is like a
variable except that it is assigned its value when it is created and retains its value for
its life. An Enumeration holds a list of constant values.

You can use an Enumeration or a constant using the same syntax as you use for a
literal. For example, if you define the global constant “InvalidIndex” in a module as
the value -1, you can use it in a Dim statement like this:

Enumerations work the same way. Suppose you add a global Enumeration named
“SecurityLevel” in a module with values None, Minimum, Maximum, and Forced.
You can then use any of the enums in a declaration statement such as:

Just like properties, you can only assign values to variables that are compatible with
the variable’s data type. The last line of the following example generates an error
because the types don’t match:

In the example above x is a number but y is typed as a String. An error is generated
because you can’t add different data types together. When you try to compile a proj-
ect that contains this code, REAL Studio will stop the compilation process and
report that it has found a Type Mismatch Error. It will show you the line of code
that caused the error. You cannot compile the project until you fix such errors.

The Scope of
Variables

A variable that has been declared via the Dim statement exists in memory as long as
the particular method is running. It can be accessed only within the method in
which it was declared. When the method is finished, the variable is no longer
accessible and the memory that was used to store the value becomes available for
other uses. This means that another method in the application cannot access the
value of the variable.

For that reason, variables that are declared with the Dim statement in any method
are considered local variables. They exist only locally, inside the “neighborhood” of
the method in which they are declared. That is, the scope or access scope of the
variable is local.

Dim b as Integer = InvalidIndex

Dim testEnum as Integer = SecurityLevel.Maximum

Dim x,z as Integer
Dim y as String
x=1
y="1.75" //this is the string “1.75” not the number 1.75
z=x+y //error here
225REALbasic User’s Guide

BASIC Programming Concepts
A Dim statement can be placed anywhere in a method, as long as it precedes the
first usage of the variables that it dimensions. If you place a Dim statement inside
an If statement, its scope is limited to that If statement, not the entire method. For
example, you can write:

If you need a variable whose scope is greater than local, you need to create a property
of an object or a property in a module. Its scope should match the size of the
“neighborhood” that needs to read and/or write the value of the property. For
example, if the variable needs to be available to some of the controls in a window,
consider making it a property of the window. A property that you create can have
one of four possible levels of scope:

n Global: The property is accessible throughout the application. Global properties
can be created only in modules. A global property can be accessed by its name only
anywhere in the application. For more information, see the section “Scope of a
Module’s Items” on page 370.

n Public: The property is accessible throughout the application. Within the object
that owns the property, it is accessible by name only; outside the object, with the
syntax objectName.propertyName. For example, a Public property of a window named
Window1 would be referred to outside the window as Window1.PropertyName,
where PropertyName is its name. Inside Window1, it can be referred to by name
only: PropertyName.

n Protected: The property is accessible only within the object that owns it, by name
only. If you try to access the property outside the object that owns it, REAL Studio
will display an informative error message.

n Private: The property is accessible only within the object that owns it. Other
objects based on the owning object cannot access the property (This is not true of
Protected properties). If you try to access the property outside the object that owns
it, REAL Studio will display an informative error message.

Generally, you will want to choose a scope that is as narrow as possible. This
eliminates the possibility that some code outside the object that owns the property
might inadvertently read or set the value of the property. Making all properties

If x > 5 then
Dim y as Integer
y = 10

end if
//y goes out of scope here; the variable name y can now be reused.
//It is redeclared as a string in the following If statement
If x < 5 then

Dim y as String
y = "hello"

End if
226 REALbasic User’s Guide

BASIC Programming Concepts
global can create bugs that are hard to pin down. For more information about scope,
see the section “The Scope of a Property” on page 315.

Declaring
Objects

You already know about the data types Integer, Currency, String, Boolean, Single,
Double, and Color. But variables can also be declared as specific object types. For
example, REAL Studio has an object called Date that you use to store dates and
times.

You might think that REAL Studio should be storing a date in an ordinary variable,
but it actually makes sense to make it an object that has several properties.
Technically, “Date” is a REAL Studio class. You will learn more about classes in
Chapter 10.

When you want to use a Date variable, you start with the built-in class as a template
for your variable. A template comes with places to store properties of the object and,
sometimes, its own methods that perform operations related to the class of objects.

You then create an instance of the class for your use. The instance is the variable that
you refer to in your code, not the class itself.

For example, the Date class has separate properties for the Year, Month, and Day, as
well as Minute and Second. It has additional properties that format the date as a
ShortDate, AbbreviatedDate, or a LongDate.

When you create a new variable based on a class, you start with the same syntax as
you use for creating other types of variables. For example, the statement:

creates a new Date object. However, this statement does not create the instance of
the Date template for your use. For example, if you tried to set a property of the
variable, BirthDate, to a value, REAL Studio wouldn’t allow you to do it. For exam-
ple, Year is an Integer property of a Date object, but you can’t read or set it yet. For
example:

doesn’t work.

Before you can access or set any of the Date variable’s properties, you need to use the
New operator to create an instance of the Date object. In programming lingo,
creating an instance of an object is called instantiating the object.

The following two lines creates and instantiates a Date object:

Dim BirthDate as Date

Dim BirthDate as Date
BirthDate.Year=1996

Dim BirthDate as Date
BirthDate=New Date
227REALbasic User’s Guide

BASIC Programming Concepts
Now, you are ready to access or set any of the Date variable’s properties. For
example, you can use assignment statements to establish the value of the date.

If you were to access the ShortDate property of the BirthDate variable, it would now
be: “6/23/96” (using the US format for ShortDate).

There is a shortcut syntax for declaring and instantiating objects. You can place the
New operator in the Dim statement itself. Using this shortcut, you can rewrite this
example as:

This can also be done in one line of code using the Date class’s Set method. It takes
the Year, Month, and Day as integer parameters. That is:

is equivalent to the three separate assignment statements in the previous example.

An even more concise way of doing this is to do the assignment in the declaration
statement. That is, you can write:

This statement illustrates one of the Date class’s constructors. A constructor allows
you to instantiate the class and assign its value in one line of code. This constructor
takes three Integer parameters: Year, Month, and Day. For more information on
constructors, see the section “Constructors and Destructors” on page 569.

If you omit the instantiation step, the REAL Studio compiler will issue an error
message when you first try to read or set one of the object’s properties or run one of
its methods.

If you use the optional New operator in a Dim statement, then you cannot declare
more than one variable in that statement. For example, if you wrote:

Dim BirthDate as Date
BirthDate=New Date
BirthDate.Year=1996
BirthDate.Month=6
BirthDate.Day=23

Dim BirthDate as New Date
BirthDate.Year=1996
BirthDate.Month=6
BirthDate.Day=23

BirthDate.Set(1996,6,23)

Dim BirthDate as New Date(1996,6,23)

Dim n,m as New Date
228 REALbasic User’s Guide

BASIC Programming Concepts
the REAL Studio compiler would generate an error. Instead, you can use one Dim
statement to declare the variables and New statements to instantiate them sepa-
rately.

Your other option is to declare and instantiate the two objects separately:

Using Arrays An array is a special type of variable that contains several values of the same data
type. Each variable in the array is called an element of the array. To refer to a particu-
lar element, you use an index number.

The Dim statement also lets you create and type arrays. When you declare an array,
you specify the number of elements it has. Later on, you can change the number of
elements.

Creating
Arrays

You declare an array by specifying the index of the last element of the array. The
index that you specify in the Dim statement is actually one less than the number of
elements in the array because REAL Studio arrays always have an element zero. Such
an array is sometimes referred to as a zero-based array. If the first element of an array
is element 1, then it would be called a one-based array.

Since REAL Studio arrays are zero-based, the statement:

creates a string array with eleven elements.

The statement

creates a string array with one element, element zero. You can read and write to this
element just as with any element with a positive index.

In other words, you declare a variable as an array simply by adding the index of the
last element to the Dim statement. The index of the last element must be either a
number or a REAL Studio constant. REAL Studio does not accept variables in this
syntax.

If you don’t know the size of the array you need at the time you declare it, you can
declare it as a null array, i.e., an array with no elements. You do this by using an

Dim n,m as Date
n=New Date
m=New Date

Dim n as New Date
Dim m as New Date

Dim aNames (10) as String

Dim aNames (0) as String
229REALbasic User’s Guide

BASIC Programming Concepts
index of -1 in the Dim statement or leave empty parentheses. This means “an array
of no elements.” For example, the statements:

and

creates the array aNames with no elements. Later on, you can resize the array using
the ReDim statement or “grow” it element-by-element using the Append or Array
methods.

You can create multi-dimensional arrays in REAL Studio. For example, a
spreadsheet layout can be thought of as a two-dimensional array, rows by columns.

Each dimension is referred to by its own index. For example, the elements of an
array with two dimensions are referred to by one index for the rows and the other for
the columns. The first element in the upper-left corner is element 0,0.

You create a multi-dimensional array by specifying an index for each dimension. For
example, the statement:

creates a two-dimensional array with 3 rows and 11 columns.

You can use constants in Dim statements to set the size of an array. For example, the
following declaration refers to a global constant, nLanguages, that is defined in a
module:

In this example, “nLanguages” is the number of languages supported by the
application and is used in numerous places in the application. When it changes, you
only need to change its definition in the module.

For information on creating constants, see the section “Adding Constants to
Modules” on page 375.

Referring to
Array Elements

You refer to an element of an array by placing the desired element in parentheses.
For example, the statement:

places the string “Frank” in array element (1,1)

Dim aNames (-1) as String

Dim aNames () as String

Dim aNames (2,10) as String

Dim aControl(10,nLanguages) as String

aNames(1,1)="Frank"
230 REALbasic User’s Guide

BASIC Programming Concepts
Getting the
Index of the Last
Element

The Ubound function returns the index of the last element of a one-dimensional
array. For example, the expression UBound(aNames) returns this value. The number
of elements is one greater than this number, since the array has an element zero.

For multi-dimensional arrays, Ubound returns the index of the last element of the
dimension you specify, or, if you do not specify a dimension, it returns this value for
the first dimension. The first dimension is numbered 1. If you pass a -1, it returns
the number of dimensions in the array.

For example, the following example returns 5 in the variable i and 3 in the variable j.

You can also get the last element of an array using dot notation syntax. The
following code is equivalent.

Initializing
Arrays

After you have declared an array, you can assign initial values to the elements with
the Array function as well as individual assignment statements, such as shown
above. The Array function takes a list of values and assigns the values to the ele-
ments of the array, beginning with element zero. In other words, it provides the
same functionality as separate assignment statements for each element of the array.

For example, the following statements initialize the array using separate assignment
statements for each array element:

The following statements use the Array function to accomplish the same thing.
Note that you don’t have to declare the exact size of the array in the Dim statement.
The Array function will add elements to the array as needed.

Dim i,j as Integer
Dim aNames (5,3) as String
i=Ubound(aNames)
j=Ubound(aNames,2)

Dim i,j as Integer
Dim aNames (5,3) as String
i=aNames.Ubound
j=aNames.Ubound(2)

Dim aNames(2) as String
//using separate assignment statements
aNames(0)="Fred"
aNames(1)="Ginger"
aNames(2)="Stanley"

Dim aNames() as String
aNames=Array("Fred","Ginger","Stanley")
231REALbasic User’s Guide

BASIC Programming Concepts
If you declare the array as a fixed size but don’t specify as many values as elements,
The Array function will start with element zero and use as many elements as are
specified.

Array
Assignment

If you have two arrays of compatible data types, you can assign one array to the other
array. Simply use the assignment statement without the parentheses. Here is a sim-
ple example:

The last statement assigns the values of all three elements of aNames to the first
three elements of bNames. If bNames had fewer elements than aNames, then addi-
tional elements would first be added to bNames and the assignment of all the ele-
ments of aNames to bNames would be completed. For example, the following is
valid:

After the code runs, the bNames array has a fourth element for storing the value
“Woody”.

Resizing Arrays Several methods in the language resize arrays.

n Append: The Append method adds an element to the array, increasing its size by
one. You pass the value you want to add to the array when you call Append. For
example, the following statement:

adds an element to the array aNames and sets the value of this element to the string,
“Dave”.

Append works on one-dimensional arrays only.

n Insert: The Insert method creates an additional element and inserts it in the place
you specify. It takes two parameters, the index of the element to be inserted and the
value of the new element. For example:

Dim aNames(2),bNames(2) as String
aNames=Array("Fred","Ginger","Stanley")
bNames=aNames

Dim aNames(3),bNames(2) as String
aNames(0)="Fred"
aNames(1)="Ginger"
aNames(2)="Tommy"
aNames(3)="Woody"
bNames=aNames

aNames.Append "Dave"

aNames.Insert 9,"Hal"
232 REALbasic User’s Guide

BASIC Programming Concepts
After this statement runs, the value of aNames(9) would be “Hal”; the old
element(9) would be shifted up to element (10) and so forth. The size of the array
would be increased by one, as with Append.

Insert also works only on one-dimensional arrays.

n Remove: The Remove method deletes the element whose index you specify. For
example:

removes the element with index 9, decreasing the size of the array by one and
shifting the array elements after the removed element down by one. It also works on
one-dimensional arrays only.

n Redim: The Redim statement resizes an existing array. You pass the new values of
the array’s indexes but you don’t specify the data type, which is set by the initial
Dim statement. For example, the statement:

resizes the array aNames to 101 elements.

Redim works on both one- and multi-dimensional arrays. For multi-dimensional
arrays, you can only resize the existing dimensions; you cannot add or reduce the
number of dimensions themselves.

A difference between Dim and Redim is that Dim accepts only integers or con-
stants, while Redim accepts any expression that returns an integer. This includes,
for example, a user-written function that returns an integer value. Using this fea-
ture, you can dimension your arrays on-the-fly.

If you don’t know the size of the array you need at the time you declare it, you can
declare it as a null array, i.e., an array with no elements, and use the Redim
command to resize it later. If your program needs to load a list of names that the
user enters, you can wait to size the array until you know how many names the user
has entered. You can write a function to figure out what that number is and use it
with Redim or use the Append method to add the required elements to the array
one-by-one.

Converting to
and from an
Array to
Variables

Two functions enable you to take a take an array and break it up into separate vari-
ables and take a single string variable and convert it into an array.

n Split: The Split function takes a String variable and creates a one-dimensional array
by dividing the string up into elements. It uses a delimiter—a character or character
string that signals the end of one element and the start of the next element—to do
this task. By default, the delimiter is a space, but you can specify another delimiter.

aNames.Remove 9

Redim aNames (100)
233REALbasic User’s Guide

BASIC Programming Concepts
The Split function takes the string as its first parameter and the delimiter as the
second parameter.

Here is an example that divides up the contents of a string into array elements. It
specifies the comma as the delimiter.

After this call, the resulting array, aNames, will have three elements:

n Join: The Join function takes a one-dimensional array and creates a String variable
that contains all the elements in the array, separated by a delimiter character or
character string. By default, the delimiter character is a space, but you can specify
your own delimiter by passing the delimiter as the second parameter. The delimiter
is passes as the second parameter.

For example, if you have an array that contains elements that store a person’s first
and last names and phone number, the Join function will create one String variable
that contains all the information. Here is an example:

In this example, the call to the Join function specifies the name of the array and the
comma as the delimiter. If the call were:

the result would be “Anthony Aardvark (406) 737-8946”.

Dictionaries A dictionary is a REAL Studio object that is made up of a list of key-value pairs. That
is, each value is paired with an identifying key. The interesting feature of Dictionar-
ies is that both the key and the value are variants. This means that a dictionary can
store a mixture of data types—and that the key doesn’t have to simply be an integer.
You can look up a value in a dictionary by specifying either its key or its sequential
position in the dictionary. For example, the Language Reference entry for Dictionary
has an interesting example in which colors are used as keys.

Dim aNames(-1) as String //resize using the Split method
Dim s as String
s="Juliet,Taylor,Casting"
aNames=Split(s,",")

aNames(0)="Juliet"
aNames(1)="Taylor"
aNames(2)="Casting"

Dim aNames(2) as String
Dim s as String
aNames(0)="Anthony"
aNames(1)="Aardvark"
aNames(2)="(406) 737-8946"
s=Join(aNames,",") //creates "Anthony,Aardvark,(406) 737-8946"

s=Join(aNames)
234 REALbasic User’s Guide

BASIC Programming Concepts
Pairs The Pair class is similar to the Dictionary. It has two properties: Left and Right.
Thus, each Pair instance consists of a key-value pair. As it the case with the
Dictionary, the values in the pair are variants. You use the “:” operator to assign the
Left and Right values when the Pair is declared, e.g.,

This assigns “Telephone Number” to the Left property of the pair and the value of
the number to the Right property.

It also can store a linked list of pairs when it is passed a list of items, such as:

The first pair consists of the pair “1” (Left property) and the second pair object
(Right property); the next pair consists of the “2” and the third pair, and so forth.

Mathematical
Operators

Performing mathematical calculations is a very common task in programming.
REAL Studio supports all of the common mathematical operations.

There are also many built-in mathematical functions. See the Language Reference for
more information.

REAL Studio supports standard mathematical precedence. This means that
equations surrounded by parentheses are handled first. REAL Studio will begin with
the set of parentheses that is embedded inside the most other sets of parentheses.
Next, exponentiation is performed, followed by any multiplication or division from
left to right. Finally any addition or subtraction is performed. In the example below,
the three expressions return different results because of the placement of
parentheses:

Dim p as Pair = "Telephone Number" : "(406) 737-8946"

Dim p as Pair = 1 : 2 : 3 : 4 : 5

Operation Performed Operator Example

Addition + 2 + 3 = 5

Subtraction - 3 - 2 = 1

Multiplication * 3 * 2 = 6

Floating Point Division / 6 / 4 = 1.5

Integer Division \ 6 \ 4 = 1

Modulo Mod 6 Mod 3 = 0
6 Mod 4 = 2

Exponentiation ^ 2^3 = 8

Expression Result

2+3*(5+3) 26

(2+3)*(5+3) 40

2+(3*5)+3 20
235REALbasic User’s Guide

BASIC Programming Concepts
Operator
Precedence

Operator Precedence determines the order in which operators execute when there is
more than one operator in an expression. For example, the expression:

contains both the division and addition operators. It matters whether the division or
the addition takes place first. You can force a particular precedence via parentheses,
as described above. By default, division has precedence over addition, so REAL
Studio would evaluate this expression as 5 plus 2/3. You can force it to do the
addition first by writing:

The order from highest precedence to lowest is shown in the following table:

If there is more than one operator in an expression, the precedence goes from left to
right. For instance, multiplication is higher than floating-point division, which is
higher than integer division, which is higher than modulus.

All operators are left-associative except for pairs (:) and exponentiation (^).

Left association means that (foo or bar or baz) will evaluate like ((foo or bar) or baz)
instead of (foo or (bar or baz)). Conversely, right association means that
(foo bar : baz) will evaluate like (foo : (bar : baz)) instead of ((foo : bar) : baz).

Constants A constant is like a variable but it holds a fixed value for its entire “life.” When you
create a constant, you give it its value. You can read the constant’s value in your
code, but you cannot use an assignment statement to change the value of a constant.
You cannot create array constants.

You can create constants in REAL Studio for windows, modules, and objects based
on classes that are added to the Project Editor (You’ll learn more about windows,

5+2/3

(5+2)/3

Operator Description

. Dot operator

AddressOf Delegate creation operator

IsA Type checking operator

^ Exponentiation operator

- Negation or the unary minus operator

Not Logical not operator

* / \ Mod Multiplication and division arithmetic operators

- + Subtraction and addition arithmetic operators

= > < >= <= <> Is Comparison operators

And Bitwise and logical operator

Or Xor Bitwise and logical operator

: Pair creation operator
236 REALbasic User’s Guide

BASIC Programming Concepts
modules, and classes later on in this manual.) You can also create a local constant
inside any method you write.

Each constant has a Scope. The Scope determines which parts of your application can
“see” the constant and read its value. When you create a constant in any method, its
scope is automatically Local to that method: Only the code within that method can
read the value of the constant. A Local constant is assigned its value within a
method and can be referred to anywhere within that method. If another method has
a constant with the same name, it is, in effect, a completely different constant.

To define a local constant, use the keyword Const within a method, followed by an
assignment statement. That is,

You do not have to indicate the data type of a constant. For example, the following
statement is valid:

REAL Studio will “figure out” that BackGroundColor is a Color. You can then
assign the constant BackGroundColor to any property or variable that accepts a
Color data type.

The following code is acceptable:

When the application runs, the PushButton’s caption reads “OK”.

The Scope of
Constants

The Const statement has local scope, just like the Dim statement (see the section
“The Scope of Variables” on page 225). When you declare a constant inside a
method (as has just been described), it exists only as long as the method is running
and can be accessed only inside that method. Other methods can’t read its value. It
means that the constant is local to the method in which it is declared.

You can also declare constants for windows, modules, or classes. You will learn
about managing these objects later in the Users Guide.

Attributes Attributes are compile-time properties. They can be added to both Project and Code
Editor items. An attribute consists of its Name and its Value. The Name property is
mandatory and the Value property is optional.

Attributes are created in the IDE with the Attributes Editor. Items that can have
attributes include constants, methods, properties, classes, modules, windows,
containercontrols, class interfaces, and toolbars.

Const <constname> = <value>

Const BackGroundColor=&cFF0000

Const Accept="OK"
BevelButton1.caption=Accept
237REALbasic User’s Guide

BASIC Programming Concepts
For classes, a subclass inherits the attributes of its parent class and attribute values
can be overridden if redefined by the subclass.

The names “Deprecated” and “Hidden” are reserved for internal use and should not
be used as an attribute’s Name.

Each Code or Project Editor item has a contextual menu, from which you can add,
modify, or delete the item’s attributes.

To add an attribute, do this:

1 Right+Click (Command-Click on Macintosh) on a Project Editor or Code
Editor item and choose Attributes... from the contextual menu.
The Attributes Editor appears.

Figure 217. The Attributes Editor

2 To add an attribute, click on the Plus sign.
An entry area for the attribute appears. The first column is for the (mandatory) attri-
bute name; the second column is for the optional attribute value.

3 Enter the name and, if desired, its value.

4 Repeat this process for each additional attribute.

5 Click OK to put away the Attributes Editor.

To modify or delete an attribute, do this:

1 To modify an existing attribute, open the Attributes Editor for the item and
click twice in its name field to get an insertion point.
The Attributes Editor appears, with the item’s attributes listed.

2 Edit the Name or Value as desired.

To delete an existing attribute, do this:

1 Open the Attributes Editor for the item.
The Attributes Editor appears, with the item’s attributes listed.

2 Click on an attribute’s minus sign.

3 Click OK to put away the Attributes Editor.
238 REALbasic User’s Guide

BASIC Programming Concepts
Accessing an
Attribute

Attributes are accessed at runtime via the Introspection system. The AttributeInfo
class is designed to hold the Name-Value attribute pairs of a particular item. See the
entry for the AttributeInfo class in the Language Reference for an example of how to
retrieve an object’s attributes.
239REALbasic User’s Guide

BASIC Programming Concepts
Reserved Words
The following words should not be used as variable or object names because they are
used as part of the REAL Studio language itself:

Reserved Word Reserved Word Reserved Word
#bad Exception Private
#else Exit Property
#ElseIf Extends Protected
#endif False Public
#if Finally Raise
#pragma For RaiseEvent
#tag Function Rect
AddressOf Global Redim
Aggregates GoTo Rem
And Handles Return
Array If Select
As Implements Self
Assigns In Shared
Attributes Inherits Soft
Break Inline68k Static
ByRef Interface Step
ByVal Is Structure
Call IsA Sub
Case Lib Super
Catch Loop Then
Class Me To
Const Mod True
Continue Module Try
Declare Namespace Until
Delegate Wend
Dim New While
Do Next With
DownTo Nil _ (as the first character of a variable, method,

event definition, or property name.)
Each Not
Else Object
ElseIf Of
End Optional
Enum Or
Event ParamArray
240 REALbasic User’s Guide

BASIC Programming Concepts
Executing Instructions with Methods
A method is one or more instructions that are performed to accomplish a specific
task. REAL Studio has many built-in methods. For example, the Quit method
causes your application to quit. Most REAL Studio classes have built-in methods.
For example, the ListBox class has a method called AddRow for adding rows to a
ListBox (as the name implies).

You can also create your own custom methods. Just like variables, methods are given
names to describe them and the same rules apply: the name can be any length, but
must start with a letter and can contain only alphanumeric values (a-z, A-Z, 0-9) or an
underscore (_).

The following is an example of a simple method that calculates how many days old a
person is in 1998 who was born in 1960:

Methods can, of course, be far more complex and longer than this example. There
are three different places you can put your methods. You will learn about these in
the next chapter.

Passing
Values to
Methods

Some methods require one or more pieces of information to perform their function.
These pieces of information are called parameters. Parameters are passed to a method
placing them to the right of the method name. In the following example, the Add-
Row method of a ListBox called ListBox1 is being called. AddRow adds one row to
the end of the ListBox and writes text in the new row. In order to do this, you need
to pass the text to AddRow as a parameter. Here is an example:

You can also put the parameter in parentheses. The following is equivalent:

When you pass parameters, you must pass values of the correct data type. AddRow,
for example, requires a String. If you needed to add a number to the ListBox, you
must pass it as a String. For example, if you need to add the number 12.7 to the
ListBox, you can write:

Dim yearBorn, thisYear, daysOld as Integer
yearBorn=1960
thisYear=1998
daysOld=(thisYear-yearBorn)*365

ListBox1.AddRow "January"

ListBox1.AddRow ("January")

ListBox1.AddRow "12.7"
241REALbasic User’s Guide

BASIC Programming Concepts
Or, you can use the built-in Str function which converts a number passed to it into a
string.The following also works:

The Str function takes one parameter, a value, and returns a string. So, this expres-
sion takes the number you want to display, converts it to a string, and then passes
the string to the AddRow method.

If a method requires more than one parameter, use commas to separate them. The
ListBox class has a method called InsertRow which is used to insert new rows into a
ListBox at any position. The InsertRow method requires two values: the row num-
ber where the new row should appear and the text value that should be displayed in
the new row. Because more than one parameter is required, the parameters are sepa-
rated by commas:

As is the case with one parameter, you can place the list of parameters in parenthe-
ses:

Parameters can also be variables or constants. If a variable is passed as a parameter,
the current value of the variable is passed. In the example below, a variable is
assigned a value and then passed as a parameter:

In the next chapter, you will learn how to define parameters for your own custom
methods.

Passing Arrays
as Parameters

An array can be passed as a parameter in a call to a method or function. You can pass
both one and multi-dimensional arrays. To specify that a parameter is a one-
dimensional array, put empty parentheses after its name in the declaration. For
example,

can be used in the declaration when you want to pass an array of strings to the sub-
routine. Since you do not need to specify the number of elements in the array to be
passed, you can pass a different number of elements at different places in your code.

ListBox1.AddRow Str(12.7)

ListBox1.InsertRow 3, "January"

ListBox1.InsertRow (3, "January")

Dim Month as String
Month="January"
ListBox1.InsertRow 3, Month

Names () as String
242 REALbasic User’s Guide

BASIC Programming Concepts
When you pass an array to the method or function, omit the parentheses. For
example, use

where PrintLabels is the name of the method that accepts the string array as its
parameter.

You can pass multi-dimensional arrays without specifying the number of elements
in each dimension, but you need to indicate the number of dimensions. Do this by
placing one fewer commas in the parentheses than dimensions. For example, if
aNames were a two-dimensional String array, you would declare the array in the
following manner:

When you pass a multi-dimensional array to a method or function, you can include
the parentheses but not any commas. For example,

Returning
Values from
Methods

Some methods return values. This means that a value is passed back from the
method to the line of code that called the method. For example, REAL Studio’s
built-in method, Ticks, returns the number of ticks (60th’s of a second) that have
passed since you turned on your computer. You can assign the value returned by a
method the same way you assign a value. In the example below, the value returned
by Ticks is assigned to the variable x:

Some methods require parameters and return a value. For example, the Chr function
returns the character whose ASCII code is passed to it. When you pass parameters to
a method that returns a value, the parameters must be enclosed in parentheses. In
the example below, the Chr function is passed 13 (the ASCII code for a Return) and
returns the Return code to the variable x:

The parentheses are required because the value returned might be passed as a
parameter to yet another method. Without the parentheses, it would be difficult to
distinguish which parameters were being passed to which method. In the example
below, the numeric value returned by the Len function (which returns the number
of characters in the string passed to it) is then passed to the Str function (which
converts a numeric value to a string). The string returned by the Str function is then
passed as a parameter to the InsertRow method of a ListBox:

PrintLabels (Names)

aNames(,) as String

PrintLabels aNames()

x=Ticks

x=Chr(13)

ListBox1.InsertRow 3, Str(Len("Hello"))
243REALbasic User’s Guide

BASIC Programming Concepts
Methods that return a value are referred to as functions. In the REAL Studio Language
Reference, the names of methods that return a value are followed by the word function.
In the next chapter, you will learn how to return values from your own custom
functions.

Passing
Parameters by
Value and by
Reference

By default, you pass values to a method by value. When you do so, the method
receives a copy of the data in the object that you pass. Your method receives the data
and can perform operations on it.

Parameters passed by value are treated as local variables inside the method—just
like variables that are created using the Dim statement. This means that you can
modify the values of the parameters themselves rather than first assigning the
parameter to a local variable. For example, if you pass a value in the parameter “x”,
you can increment or decrement the value of x rather then assigning the value of x to
a local variable that is created using Dim.

For example, the following method is valid:

When you write your own methods, you have the option of passing information by
reference. When you pass information by reference, you actually pass a pointer to the
object containing the information. The practical advantage of this technique is that
the method can change the values of each parameter and replace the values of the param-
eters with the changed values. When you pass parameters by value, you can’t do this
because the parameter only represents a copy of the data itself.

You use the keywords ByVal or ByRef to specify the type of parameter passing
(ByVal is assumed and does not need to be used). To pass a parameter by reference,
use the ByRef keyword in the method declaration when you declare a parameter that
is to be passed by reference. For example, Figure 218 shows a parameter that is
declared ByRef. The method can replace the parameter with the computed value.

Sub SquareIt(a As Integer)
a=a*a
MsgBox str(a)
244 REALbasic User’s Guide

BASIC Programming Concepts
Figure 218. Declaring a parameter ByRef.

Suppose the code that calls this method is:

and the method is simply:

The TextField will display the number 9. If you don’t specify ByRef, the method
can change the value passed to it, but it cannot return the changed value.

Arrays are passed by reference. The method can change all or some of the elements
of the array.

When you want to use parameter passing by value, you do not need to use the ByVal
keyword explicitly. Parameter passing by value is the default and is used unless
overridden by use of ByRef.

Using the
Meta-
Constant

The built-in meta-constant CurrentExecutingMethodName is available in all
methods and events. It automatically contains the fully-qualified name of the
method or event. It is the same as if the user had declared:

where MethodName is the fully-qualified name of the method.

Dim a as Integer
a=3
SquareIt a
TextField1.text=str(a)

a=a*a

Const CurrentExecutingMethodName="Methodname"
245REALbasic User’s Guide

BASIC Programming Concepts
For example, if you create a method, MyNewMethod, belonging to Window1 that
has the code:

A call to this method will display the name “Window1.MyNewMethod”.

The CurrentExecutingMethodName constant is also available in Events. For
example, if you call it in the MouseEnter event of Rectangle1 in Window1, then it
contains “Window1.Rectangle1.MouseEnter”.

MsgBox CurrentExecutingMethodName
246 REALbasic User’s Guide

BASIC Programming Concepts
Documenting Your Code
Documenting your code is important because while it might make sense at the time
you write it, it may not make sense days or weeks later. You should also name con-
trols and other objects in a logical and consistent way. Also, if someone else has to
understand your methods, documentation will make their job a whole lot easier.
Comments can be added to your code as separate lines or to the right of any code on
an existing line. Comments are ignored by REAL Studio when it runs your applica-
tion and have no impact on performance. In order for the REAL Studio compiler to
recognize text as a comment, you must start the comment with a single-quote (‘),
two forward slashes (//) or the word REM (short for remark). The example below
shows how the previous example could be commented:

By default, comments in your code appear in red. You can set a different color for
comments using REAL Studio options (Preferences on Macintosh). For more
information, see the section “Configuring the Code Editor” on page 275.

If you have several consecutive lines that you want to convert to comments, select
the lines and click the Comment button in the Code Editor toolbar. You can also
use the Edit . Comment menu item (Ctrl+' on Windows and Linux or x-' on
Macintosh). If the line of code that contains the insertion point is a comment, then
the Comment button changes to Uncomment and the corresponding menu item
changes to Edit . Uncomment. Uncomment changes the lines back to executable
code.

For that reason, its best to use “//” for lines of documentation (lines that cannot be
executed) and reserve the use of the up-down quotes for commenting out lines of
code that you may want to convert back to executable code.

Documenting
Properties

When you create a property of a window, class, or module, you can use the Code
Editor to document the property. In the declaration screen, REAL Studio states the
property’s declaration in the Code Editor and you can add any text underneath it.

For information about properties, see the section “Adding Properties to Windows”
on page 314.

Any text you enter in the code editing area is automatically non-executable, even if
it is REAL Studio code.

//Create the necessary variables
Dim yearBorn, thisYear, daysOld as Integer
yearBorn=1960 //set the year they were born
thisYear=1998 //store the current year
//Now calculate the number of days old
daysOld=(thisYear-yearBorn)*365
247REALbasic User’s Guide

BASIC Programming Concepts
Figure 219. Documenting a window property.

Using Notes You can also document your code (or application) at a more global level using Notes.
Each Code Editor has an item called Notes in its browser area that you can use to
store comments about your application (or anything else, for that matter). Like com-
ments in your code, Notes are not compiled and are not included in a built applica-
tion. Although they appear in the Code Editor, you shouldn’t try to reference them
in your code.

You add a note to a Code Editor just as you would add an object that is compilable.
To add a note to a Code Editor, click the Add Note button or choose
Project . Add . Note. The Code Editing area changes to an entry area for the note.
Enter your note in the entry area.
248 REALbasic User’s Guide

BASIC Programming Concepts
Figure 220. The Add Note screen.

After you click OK, the name of the note appears in the Notes group and the
editing area of the Code Editor opens to that note, enabling you to enter your
comments.

Figure 221. The text of a Note.

Comparison Operators
There are many times when you need to compare two values to determine whether
or not a particular condition exists. When making a comparison, what you are really
249REALbasic User’s Guide

BASIC Programming Concepts
doing is making a statement that will either be True or False. For example, the
statement “My dog is a cat” evaluates to False. However, the statement “My dog
weighs more than my cat” may evaluate to True. The table below shows examples of
the comparison operators that are available:

String and boolean values can also be used for comparisons. String comparisons are
case insensitive and alphabetical. This means that “Jeannie” and “jeannie” are equal.
But “Jason” is less than “Jeannie” because “Jason” falls alphabetically before
“Jeannie”. If you need to make case sensitive or lexicographic comparisons, see the
StrComp function in the Language Reference.

In addition, REAL Studio includes a floating point equals operator. It allows you to
determine whether two floating point numbers are close enough to be considered equal.
Use it to account for the imprecision of operations such as floating point division. The
floating point equals operator is the Equals keyword. There is no symbol for it.

The syntax is:

Expression is the floating point value to be compared, NumValue is the value it is
being compared to, and x is the number of units in the last position that denotes the
acceptable range. Result is either True or False, depending on the result of the
comparison.

For example, if you are comparing 10000 to a value and specify x=1, then the
acceptable values are 10000.000000000002, 10000.0 and 9999.999999999998.

Logical
Comparisons

You can test more than one comparison at a time using the And, Or, and Not oper-
ators. When passed boolean values, these operators determine whether the expres-
sion is true or false.

And Operator Use this operator when you need to know if all comparisons evaluate to True. In the
example below, if the variable x is 5 then the expression evaluates to False:

Description Symbol
Numeric
Example

Evaluates To

Equality = 5=5 True

Inequality <> 5<>5 False

Greater Than > 6>5 True

Less Than < 6<5 False

Greater Than or Equal To >= 6>=5 True

Less Than or Equal To <= 6<=5 False

result=expression.Equals(NumValue,x)

x>1 And x<5
250 REALbasic User’s Guide

BASIC Programming Concepts
Or Operator Use this operator when you need to know if any of the comparisons evaluate to True.
In the example below, if the variable x is 5 then the expression evaluates to True:

Xor Operator Use this operator when you need to know whether two boolean expressions are not
equal. In the example below, if the variable x is 5 then the expression evaluates to
True.

Not Operator Use the Not operator to reverse the value of a boolean variable. For example:

tests whether x is equal to or greater than 0.

The following table summarizes the results of logical comparisons.

Bitwise
Comparisons

You can also compare the individual bits of two integers to determine whether or
not they are equal. This is done by re-expressing each integer as a binary number.
Then you compare the bits in the pair of integers place-by-place. You get a new
integer which is the result of each comparison.

You can do this with the And, or, and Xor operators. They are considered overloaded.
This means that they can accept either booleans (as was shown above) or integers. If
they are passed boolean expressions, they “know” that you want the logical
comparisons that are described in the previous section. If they are passed integers,
they “know” that you want to compare the bits that make up the two integers. In
this case, they each return an integer made up of the results of all the bit
comparisons. The following table summarizes the results for the comparison of each

x>1 Or x<5

x>1 Xor x<5

Not (x < 0)

Expression1 Expression2 Xor Or And
True True False True True
True False True True False
False True True True False
False False False False False
251REALbasic User’s Guide

BASIC Programming Concepts
bit in the passed integers.

For example, this expression does a bitwise Xor on the two integers passed.

The Not operator is also overloaded. If you pass an integer to Not, it simply reverses
each bit value. The corresponding bit in the result is set according to the following
table.

You can also do these bit comparisons using methods of the Bitwise class. Please see
the entry for the Bitwise class in the Language Reference for more information.

Executing Instructions Repeatedly with Loops
There may be times when one or more lines of code need to be executed more than
once. If you know how many times the code should execute, you could simply repeat
the code that many times. For example, if you wanted a PushButton to beep three
times when clicked, you could simply put the Beep method in your code three times
like this:

Suppose you need it to beep fifty times or perhaps until a certain condition is met?
Simply repeating the code over and over in these cases will either be just tedious or
not possible. How do you solve this problem? The answer is a loop.

Loops execute one or more lines of code over and over again.

REAL Studio offers the following types of loop structures:

n While...Wend: The loop runs until the condition specified in the While statement
is satisfied.

n Do...Loop: The loop runs until the condition specified in the Loop statement is
satisfied.

n For...Next: The loop runs a specified number of times given in the For statement. A
local counter variable controls the execution of the loop.

Bit in Integer1 Bit in Integer2 And Or Xor
0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

i=5 Xor 3 //returns 6

Bit in Expression Bit in Result
0 1
1 0

Beep
Beep
Beep
252 REALbasic User’s Guide

BASIC Programming Concepts
n For...Each: The loop runs repeatedly for each element in an array.

You can declare local variables inside a loop structure. When you define a local
variable inside a loop structure, its scope is local to the structure itself, not the entire
method. It goes out of scope after the condition of the loop is satisfied. If you need
to use the variable after the loop executes, define it outside the loop, so that it is
local to the method.

While...Wend A While loop executes one or more lines of code between the While and the Wend
(While End) statements. The code between these statements is executed repeatedly, pro-
vided that the condition passed to the While statement continues to evaluate to True.
Consider the following example:

The variable “i” will be zero by default when it is created by the Dim statement.
Because zero is less than ten, execution will move inside the While...Wend loop.
The variable i is incremented by one. REAL Studio checks to see if the condition is
still True and if it is, then the code inside the loop executes again. This continues
until the condition is no longer True. If the variable i was not less than ten in the
first place, execution would continue at the line of code after the Wend statement.

Do...Loop Do loops are similar to While loops but a bit more flexible. Do loops continue to
execute all lines of code between the Do and Loop statements until a particular con-
dition is True. While loops on the other hand execute as long as the condition
remains True. Do loops provide more flexibility than While loops because they
allow you to test the condition at the beginning or end of the loop. The example
below shows two loops; one testing the condition at the beginning and the other
testing it at the end:

The difference between these two loops is this. In the first case, the loop will not
execute if the variable n is already equal to ten. The second loop executes at least
once regardless of the value of n because the condition is not tested until the end of
the loop.

Dim i As Integer
While i <10

 n=n+1
Wend

Do Until n=10
i=i+1

Loop

Do
i=i+1

Loop Until n=10
253REALbasic User’s Guide

BASIC Programming Concepts
It is possible to create a Do loop that does not test for any condition. Consider this
loop:

Because there is no test, this loop will run endlessly. You can call the Exit method
to force a loop to exit without testing for a condition. However, this is poor design
because you have to read through the code to figure out what will cause the loop to
end.

Endless Loops Make sure that the code inside your While and Do loops eventually causes the con-
dition to be satisfied. Otherwise, you will end up with an endless loop that runs for-
ever. Should you do this accidently, you can switch back to the IDE by clicking the
Stop button in the Run screen or closing the Run screen in the IDE to stop the loop.
If this doesn’t work, you will need to force REAL Studio to quit by pressing
Ctrl+Alt+Del or x-Option-Escape (Macintosh).

Lengthy Loops When a loop starts running, its process ‘takes over’ and doesn’t allow the user to
interact with interface elements such as menus, buttons, and scroll bars. On modern
computers and reasonably short loops, this isn’t a problem because the loop executes
faster than the user can think of another button to push or menu item to select. If
this is not true, there are a couple of things you can do:

n If the user should wait until the loop is finished before doing anything else (e.g., if a
user action might invalidate the results of the loop), you can signal that a lengthy
operation is in progress by changing the mouse cursor to a watch cursor until the
loop ends. Keep in mind that, with this solution, the user can’t even stop the loop
prematurely because the loop has ‘taken over’ the application. See the section on the
MouseCursor class in the Language Reference for more information.

n If the user is permitted to do other tasks while the loop is running, you should place
the code for the loop in a separate thread. A thread runs concurrently with the main
application (the one that handles user input), but as a background task, allowing
user operations in the foreground. Please see the entry in the Language Reference for
the Thread class for information on placing code in threads.

For...Next While and Do loops are perfect when the number of times the loop should execute
cannot be determined because it is based on a condition. A For loop is for cases in
which you can determine the number of times to execute the loop. For example,
suppose you want to add the numbers one through ten to a ListBox. Since you know
exactly how many times the code should execute, a For loop is the right choice. For
loops also differ from While and Do loops because For loops have a loop counter

Do
i=i+1

Loop
254 REALbasic User’s Guide

BASIC Programming Concepts
variable, a starting value for that variable and an ending value. The basic construc-
tion of a For loop is:

Notice that the Dim statement declares the counter as an Integer. This is the most
common way to define the counter, but it is not required. You can also declare the
counter variable as a Single or Double.

In this example, the counter variable was declared in the usual way, via the Dim
statement. Since counter variables are rarely needed outside the For loop, REAL
Studio also allows you to declare the counter variable right inside the For statement.
In other words, you can redo this example in the following way:

Notice that the Dim statement has been removed from the example. If you declare
the counter variable this way, you can use it only within the For loop. It disappears
after the For loop is finished. If you need to read or change the value of the counter
variable outside the For loop, you should use the Dim statement instead.

In this case, the starting value and the ending value are specified as numbers. You
can also use variables, as shown in this example:

The first time through the loop, the counter variable will be set to StartingValue.
When the loop reaches the Next statement, the counter variable will be
incremented by one. When the Next statement is reached and the counter variable
is equal to endingValue, the counter will be incremented and the loop will end.

Let’s take a look at the example mentioned earlier. You want to add the numbers
one through ten to a ListBox. The following example accomplishes that:

Dim Counter As Integer
For counter=0 to 100
// [your code goes here]
Next

For Counter As Integer=0 to 100
 // [your code goes here]
Next

Dim StartingValue, EndingValue As Integer
StartingValue=0
EndingValue=100
For counter As Integer=StartingValue to EndingValue

//your code goes here
Next

For i as Integer=1 to 10
ListBox1.AddRow Str(i)

Next
255REALbasic User’s Guide

BASIC Programming Concepts
The counter variable (i in this case) is passed to the Str function to be converted to a
string so that it can be passed to the AddRow method of ListBox1.

Note: The letter “i” is commonly used as the loop counter for historical reasons. In
FORTRAN, the letters I to N are typed as integers by default. Therefore,
FORTRAN programmers began the practice of using those letters as counters, and
in the order they appear in the alphabet. That is, if a FORTRAN programmer
needed to nest one loop in another (as is described on page 257), he would use j as
the counter for the inner loop. This convention made it easy for FORTRAN
programmers to follow the logic of code that processed multi-dimensional arrays.

By default, For loops increment the counter by one. You can specify another
increment value using the Step statement. In this example, the Step statement is
added to increment the counter variable by 5 instead of 1:

In this example, the For loop starts the counter at 100 and decrements by 5:

So far, we have looked at cases where StartingValue and EndingValue are integer
numbers. If either StartingValue or EndingValue are expressions that must be evalu-
ated to integers, the For loop will perform the evaluation each time it increments
the counter — even if the expression always evaluates to the same integer.

Therefore, it is advisable to perform any evaluations before entering the loop. For
example, consider a loop that needs to process all the fonts that are installed on the
user’s computer. This number cannot be known in advance but there is a built-in
function in REAL Studio, FontCount, that you can use to obtain the total number of
fonts. If you use it in the For statement to compute EndingValue (like so):

For i as integer=5 to 100 Step 5
 ListBox1.AddRow Str(i)
Next

Dim i As Integer
For i=100 DownTo 1 Step 5
ListBox1.AddRow Str(i)

Next

For i as Integer=0 to FontCount-1
.
.
Next
256 REALbasic User’s Guide

BASIC Programming Concepts
The loop will run more slowly than if you calculate the value only once:

However, the difference in speed may be of no practical value unless it is a very
lengthy loop. On the computer that is being used to write this manual, the number
of installed fonts is 120 and the difference in speed between these two loops is
approximately 1/250 of a second—not enough to lose sleep over.

A For loop (as well as any other kind of loop) can have another loop inside it. In the
case of a For loop, the only thing you will have to watch out for is making sure that
the counter variables are different so that the loops won’t confuse each other. The
example below uses a For loop embedded inside another For loop to go through all
the cells of a multi-column ListBox counting the number of cells in which the word
“Hello” appears:

Another way to keep this straight is to use the naming convention started by
FORTRAN programmers of using the letters of the alphabet beginning with “i” as
the counters. In that way, you’ll always know which loop is inside another loop
without trying to figure out what the loops are supposed to be doing.

For loops are generally more efficient than Do and While loops because the com-
piled code generated is more efficient.

The For…Each
statement

Another situation in which you want to loop through a group of values is array pro-
cessing. Rather than looping through a set of statements for each value of a counter,

Dim nFonts as integer
nFonts=FontCount-1
For i as Integer=0 to nFonts
.
.
Next

Dim row, column, count As Integer
For row=0 to ListBox1.ListCount-1

For column=0 to ListBox1.ColumnCount-1
If ListBox1.Cell(row,column)="hello" then count=count+1
End if

Next
Next
MsgBox Str(count)
257REALbasic User’s Guide

BASIC Programming Concepts
the For…Each statement processes each element of an array that is passed to it. Here
is a simple example:

“Values” is a one-dimensional array of numbers that is passed to the function Sum-
Stuff. In the For Each statement, role of the counter variable is taken by the variable
“element”, which refers to an element in the array. The For Each loop executes the
statements between the For Each statement and the Next statement for each ele-
ment in the array.

Since the array doesn’t necessarily have to be numbers, this statement enables you to
process a group of objects of any type. They could be pictures, colors, documents,
sets of database records, and so forth.

The For Each statement identifies the counter variable (element) and the array to be
processed. To call the function, pass an array of doubles in a statement such as:

where s is declared as a Double and MyNumbers is an array of Doubles.

As is the case for the For...Next loop, you can declare the data type of the counter
inside the For Each statement rather than in a separate Dim statement. For example
the previous example could be rewritten like this:

Adding Loops
to your Code

The Code Editor’s contextual menu offers an especially convenient way of adding
loops to your code. The last three items in the contextual menu wrap the selected
lines of code inside a type of loop. To use these menu items, simply write the code
that goes inside the loop, select the lines, and then choose the type of loop from the
contextual menu. Your choices are If...End If, Do...Loop, and While...Wend.

Function SumStuff(values() as Double) as Double
Dim sum as Double
For Each element as Double In values

sum=sum+element
Next

Return Sum

s=SumStuff(MyNumbers)

Function SumStuff(values() as Double) as Double
Dim sum as Double
For Each element as Double In values
sum=sum+element
Next
Return Sum
258 REALbasic User’s Guide

BASIC Programming Concepts
To take the example of the While...Wend loop shown on page 253, suppose the
user has typed only the lines:

and selected the two lines that go inside the loop before choosing the Wrap in
While...Wend contextual menu item.

Figure 222. Wrapping lines of code inside a loop.

The result is shown in Figure 223:

Dim i As Integer
i=i+1
259REALbasic User’s Guide

BASIC Programming Concepts
Figure 223. The Code Editor after wrapping lines inside a loop.

REAL Studio can wrap the selected lines in the loop but it doesn’t know what
condition should terminate the loop. Therefore, it has inserted the placeholder text
condition in the While statement. It has already been selected, so all you need to
do is replace it with the condition you want. In this example, it’s i < 10.

This process is the same for the Do...Loop and If...End If loops, described in the next
section.

Making Decisions with Branching
The methods you write execute one line at a time from top to bottom, left to right.
There will be times when you want your application to execute some of its code
based on certain conditions. When your application’s logic needs to make decisions
it’s called branching. This allows you to control what code gets executed and when.
REAL Studio provides two branching statements: If…Then and Select…Case.

If…Then…End
If

The If…Then statement is used when your code needs to test a single boolean (True
or False) condition and then execute code based on that condition. If the condition
you are testing is True, then the lines of code you place between the If...Then line
and the End If line are executed.

If condition Then
 //[Your code goes here]
End If
260 REALbasic User’s Guide

BASIC Programming Concepts
Say you want to test the integer variable month and if its value is 1, execute some
code:

month=1 is a boolean expression; it’s either True or False. The variable month is
either 1 or it’s not 1.

Suppose you have a PushButton that performs an additional task if a particular
CheckBox is checked. The value property of a CheckBox is boolean so you can test it
in an If statement easily:

You can declare local variables using the Dim statement inside an If statement.
However, such variables go out of scope after the End If statement. This is similar to
the feature for the loop statements. For example:

If you need the variable after the End If statement, you should declare it local to the
entire method, not the If...End If statement.

If...Then...Else
...End If

In some cases, you need to perform one action if the boolean condition is True and
another if it is False. In these cases, you can use the optional Else clause of an If
statement. The Else clause allows you to divide the code to be executed into two sec-
tions: the code that is executed when the condition is True and the code that is exe-
cuted when it is False. In this example, one message is displayed if the condition is
True while another is displayed if it is False:

If month=1 Then
 //[Your code goes here]
End If

If CheckBox1.value Then
//[Your code goes here]
End If

If error=-123 Then
Dim a As String
a="Whoops! An error occured."
End if
MsgBox a //out of scope

If month=1 Then
MsgBox "It’s January."

Else
MsgBox "It’s not January."

End If
261REALbasic User’s Guide

BASIC Programming Concepts
If...Then...Else
If...End If

In some cases, you need to perform an additional test when the initial condition is
False. Use the optional ElseIf statement. In the example below, if the variable
month is not 1, then the ElseIf statement performs an additional test:

You could, of course, use an additional If...Then...EndIf statement inside the Else
portion of the first If statement to perform another test. However, this adds another
EndIf and needlessly complicates your code. You can use as many ElseIf statements
as you need.

In this example, another ElseIf has been added to perform an additional test:

If the initial condition is False, REAL Studio continues to test the ElseIf conditions
until it finds one that is True. It then executes the code associated with that ElseIf
statement and continues executing the lines of code that follow the End If
statement.

If...Then...Else An If statement can be written on one line, provided the code that follows the Then
and (optionally) the Else statements can all be written on one line. When you use
this syntax, you omit the End If statement. For example, the following statements
are valid:

#If...#Endif The #If...#Endif statement is designed to handle a very special case of conditional
compilation. You use #If...#Endif when you need to compile different versions of
code for different platforms. That’s its only use. The boolean condition that the #If
statement uses will accept only special boolean constants that can determine the

If month=1 Then
MsgBox "It’s January."

ElseIf month<4 Then
MsgBox "It’s still Winter."

End If

If month=1 Then
MsgBox "It’s January."

ElseIf month<4 Then
MsgBox "It’s still Winter."

ElseIf month<6 Then
MsgBox "It must be Spring."

End If

If error=123 Then MsgBox "An error occured."
If error=123 Then MsgBox "An error occured." Else MsgBox "Success"
If error=103 Then Break //breaks into the debugger
262 REALbasic User’s Guide

BASIC Programming Concepts
type of code that is being compiled. Here is the list of boolean constants that the #If
statement accepts.

For example, if you want to use code that manages the Mac OS X dock, you can
include it only in your MachO build of the application with a statement such as:

Boolean Constant Description

DebugBuild The application is running within the REAL Studio
application, i.e., from clicking the Run button in the IDE Main
toolbar.

RBVersion Returns the version of REAL Studio that is being compiled.
You can use this in an expression that evaluates to True or
False to determine which version of REAL Studio is compiling
the application.

TargetBigEndian The compiled application is running on a machine that uses
the Big Endian byte order. Macintosh PPC uses the Big Endian
byte order.

TargetCarbon The compiled application is currently running Carbon/Mac OS
X code.

TargetHasGUI The application has a graphical user interface, i.e., it is not a
ConsoleApplication or a ServiceApplication.

TargetLinux The compiled application is running Linux code.

TargetLittleEndian The compiled application is running on a machine that uses
the LittleEndian byte order. PCs and Intel Macintoshes use
the Little Endian byte order.

TargetMachO The compiled application is running on Mac OS X, running
object code in the format for the Mach kernel. This code runs
only on Mac OS X.

TargetMacOS The compiled application is currently running Macintosh
code. As of REAL Studio 2007 Release 4, all Macintosh builds
are also TargetMachO.

TargetMacOSClassic The compiled application is currently running Macintosh
code within the “classic” Mac OS. As of REAL Studio 2007
Release 4, REAL Studio no longer supports Mac OS classic.
This constant was initially called “TargetPPC.”

TargetPowerPC The compiled application is currently running on a machine
that uses PowerPC hardware, regardless of operating system.

TargetWin32 The compiled application is currently running Win32 code. It
will run on any version of Windows, from Windows 2000 to
Vista.

TargetX86 The compiled application is running on a machine that uses
x86 hardware, regardless of operating system.

#if TargetMachO
 //code goes here
#Endif
263REALbasic User’s Guide

BASIC Programming Concepts
If you need to include different code for different platforms rather than just
including code only for one platform, you can use the #Elseif keyword in this
manner:

You can also include or exclude code based on the version of REAL Studio that is
running. You use the RBVersion function to get the version of REAL Studio that’s
running.

This example only includes the code if the version of REAL Studio that is compiling
the code is at least 2007.

Note that the “then” keyword is not needed in the #If statement. It is optional.

For more information on conditional compilation, see the entries in the Language
Reference for the #If statement and the boolean constants and Chapter 15,
“Building Stand-Alone Applications” on page 693.

Select...Case When you need to test a property or variable for one of many possible values and
then take action based on that value, use a Select...Case statement. Consider the fol-
lowing example that tests a variable (dayNumber) and displays a message to the user
to tell him which day of the week it is:

#If TargetWin32
//Windows specific code here
#ElseIf TargetMacOS
//Macintosh code goes here.
#ElseIf TargetLinux
//Linux code goes right here.
#EndIf

#If RBVersion >= 2007
//include version 2007 code here
#endif

If dayNumber=2 Then
MsgBox "It’s Monday."

ElseIf dayNumber=3 Then
MsgBox "It’s Tuesday."

ElseIf dayNumber=4 Then
MsgBox "It’s Wednesday."

ElseIf dayNumber=5 Then
MsgBox "It’s Thursday."

ElseIf dayNumber=6 Then
MsgBox "It’s Friday."

Else
MsgBox "It’s the weekend."

End If
264 REALbasic User’s Guide

BASIC Programming Concepts
No two of these conditions can be True at the same time. While this method of
writing the code works, it’s not that easy to read. In this example, the same code is
presented in a Select...Case statement, making it far easier to read:

The Select...Case statement compares the variable or property passed in the first line
to each value on the Case statements. Once a match is found, the code between that
case and the next is executed. Select...Case statements can contain an Else statement
to handle all other values not explicitly handled by a case.

You can create local variables using the Dim statement inside a Case statement.
However, such variables go out of scope at the conclusion of the statement. For
example:

The variable “day” should be declared prior to the Select...Case statement so that it
is available after the End Select statement executes.

Select Case dayNumber
Case 2

MsgBox "It’s Monday."
Case 3

MsgBox "It’s Tuesday."
Case 4

MsgBox "It’s Wednesday."
Case 5

MsgBox "It’s Thursday."
Case 6

MsgBox "It’s Friday."
Else

MsgBox "It’s the weekend."
End Select

Select Case dayNumber
Case 2

Dim day as String
day="Tuesday"

Else
MsgBox "It’s NOT Tuesday!"

End Select
MsgBox day //day is out of scope
265REALbasic User’s Guide

BASIC Programming Concepts
The Select…Case statement works with variables of any data type. It works for
strings, integers, singles, doubles, booleans, and colors. For example, you can
compare colors, as in the following example:

A Case statement can accept more than one value, with different values separated by
commas. For example, the following is valid:

In the preceding example, the first Case statement is True, so its code executes.
Although the color passed to Select…Case is Red, the code for the second case does
not execute because it is not the first matching case.

The Select Case statement accepts an “Else” clause. The code in the Else clause
executes only if none of the preceding cases matches. The Else clause can be written

Dim c as Color
c=&cFF0000 //pure red
Select case c
Case &c00FF00 //green
MsgBox "Green"
Case &cFF0000 //red
MsgBox "Red"
Case &c0000FF //blue
MsgBox "Blue"

End select

Dim c as color
c=&cFF0000 //red
Select case c
Case &c00FF00,&cFF000 //green, red
MsgBox "Green or Red"
Case &cFF0000 //red
MsgBox "Red"
Case &c0000FF //blue
MsgBox "Blue"

End select
266 REALbasic User’s Guide

BASIC Programming Concepts
as either “Else” or “Case Else”. In the following example, the Case Else clause
executes because the color FFFF00 was passed:

The Case statement can also accept a range of consecutive values that you pass using
the “To” keyword. For example:

In this example, the third case, “51 to 100”, is true.

You can combine ranges with nonconsecutive values, by separating them with
commas, such as:

You can write inequalities with the “Is” keyword and an inequality operator. The
syntax is:

Dim c as Color
c=&cFFFF00 //pure red
Select case c
Case &c00FF00 //green
MsgBox "Green"
Case &cFF0000 //red
MsgBox "Red"
Case &c0000FF //blue
MsgBox "Blue"
Case Else
MsgBox "None of the above"
End select

Dim i as Integer = 53
Select case i
Case 1 to 25
MsgBox "25 or less"
Case 26 to 50
MsgBox "26 to 50"
Case 51 to 100
MsgBox "51 to 100"

End Select

Case 0, 26 to 50, 75, 100 to 200

Is ineqalityOperator
267REALbasic User’s Guide

BASIC Programming Concepts
For example:

You can combine inequalities with values, as in:

You can even use functions that return a value of the specified data type in a Case
statement. Here is a simple example:

The function in the first Case statement is:

In this example, the function squares the value passed to it, so the first Case
statement matches.

In the case of a simple function like this, you can write the expression in the Case
statement itself. That is, the following is an equivalent matching Case statement:

The Select Case statement can also compare variables of type Object. The following
example uses a Select…Case statement to determine which button the user pressed

Dim i as Integer = 10
Select Case i
Case Is <= 10
//this case selected
Case Is > 10
//this case not selected
End Select

Dim i as Integer = 75
Select Case i
Case 0, Is <=10,100
//case not selected
Case Is > 10, Is < 99
//case selected
End Select

Dim i as Integer = 4
Dim a as Integer = 2
Select Case i
Case Functx(a)
//case 1
Case a
//case 2

Else
//no match

End Select

Function Functx(a As Integer) as Integer
Return a*a

Case a*a
268 REALbasic User’s Guide

BASIC Programming Concepts
in a MessageDialog box. This example was shown in the section “The MessageDia-
log Class” on page 109 and the resulting dialog box is shown in Figure 79 on
page 112. The Select Case statement compares objects of type MessageDialogBut-
ton to determine which of three possible dialog buttons was pressed.

You can also use the IsA operator to determine whether an object is of a particular
class. The syntax is:

Here is a simple example. The code in a pushbutton in a window is:

The term “Me” refers to the pushbutton, so the first Case statement returns true.

Dim d as New MessageDialog //declare the MessageDialog object
Dim b as MessageDialogButton //for handling the result
d.icon=MessageDialog.GraphicCaution //display warning icon
d.ActionButton.Caption="Save"
d.CancelButton.Visible=True //show the Cancel button
d.AlternateActionButton.Visible=True //show the alternate action
button
d.AlternateActionCaption='Don’t Save"
d.Message="Save changes before closing?"
d.Explanation="If you don't save your changes, you will lose "_
 +"your work."
b=d.ShowModal //display the dialog
Select Case b //the MessageDialogButton returned by d
Case d.ActionButton //determine which button was pressed.
 //user pressed Save
Case d.AlternateActionButton
 //user pressed Don’t Save
Case d.CancelButton
 //user pressed Cancel
End Select

Case IsA ClassName

Select Case Me
Case IsA PushButton

MsgBox "I’m a pushbutton."
Case IsA TextField

MsgBox "Nope!"
End Select
269REALbasic User’s Guide

BASIC Programming Concepts
270 REALbasic User’s Guide

CHAPTER 5 Programming with
Events and Objects

Most of your code will execute in response to something the user does, such as select-
ing a menu item, clicking on a button, or typing in a TextField. This kind of pro-
gramming is called event-driven programming because events cause the programming
code to execute. Understanding how events work and which user actions cause which
events to occur will take you a long way towards getting your application to do what
you want it to do.

In this chapter you will learn about event-driven programming, how to use the
Code Editor, and how to get your application to respond when the user clicks on
interface objects or types on the keyboard.

Contents

n Understanding Event-Driven Programming

n Using the Code Editor

n Printing and Exporting Your Code

n Responding to User Actions with Event Handlers
271REALbasic User’s Guide

Programming with Events and Objects
Understanding Event-Driven Programming
Your users will interact with your applications by clicking the mouse and typing on
the keyboard. Each time the user clicks the mouse on a part of your application’s
interface or types something in a TextField, an event occurs. The event is simply the
action the user took (the mouse click or the key press) and where it took place (on
this button, on that menu item, or in this TextField). Some events can indirectly
cause other events. For example, when the user selects a menu item (causing an
event) that opens a window, it causes another event — the opening of the window).

Each object you create in REAL Studio can include, as part of itself, the code you
write that executes in response to the various events that can occur for that type of
object. For example, a PushButton can include the code you wish to execute when
the PushButton is pushed. An object can even respond to events you might not have
thought it could — such as responding as the user moves the pointer over a button.
When the user causes an event, REAL Studio checks to see if the object the event
was directed towards has any code that needs to execute in response to that event. If
the object has code for the event, REAL Studio executes that code and then waits for
the user to cause another event to occur. This continues until something causes the
application to quit, usually the user’s choosing Exit from the File menu (Quit on
Macintosh).

As mentioned earlier, the user can also indirectly cause events to occur. Buttons, for
example, have an event called Action which occurs when the user clicks the button.
The code that handles the response to an event is called (appropriately enough) an
event handler. Suppose the button’s Action event handler has code that opens another
window. When the user clicks the button, the Action event handler opens a window
and REAL Studio sends an Open event to the window. This is not an event the user
caused directly. The user caused this event indirectly by clicking the button whose
code opened the new window.

There are many events that can occur to each object in your application. The good
news is that you don’t have to learn about all of them. You simply need to know
where to look for them so that, if you want to respond to an event, you can find out
if the object is able to respond to that event. Later in this chapter, you will learn
about many of the common events you will need to be aware of in order to create
your applications.
272 REALbasic User’s Guide

Programming with Events and Objects
Using The Code Editor
You use the Code Editor to enter the code for the various events that can occur for
the objects that make up your application’s interface. It’s also used to add properties
and methods to objects. The Code Editor has two sections: the Browser and the Edi-
tor itself.

Figure 224. The Code Editor.

The Browser is a hierarchical list of the programming-related components that
make up a particular object. For a window, the Browser lists the window’s:

n Controls

n Event Handlers

n Menu Handlers

n Methods

n Properties

n Notes

If there are no items in a category, the category does not appear.

You will learn more about each of these items later in this chapter.

Opening the
Code Editor

Use the Code Editor to edit the code for controls, windows, classes, and modules.
There are several ways to open the Code Editor for a specific window.

The Editor

The Browser

Disclosure widget

The Tips bar

Tabs bar

Code Editor toolbar
273REALbasic User’s Guide

Programming with Events and Objects
To open the Code Editor for a window, do this:

1 Click the tab in the Tab bar belonging to the window’s Window Editor or, if
it does not yet have a tab, double-click the name of the window in the
Project Editor.
By default, the Layout Editor for the window appears. The Edit Mode buttons on
the left side of the Window Editor toolbar toggle between displaying the Layout
Editor and the Code Editor for the window.

The keyboard equivalents for switching between these two editors is Ctrl+` (Win-
dows and Linux) and Command+` (Macintosh). You can also switch editors with the
View . Show Layout and View . Show Code menu items. These menu items are
available only when a Window Editor is displayed.

2 Click the Code Editor icon or use the keyboard equivalent or menu
command to switch editor views.
The Window Editor switches to the Code Editor for the Window.

If the Project Editor is open, you can go the Code Editor for a window directly by
holding down the Ctrl+Shift keys (Windows and Linux) or Option (on Macintosh)
when you double-click or press Enter (Return on Macintosh) on the Window’s
name.

To open the default event in the Code Editor for a specific control, do this:

1 If it is not already open, click on the tab for the window that contains the
control.
The Window Layout Editor for the window appears.

2 Double-click on the control.
This will open the Code Editor for the control’s parent window. REAL Studio will
then automatically expand the Controls group in the browser area, expand the con-
trol you double-clicked on, and select the default event handler (e.g., the Action
event handler for a PushButton).

Each control has its own default event handler. For example, a PushButton’s default
event is the Action event, a ScrollBar’s default event is the ValueChanged event, and
a ListBox’s default event is the Change event.

To open a selected event in the Code Editor for a specific control, do this:

1 Right+click on a control in the window (Control-click on Macintosh) and
choose Edit Code from the hierarchical menu.
A submenu of events will appear.

2 Choose the desired event from the submenu.

To open the Code Editor for a module or class, right+click the name of the item in
the Project Editor (Control-click on Macintosh) and choose Edit Source Code from
its contextual menu. Modules are stand-alone objects in which you can manage con-
stants, methods, and properties. Classes are reusable objects that are based on exist-
274 REALbasic User’s Guide

Programming with Events and Objects
ing objects in REAL Studio. To open a window’s Code Editor directly from the
Project Editor, you can select it and press Option-Return on Macintosh.

You will learn more about modules in Chapter 6, “Adding Global Functionality
with Modules” on page 367 and classes in Chapter 10, “Creating Reusable Objects
with Classes” on page 531.

Configuring the
Code Editor

You can specify various options for the Code Editor. On Windows and Linux,
choose Edit . Options to display the Options dialog box. On Mac OS X, choose
REAL Studio . Preferences. The Code Editor Options is shown in Figure 225

Figure 225. The Code Editor Options screen.

With the Code Editor Options or Preferences screen, you can set preferences for the
following items:

n Font: Controls the font and font size used for your code. The first two choices,
System and SmallSystem, tell REAL Studio to use the current system or small
system font for the platform on which REAL Studio is running. Setting a font size
of zero tells REAL Studio to choose a font size that looks best for the current
platform.

n Syntax Highlighting: This set of preferences sets the colors the Code Editor uses to
make your code more readable.

You can assign colors to the following items:

n Keywords: REAL Studio language elements, such as control structures (If,
while, etc.), and data types (integer, color, double, etc.).

n Strings: Literal strings used in code, such as literal text passed to the MsgBox
function to display a message to the user.

n Integer Numbers: Numbers with no decimal point.
275REALbasic User’s Guide

Programming with Events and Objects
n Floating Point Numbers: Numbers that use a decimal point. The distinction
between Number and Real Numbers here doesn’t depend on the declared data
type. For example, if you declare the variable i to be an Integer but set i=5.76,
the “5.76” uses the color assigned to Floating Point Numbers.

n Source Code: The text of your variables, controls, classes, operators, methods,
properties, and so forth.

n Comments: The text of comments inserted in your code. Comments are pre-
ceded by two slashes (//), the REM keyword, or a single quote mark (').

n Autocomplete: The text that appears when you use the AutoComplete feature
while writing code. For more information on how to use Autocomplete, see the
section “Autocomplete” on page 291.

n Code Editor Background: The default color for the background in the code
editing area of the Code Editor. The default color is the current OS background
color.

n Matched Block Braces: The default color in the Code Editor for correctly
matching lines of code that begin and end a loop of any type, such as “If” and
“End if”.

n Unmatched Block Braces: The default color in the Code Editor for incorrect
lines of code that are supposed to begin and end a loop of any type. Matched and
unmatched block braces are illustrated in the section “Entering Your Code in the
Code Editor” on page 283.

n Debugger Highlight: The default color that the Debugger uses to highlight
the line of code that is executing. This feature is described in the section “The
Debugger” on page 636.

n URLs: The default color that is used in the Code Editor for URLs that are entered
as strings.

To change a color, select the item that you want to modify in the Syntax Highlight-
ing list and click on the color patch to display the Color Picker, select a new color,
and click OK. To revert all color preferences to their default settings, click the Reset
button.

n Default Comment Style: This preference enables you to control whether the Code
Editor will use two slashes (//) for commented lines or the single quote (‘). Your
preference is used when you click the Comment button in the Code Editor Toolbar.

n Autocomplete applies standard case: If you select this preference, REAL Studio
uses the standard uppercase/lowercase conventions when you use the Code Editor’s
autocomplete feature. It automatically capitalizes terms and uses the internal
capitalization shown in the Language Reference. If this preference is deselected,
autocomplete uses whatever capitalization you’ve typed. For more information on
the Autocomplete feature, see the section “Autocomplete” on page 291.

n Autocomplete shows details: If you select this preference, each item in the
autocomplete drop-down list includes an icon that denotes its data type. If the
276 REALbasic User’s Guide

Programming with Events and Objects
preference is deselected, then only the names of the items are shown. By default,
Autocomplete Shows Details is selected.

n Home and End Keys: This preference enables you to specify the behavior of the
Home and End keys. Your choices are: Scroll to the beginning and end of the
document or to move the cursor to the beginning and end of the current line.

Customizing
the Code
Editor Toolbar

The Code Editor Toolbar (just below Tabs bar) has buttons for adding items to the
code for the object being edited. By default, it has buttons for adding methods,
properties, event definitions, constants, menu handlers, notes, and comments. If you
like, you can modify the Code Editor toolbar with the View . Editor
Toolbar . Customize submenu. Note that a Code Editor pane must be selected to
customize the Code Editor toolbar rather than another editor’s toolbar. The Cus-
tomize Code Editor Toolbar dialog appears:

Figure 226. The Customize Code Editor Toolbar dialog box.

The Customize Code Editor Toolbar dialog box uses a “mover” interface to
configure the toolbar. Listed in the right panel are the current items in the toolbar.
The left panel contains any available items, but all Code Editor toolbar items are
displayed by default.

The following operations are available:
277REALbasic User’s Guide

Programming with Events and Objects
n To add an item, highlight it in the left panel and click the Add button (assuming
that an item is available).

n To remove an item, highlight it in the right panel and click the Remove button.
This moves the item to the list on the left.

n To reorder an item, highlight it in the right panel and click either Move Up or
Move Down. The order in which the items are listed is the left-to-right order in the
toolbar.

n To change the appearance of the items in the toolbar, choose an item from the
Display As drop-down menu. Your choices are:

n Big icons with labels.

n Small icons with labels,

n Big icons (no labels),

n Small icons (no labels),

n Labels only.

n To reset the toolbar to the default toolbar, click the Reset button (Windows and
Linux) or Reset Defaults button (Macintosh).

The Browser To view the items in each category, click the plus sign (Windows) or disclosure tri-
angle (Macintosh and Linux) to the left of the category name. For example, to view
all of the controls for the window, click the plus sign or disclosure triangle next to
the Control’s category name in the window’s editor. When you do this, the list of
controls will appear below and to the right. Each of the controls can then be
expanded in the same way to display a list of the event handlers for that control.

For example, in Figure 227 you can see that the window named TextWindow has a
BevelButton named BoldButton.
278 REALbasic User’s Guide

Programming with Events and Objects
Figure 227. A BevelButton’s Action event handler.

The Location area gives the name of the screen as TextWindow.BoldButton.Action.
That is, it’s the name of the window, followed by the name of the control, followed
by the name of the event handler, separated by dots:
WindowName.ControlName.EventHandlerName.

This control has the following event handlers:

n Action

n Close

n DropObject

n MouseDown

n MouseEnter

n MouseExit

n MouseMove

n MouseUp

n Open

The control’s event handlers are listed in alphabetical order within a control or object.
When you first open the event handlers for a control (for example, by double-clicking a
control in a window), its default event handler is selected. It may be the first event
handler in the list (i.e., the Action event handler for a PushButton) but this is not
always true. For example, the Paint event is the default event handler for a Canvas
control.

Clicking on a control’s event handler in the Browser list displays the code associated
with that event handler in the Code Editor.
279REALbasic User’s Guide

Programming with Events and Objects
You will learn more about these event handlers later in this chapter.

Figure 228. Some code associated with a control’s MouseDown event handler.

Event handlers in the Browser that have code associated with them appear in bold. If
one of a control’s event handlers has code in it, the event handler’s name, the control’s
name, and the Controls category will all appear in bold. For example, in Figure 227 on
page 279, only the Action event has any code associated with it. Controls that have no
code appear in plain text. When you are trying to find some code, the bold style acts as
a visual cue to let you know if there is any code you might need to look at.

Showing and
Hiding Empty
Events

When you have code in only a few event handlers, it is often easier to work with the
browser when you hide the event handlers that have no code in them. By hiding the
empty event handlers in the browser, you can reduce the amount of time that you
spend scrolling the browser up and down.

The View menu and the contextual menu in the Code Editor contain menu
commands for hiding (or showing) empty events.

When the empty event handlers are hidden, more objects and their event handlers
can be brought into view. Figure 229 on page 281 compares the two Code Editor
states.

Selected
event handler
280 REALbasic User’s Guide

Programming with Events and Objects
Figure 229. The Code Editor with shown and hidden empty events.

To hide empty events, choose View . Hide Empty Events or right+click in the
browser area (Control-click on Macintosh) and choose Hide Empty Events from the
contextual menu. When the empty events are hidden, these menu items change to
Show Empty Events.

When you want to add code to an empty event handler while empty events are
hidden, you can use the Switch To contextual menu item. Right+Click (Control-
click on Macintosh) and choose the Switch To hierarchical menu item. It has
submenus that let you switch the Code Editor to any event handler, including ones
that are hidden in the Browser tree.

Of course, you can also use either the View . Show Empty Events menu item or the
contextual menu to display the empty event handlers and then navigate to the
desired empty event handler in the usual way.

Empty Events Shown
You need to scroll the
Browser to bring all
objects and event
handlers into view.
However, you can add
code to an empty event
handler by clicking on it.

Empty Events Hidden
You have access to all
objects and event handlers
that have code without
scrolling the Browser.
281REALbasic User’s Guide

Programming with Events and Objects
For more information on the Code Editor’s contextual menu, see the section “The
Code Editor’s Contextual Menu” on page 297.

NOTE: When you add new controls to a window, REAL Studio gives them default names. For
example, the first PushButton you add to a window will be named “PushButton1” by default.
A name like that describes the type of object but not what it does. The Browser displays small
icons next to each control’s name to make the control type clear. Its icon indicates the class from
which the control was derived. You should use the control’s Properties pane to give the control a
meaningful name. For example, in Figure 227 on page 279 a BevelButton control has been
renamed BoldButton to indicate its function in the application.

Understanding
Methods in
the Code
Editor

Event handlers, menu handlers, and methods are all, in fact, methods. Event han-
dlers and menu handlers are simply methods that are called when certain events
occur or menu items are selected. When you select a method in the browser, its code
appears in the Editor. Methods are made up of two parts: The parameter line and
your lines of code.

Figure 230. The parts of a method.

The Parameter
Line

The parameter line displays Sub (short for subroutine) if the method does not return
any values, followed by the name of the method or event handler, and then any
parameters surrounded by parentheses. The example in Figure 231 shows the
parameter line of a MouseMove event handler. This event handler is called whenever
the mouse is moved inside the control. It is passed two parameters that describe the
current mouse location. The parameter X represents the horizontal measurement
and Y represents the vertical measurement. Your code for the MouseMove event
handler can use the values of X and Y.

Figure 231. The parts of the parameter line.

For more information on parameter passing, see “Passing Values to Methods” on
page 241 of chapter 4.

Parameter line

Your code

Name Parameters
282 REALbasic User’s Guide

Programming with Events and Objects
If the method returns a value, it’s called a function. A function’s parameter line
begins with the word Function instead of Sub and has an additional parameter; the
data type of the value that will be returned by the function. The declaration of the
value returned by the function follows the parameters. Figure 232 shows the
parameter line for a TextField’s KeyDown event handler. This event handler is
called when the user types a key in a TextField. It is passed the key that was pressed
in the parameter key. The value returned is a boolean. If you return True from the
function, the event is discarded as if it never happened at all and the key that was
pressed will not appear in the TextField.

Figure 232. The parameter line of a function

For more information on functions, see “Returning Values from Methods” on
page 243 of chapter 4.

Entering Your
Code in the
Code Editor

As you enter your code, REAL Studio does a few things for you automatically. First,
it indents your If...Then, Select...Case, and loops as you type them to make it easier
to see which lines of code fall inside a particular statement. It also indicates the
scope of each level of indentation with gray brackets to the left of your code. For
example, Figure 230 on page 282 shows how the lines indicate the scopes of the If
and Else clauses in an If...Then statement. If the If...Then statement were incom-
plete, then the top corner of the bracket would be red rather than gray and the bot-
tom section of the bracket would be missing.

For example, in the top illustration in Figure 233, the Else statement is misspelled,
so the bracket does not enclose the If...Else portion of the statement. The red corner
indicates that the If statement is open. In the bottom illustration, the spelling error
is corrected, but the If statement is still open because the End If statement hasn’t
been added.

The type of the value returned
283REALbasic User’s Guide

Programming with Events and Objects
Figure 233. Errors in If...Then statements.

In Figure 234, the If statement has been closed, but the Else statement is still
misspelled. Notice that Else isn’t indented as it should be and the bracket does not
show that it is part of the If...Else...End if statement

Figure 234. A closed If...End if statement with Else misspelled.

When the errors in the If.End If statement are fixed, the brackets around each clause
are completed and the error indicators disappear. The bracket then looks as shown
in Figure 235.

Figure 235. A closed If...End If statement.

Incorrect-The ”Else”
statement misspelled

Correct so far-but the If
statement is incomplete
284 REALbasic User’s Guide

Programming with Events and Objects
When the If...End If statement is correct, the If and Else lines each acquire a widget,
indicating that the statement be collapsed and then expanded. Each widget can
collapse and then expand its own clause. This is shown below.

Figure 236. Collapsed If and Else statements.

If a clause in an If...End If statement is collapsed, the widget changes to a plus sign;
click it to expand the clause.

If your code uses two or more levels of nested If statements, the indentation and
bracketing shows the scope of each statement. Errors are indicated in the same way
as for single-level If statements.

Figure 238 on page 286 shows a correct nested For...Next statement and two types
of errors. In the middle illustration, the inner (nested) For...Next statement is
incomplete, so its set of brackets has a red top corner and no bottom corner. In the
bottom illustration, both loops are complete, but the outer loop is incorrect. It is
ended by an (incorrect) “End For” statement, which doesn’t exist in the language.
The brackets for the outer loop are complete but both the top and bottom corners
are red.

All of the errors that are indicated by incomplete or red brackets indicate errors that
will prevent the application from being compiled. They must be fixed before you
can test the application.

These illustrations use the default colors for incomplete or complete brackets. If you
prefer other colors, you can choose different colors in the Code Editor panel of the
Options dialog box (Preferences on Macintosh). The color choices are listed as
“Matched Block Braces” and “Unmatched Block Braces” in the Syntax

The “If” clause is collapsed,
indicated by the plus sign
on the left and the three
dots on the right. Dots
indicate that there’s hidden
code up to the “Else.”

The “Else” clause is
collapsed, indicated by the
plus sign on the left and the
italic “End If”.

Both the “If” and “End If”
clauses are collapsed. Dots
indicate where there’s
hidden code.
285REALbasic User’s Guide

Programming with Events and Objects
Highlighting listbox. To change a color, simply highlight the item and click the
color patch to the right of the listbox. Choose the color in the Color Picker. When
you close the Color Picker, your choice will be shown in the Syntax Highlighting
groupbox.

Figure 237. Changing the color for Unmatched Block Braces.

Figure 238. Nested For statements.

Correct: Each For...Next
loop has its own brackets

Incorrect: The inner loop
is incomplete, indicated
by a red incomplete
bracket

Incorrect: The outer loop
is complete but incorrect.
The “End For” must be
replaced by “Next”. Both
top and bottom corners
of the outer loop are red.
286 REALbasic User’s Guide

Programming with Events and Objects
Second, it uses colors to indicate different types of keywords in your code. It uses
blue text for keywords and data types (You can change this color by selecting
another color using the Code Editor Options (Preferences on Mac OS X). See
“Configuring the Code Editor” on page 275.) Figure 230 on page 282 shows an
example of these features.

If you insert comments in your code, they appear in red type by default. The color
applied to comments can also be changed via Code Editor Options. A text string is
treated as a non-executable comment if it is preceded by double slashes (//), a
straight quote mark ('), or the REM keyword. Comments do not necessarily have to
appear on separate lines, as is illustrated in Figure 239.

Figure 239. Comments at the end of lines of executable code.

A different color is also used for text strings that appear as part of executable code.
This text is in red, as shown in Figure 239.

Inserting a
Color into the
Code Editor

The REAL Studio language includes three functions that return a color, RGB, HSV,
and CMY. You can always use them to insert a color value into the Code Editor.
You can also specify a color literal by writing its RGB value in hexadecimal and pre-
ceding it with the &c symbol. For example, &cFF0000 specifies the color red. How-
ever, none of these ways display the color that you specify. If you want to choose a
color from a color palette, you have the following option.

When you need to insert the value of a color into the Code Editor, you can take
advantage of a shortcut that is in the Code Editor contextual menu. Place the inser-
tion point where you want to insert the color value. Right+click (Control-click on
Macintosh) and choose Insert Color from the contextual menu. The Color Picker for
your operating system appears. Use it to select a color from its color palette and
287REALbasic User’s Guide

Programming with Events and Objects
click OK. When you click OK, the value of the color in hexadecimal is inserted at
the insertion point. It uses the format &cRRGGBB, where RR is the value of red in
hex, GG is the value of green, and BB is the value of blue. Each value ranges from
00 to FF.

Breaking up a
Line of Code in
the Code Editor

If you are writing a very long line of code, you can continue it onto a second “line”
in the Code Editor. End the first line with an underscore character and continue
typing on the next line. The REAL Studio compiler will treat the continuation line
as part of the first line of code.

For example, if you need to assign a long string to a property or variable, you can
split it up into two lines in the Code Editor. You do this by placing an underscore
character as the last character on the line to be continued. When you use the
underscore for this purpose, the continuation lines will be indented automatically,
as shown in this following example. The text assigned to the Message property of a
MessageBox is split into two lines in the Code Editor, but the compiler treats it all
as one string.

Figure 240. Using the underscore character to continue a long line.

Notice that this example places the underscore character outside the literal text
string and uses the + operator to append the second string to the first. You need to
do this so that the compiler doesn’t think that you are trying to include the under-

d.Message="Do you want to save changes to this document"_
+" before closing?"

Message split
into two lines
288 REALbasic User’s Guide

Programming with Events and Objects
score character as part of the literal text string. If the line that you are splitting up
does not involve a quoted string, you don’t have to do this.

To type the underscore, enter Ctrl+Enter (Option-Return on Macintosh). This
enters the underscore and moves the text insertion point to the next line. The next
line is automatically indented, indicating that it is a continuation line.

Standardizing
the Format of
your Code

The Code Editor contextual menu offers a menu command that uniformly capital-
izes the REAL Studio terms in your code. If you would like your code to be in this
format, highlight the code and then right+click (Command-click on Macintosh)
and choose Standardize Format from the contextual menu.

Converting a
New Method

When you find that a block of code in a method can be reused elsewhere, it is best to
refactor the existing method. You can move the reusable code to its own method
and then call it from the existing method and any other point from which it should
be executed.

The Code Editor’s contextual menu provides a simple way of doing this. Select the
block of code that you need to reuse and then Control+click (Command-click on
Macintosh) to display the contextual menu. Choose Convert to Method.

Figure 241. The Convert to Method contextual menu.
289REALbasic User’s Guide

Programming with Events and Objects
In Figure 241, a block of code in an If statement is being converted. When the
Convert to Method command is chosen, REAL Studio cuts the selected code and
pastes it into a new Untitled method, as shown below.

Figure 242. The converted method.

Rename the method and add any parameters that the new method requires. Then go
back to the method from which the code was converted and add a call to the new
method.

Copying all
items in a
Group

The Code Editor supports dragging and dropping a group of items from the Code
Editor in one window to another. For example, suppose you have a large group of
menu handlers for a window and you wish to reuse those menu handlers for another
window.

To do so, drag and drop the group heading (e.g., menu handlers, methods,
properties, or constants) while holding down the Option key for Macintosh. Drag to
the browser area and release the mouse button.

Getting Help in
the Code
Editor

The Code Editor’s contextual menu contains a Help menu command that you can
use to get help for any REAL Studio item. Select the item for which you want help
and then right+click (Command-click on Macintosh). Choose Help for ItemName
from the contextual menu.
290 REALbasic User’s Guide

Programming with Events and Objects
Figure 243. Getting help for the ListBox class using the Code Editor’s contextual
menu.

The Help menu command will open the online reference to the item that you
requested. Of course, help is not available for user-written methods. You can,
instead use the Go To MethodName or the Find MethodName to open the desired
method.

If no item is selected, this menu item changes to “Open Language Reference.” It
opens the online reference to the home page.

Autocomplete As you type, REAL Studio also attempts to guess what you are typing. If you type
the first few characters of a REAL Studio language object — either built in or a vari-
able, method, or property that you created — it shows its guess in light gray type. If
the guess is correct, complete the entry by pressing the Tab key. This process is
illustrated in Figure 244.

Figure 244. REAL Studio proposes “MsgBox” when the user types “Ms”

As the user types “Ms”, REAL
Studio proposes “MsgBox”

When the user presses Tab,
REAL Studio completes the
291REALbasic User’s Guide

Programming with Events and Objects
If REAL Studio finds several matching objects, it instead displays an ellipsis (“…”).
Press the Tab key to display a contextual menu of choices. You can select an item on
the contextual menu with the mouse or navigate up or down in the menu with the
Up and Down Arrows. When using the Down arrow keys and you reach the end of
the list, the selection will wrap back to the start of the list (same if you use the Up
arrow key and reach the top of the list). When the desired item is highlighted, you
can select it by pressing the Spacebar, Return, Enter, or Right Arrow keys.

While the contextual menu is displayed, you can continue typing to narrow down
the list of choices or cancel the contextual menu by pressing the Left Arrow, Esc,
Delete, Backspace, or Clear keys.

The process of choosing from the contextual menu is illustrated in Figure 245.

Figure 245. Multiple choice autocomplete options.

The Autocomplete popup includes a small icon to the left of each item that denotes
its type. This feature is on by default, but it can be turned off by deselecting the
“Autocomplete shows details” preference in the Code Editor options panel.

The user types “accept”
and an ellipsis appears…

He presses Tab to display
the contextual menu…

He uses the Up and Down
Arrow keys to highlight
the desired choice and
presses Enter or clicks on it
with the mouse.

REAL Studio completes
the entry.
292 REALbasic User’s Guide

Programming with Events and Objects
Figure 246. The Autocomplete Shows Details” option.

Autocomplete works in the middle of an expression. With the insertion point
anywhere in an expression, you can press Tab to see a pop-up menu of acceptable
choices. Auto-code completion also works for user-defined properties, methods,
functions, and events. Autocomplete works in the Location and Search areas in the
Main toolbar as well.

It also works in the search window in the Online Reference.

Using the Edit
Menu

While you are entering code, the Edit menu’s standard Cut, Copy, and Paste com-
mands are available. The Code Editor also supports both Undo and Redo
(Shift+Ctrl+Z or Shift-x-Z). The Comment button or the Edit . Comment menu
command (Ctrl+' or x-') is especially useful. When applied to lines of code, it com-
ments them out; when applied to comments, the command changes to Uncomment
and converts the lines back to code.

Note: The Comment button may not be shown; if you wish to use it, you can add it
to the Code Editor toolbar by choosing View . Editor Toolbar . Customize or the
Customize menu item in the toolbar’s contextual menu and adding it to the toolbar.

Using Text
Services

Mac OS X provides ‘hooks’ that integrate a variety of services into existing applica-
tions. Text Services are provided by the OS and utilities that are written to provide
them. Mac OS X Text Services are supported by REAL Studio. A variety of services
are available from the Code Editor.

Autocomplete
Shows Details option
293REALbasic User’s Guide

Programming with Events and Objects
The exact services that are available to you depend on the utilities on your
Macintosh. You should have the ability to open a URL in your browser, send mail,
copy text into text processors, search with Spotlight, and google a term.

To request Text Services while working in the Code Editor, choose REAL
Studio . Services. A hierarchical menu such as this will appear.

Figure 247. A Text Services menu (some items depend on specific applications).

Some services assume that you have selected text and want the service to handle it in
some way.

Getting More
Usable Space
in the Code
Editor

There may be times when you need more vertical or horizontal space in the Code
Editor. You can, of course, resize the IDE window to get more space, but this isn’t
always an option. One way to get more space is to use a smaller font. You can set the
font and font size for the Code Editor by choosing Edit . Options (REAL
Studio . Preferences on Mac OS X) and selecting the Code Editor font and font size
in the Source Code Editor pane.

You can also minimize the Browser when you don’t need it. Use the View . Editor
Only command to minimize the size of the browser area and maximize the code
editing area. You can also hide the Browser by dragging the divider (the bar
between the Browser and the Editor) all the way to the left side of the Code Editor
window. However, dragging the divider to this position does not change the state of
the Editor Only menu command. If Editor Only is off and you drag the divider to
the extreme left, Editor Only is still off even though only the editor is visible.
294 REALbasic User’s Guide

Programming with Events and Objects
Figure 248. The Code Editor’s Resize Bar.

When you do this, the Browser is hidden and the divider is reduced to a button to
the left of the Code Editor.

Figure 249. The Code Editor with the Browser hidden.

As you can see in Figure 249, this gives you quite a bit of horizontal space to work
with in the Code Editor. You can show the Browser again by dragging the Resize
Bar handle towards the right side of the Code Editor window.

The Resize Bar
Resize Bar

Resize Bar handle
295REALbasic User’s Guide

Programming with Events and Objects
NOTE: The Browser will expand and collapse the categories (Controls, Events, Menu Han-
dlers, Properties) when they are selected by pressing Ctrl+Left Arrow (to collapse) or x-Left
Arrow and Ctrl+Right Arrow or x-Right Arrow (to expand).

Opening a
Window from
its Code Editor

If you are working in a Code Editor that belongs to a window, you can switch to the
window’s Window Editor (a.k.a., Layout Editor) by pressing Ctrl+` (Command-` on
Macintosh) or choosing the View . Show Layout menu command. When the Win-
dow Editor is shown, the menu command changes to View . Show Code. Pressing
the keyboard shortcut will toggle back to the Code Editor for the window.

You can also switch views using the pair of icons just above the browser area. They
toggle between the Layout Editor and the Code Editor for the window. The icon on
the right displays the Code Editor and the icon on the left displays the window in
the Layout Editor.

Figure 250. View Mode Buttons for switching between the Layout Editor and the
Code Editor.

On Macintosh and Linux, the selected view mode is highlighted (as shown in Figure
250) and on Windows it is depressed.

If you prefer, you can configure the Window Editor so that both the window’s
Layout and Code Editors can be open at the same time. You can do this in either of
two ways. You can set up the IDE so that the Layout and Code Editors each get
separate tabs in the Tabs bar. You can also open up the Code and Layout Editors in
separate IDE windows.

To give each type of editor separate tabs, open the Options dialog (Edit . Options
on Windows and Linux and REAL Studio . Preferences on Macintosh), select
General preferences, and then deselect the “Code and Window Editors share a Tab”
option. To use separate windows for all your editors, deselect the “Enable Tabbed
Browsing” option.

Finally, you can drag the tab for either the Code or Layout editor out of the IDE
window and it will open in a separate window. For more information on these
options, see the section “Dragging a Tab” on page 54 and “Configuring the IDE for
Multiple Windows” on page 51.

You can also open up a new IDE window for the project and use it for any purpose
you like. Choose File . New Window to get a new IDE window for the current
project. In the new window, you can use one IDE window to display the window in
its Window Editor and the other IDE window to display its Code Editor.

Code EditorLayout Editor
296 REALbasic User’s Guide

Programming with Events and Objects
The Code
Editor’s
Contextual
Menu

Contextual menus are context-sensitive pop-up menus that appear when you
right+click the mouse button on an item (Ctrl+click within the Code Editor on Mac-
intosh). This displays a contextual menu with all of the items from the Browser. This
is especially handy when you are using the View . Editor Only option to provide
more horizontal space in the Code Editor or when you have the Hide Empty Events
option on (see “Showing and Hiding Empty Events” on page 280).

The Add contextual menu item has a submenu that allows you to add a new item to
the Code Editor. For Code Editors belonging to windows, you can add a new
method, shared method, property, shared property, computed property, shared
computed property, constant, menu handler, or note. For Code Editors belonging to
classes, you can also add a new event definition.

Figure 251. The Code Editor’s Add contextual menu.

These menu commands are also available under the IDE’s Edit and Project menus.
The contextual menu in the code editing area has special items for searching on the
current item and to wrap selected items in If, Do, and While statements.

Searching
your Project

The REAL Studio IDE offers three types of interfaces for finding project items.
They are:
297REALbasic User’s Guide

Programming with Events and Objects
n The Search area in the Main toolbar,

n The Find and Replace dialog box,

n The Code Editor contextual menus.

The Search
Area

The Search area contains a menu in which you can specify that you want to search
the entire project, the current item (for example, the current window, menubar,
class, or module), or the current method only. On Mac OS X 10.4 and above, it also
offers to search the entire computer using the operating system’s search engine,
Spotlight. You display the pop-up menu by pressing the mouse button on the mag-
nifying class in the Search area.

To do a search, choose the scope of the search from the pop-up menu and then type
in the item to be searched. Press the Enter key (Return on Macintosh). When it
finishes searching your project, it will display the results of the search in a new IDE
screen called Search Results. If you do a new search, those results will replace the
current results.

For example, Figure 252 shows a search on the string “Document”. In the project, it
is the name of a window’s property. REAL Studio has found all occurrences in the
project and listed them on the Search Results page. The Type column in the list
shows the type via an icon and the Location column gives the location in the form
Classname.EventHanlder or WindowName.EventHandler. The Matches column gives
the line of code that contains the term being searched.

Figure 252. The Search Results for a search on “Document”.

The columns in the Search Results list are sortable. Click on the column header to
sort on that column.
298 REALbasic User’s Guide

Programming with Events and Objects
In this search, the search string is the name of a property. The icon in the left
column indicates whether its usage is in executable code, in a text string, or in a
non-executable comment.

The Search Results screen gives you the option of replacing the highlighted string.
If you want to do a replace, enter the replacement string into the Replace With area
at the bottom of the window. Then highlight one or more lines in the list. You can
use the Select All, Select None, and Invert Selection buttons in the Search Results
toolbar to make or change the selection.

The replacement will be done only in a highlighted line. As you highlight the lines,
the Replace button will indicate how many replacements will be done. For example,
in Figure 252, no lines are highlighted, so no replacements will be done. In Figure
253 all the lines are highlighted so all the instances will be replaced.

Figure 253. The Search Results screen with all rows selected.

If you don’t want to do a replace, you can navigate to any of the search results by
double-clicking the line. The Search Results screen remains accessible via the Tab
bar after you have visited the editor containing the searched string. When you are
finished dealing with the occurrence of the search string, you can return to the
Search Results screen by clicking on its tab.

When you do more than one search, a Refresh button appears in the Search Results
screen. Click it to redisplay the first search.

The Find in
Project and
Find dialogs

The Edit . Find menu item has submenu items for finding or replacing for the cur-
rent item and for the whole project.

Find All displays a Find and Replace dialog in which you can specify the scope of
the Find.
299REALbasic User’s Guide

Programming with Events and Objects
Figure 254. The Find in Project dialog box.

The Find In pop-up menu lets you set the scope of the search. You can choose to
search in:

n The entire project: Searches all of the project items in your Project Editor. This is
not limited to classes and windows.

n The current window or class and their subclasses: Searches only the current
window or class and all subclasses of that window or class.

n The current project item only: Searches only the current class, window, or
module, and omits any subclasses derived from the current class or window.

n The current method only: Searches only the current method in the Code Editor.
Available only when a method is displayed in its Code Editor.

In this case, the Action event of a Pushbutton in a window was displayed, so the
pop-up offers the following choices:

Figure 255. The Find scope pop-up menu.

The checkboxes in the center of the Find in Project dialog offer three options:

n Whole Word: Find will search only for the entire word or words specified in the
Find area. It will ignore matching text strings that are embedded within words.

n Match Case: Find will search only for text strings that match the
uppercase/lowercase specifications entered into the Find area. For example, if you
entered “document”, and checked Match Case, it will not find “Document”.

n Use RegEx: If RegEx is specified, you can use regular expressions in your find and
replace specifications. REAL Studio will interpret them according to the rules for
regular expression searches. If you use regular expressions but do not check this
CheckBox, REAL Studio will assume that you mean the literal text you entered. See
300 REALbasic User’s Guide

Programming with Events and Objects
the entry for the RegEx class in the Language Reference for information about regular
expressions.

When you click Find All, it will find all the instances of the string in the Find scope
that you specified. It opens a Search Results tab in the IDE and lists all the items
that it found. An example Search Results screen is shown in Figure 259 on
page 303.

The Find dialog offers the same find and replace options but the scope of the search
is limited to the current event handler. Optionally, you can limit the scope further
to the selected text. Click the “Search in selected text only” checkbox to limit the
scope.

Figure 256. The Find dialog box.

The Title bar gives the name of the event handler or method that the search is
limited to. Unlike the Find in Project dialog, the Find dialog does the find or
find/replace one item at a time. Click Next to find the next item or click Replace to
do the next replace.

The Edit . Find submenu gives you the ability to find the next occurrence of the
item you are searching for, replace the highlighted text in the Code Editor with the
text in the Find window’s Replace field, and replace all occurrences within the
chosen scope. The keyboard equivalents are shown in Table 8:
Table 8: Keyboard equivalents for Find commands.

Command Keyboard Equivalent

Find Ctrl+F or x-F

Find Next F3 or x-G

Replace Ctrl+= or x-=

Replace and Find Next Ctrl+Shift+H, or x-Shift-=
301REALbasic User’s Guide

Programming with Events and Objects
Recent and
Favorite
Searches

The two icons in the top-right corner of the Find in Project dialog box enable you to
store and recall previous searches. The icon on the left represents recent searches and
the icon on the right represents favorite searches. REAL Studio adds your searches to
the Recent searches list automatically and you can add searches to your Favorites list
with its Add to Favorites menu item.

Figure 257. The Recent searches and Favorite searches icons.

To recall a recent search, simply display the Recent searches pop-up menu and
choose it from the list. To add a search to your Favorites list, display the Find or
Find and Replace specification in the Find dialog and then choose Add to Favorites
from the Favorites pop-up menu. REAL Studio will then present a dialog box
enabling you to name the favorite. You can then recall the stored search at any time
by choosing its name from the Favorites pop-up menu.

Finding using
the Contextual
Menu

If you are specifically looking for the occurrences of a variable, constant, property,
method or other item, you can use the Code Editor’s contextual menu to do the
search. The “Find Item…” menu item finds the occurrences of Item. It is especially
convenient for items other than local variables (which are declared with Dim
statements within the method) because it searches through the code belonging to
other objects in the project. For example, you can easily locate the declarations for
the constants you use in localizing your application or properties that belong to
other windows, modules, or classes. Or, you can use Find Item to locate the source
code for one of your methods.

To use the contextual menu, simply select the item whose occurrences you wish to
find. Right+click (Control-click on Macintosh) to display the contextual menu.
Choose the “Find itemName” menu item. The Find contextual menu item is available
in both the code editing area and the Code Editor browser.

In the following example, the occurrences for of item “Document” in the Code
Editor is located. It turns out to be a property of the window.
302 REALbasic User’s Guide

Programming with Events and Objects
Figure 258. Using the “Find Item” contextual menu.

REAL Studio opens a new search results screen and lists all occurrences, with the
item being searched for highlighted. Figure 259 shows the results of the search that
is specified in Figure 258.

Figure 259. The search results screen.

The standard Search Results screen offers the option of replacing the selected text in
any number of lines. Also, you can double-click any row of the table to display that
occurrence.
303REALbasic User’s Guide

Programming with Events and Objects
Copying and
Pasting Code

If you are working with two Code Editor windows and want to move properties,
methods, events, or constants in one window in another window, you can copy and
paste them. You can select the group header in one window, copy it, and then paste
it into another editor.

In this screen shot, the window properties are being selected for copy. To paste the
properties into another Code Editor window, chose Edit . Copy, switch to the other
window and choose Edit . Paste.

Figure 260. Selecting a group header for copying.

Printing Your Code
When you need to print your source code, choose File . Print (x-P or Ctrl+P).

Using Edit . Options (REAL Studio . Preferences on Mac OS X), you can specify
the font and font size used for printing, as well as whether you wish to see keywords
in bold, and print the colors that appear in the Code Editor. Use the System or
SmallSystem fonts to tell REAL Studio to use the system font for the platform on
which REAL Studio is running and a font size of zero to tell REAL Studio to choose
the optimal font size for your operating system. To print in color, select the “Print
in Color” option.

The Printing options are shown in Figure 261.
304 REALbasic User’s Guide

Programming with Events and Objects
Figure 261. Options for printing.

Importing and Exporting Your Classes, Menus, Modules, and Windows
REAL Studio makes it easy to import and export the various objects you can create.
You can also import files you wish to use in your project, such as REAL Studio code,
windows, menus, sounds, pictures, movies, REAL SQL databases, and resources.

External
Project Items

If you want to share an object among several projects, you can import it as an exter-
nal project item. The item remains on disk and changes that are made to it from
another project are automatically reflected in the current project when you re-open
it. However, you can’t open more than one project simultaneously that references
the same external project item. To add an external project item to a project, hold
down the Ctrl+Shift keys (x and Option keys on Macintosh) while you drag the
item from the desktop to the Project Editor. In the Project Editor, the external proj-
ect item’s name will be shown in italics.

For more information, see the section “External Project Items” on page 80.

Importing To import a file you wish to use in your project, simply drag it from the desktop
and drop it in your Project Editor. Or, if the file is not conveniently located on the
desktop, choose File . Import. An open-file dialog box appears, allowing you to
navigate to and import the file.

For code, open the method that you wish to import code into and drag the text
clipping into the body of the method. You cannot use the File . Import command
to import text files into the body of a method.
305REALbasic User’s Guide

Programming with Events and Objects
To delete a file that has been added to the Project Editor, highlight it and press the
Delete key on the keyboard or choose Edit . Delete. You can also delete an item in
the Project Editor by Control-clicking on the item and choosing Delete from the
contextual menu.

Note: When you import a REAL Studio object by dragging it into the Project
Editor, it automatically replaces an item with the same name, without asking you
whether you want to replace it with the dragged item.

Some of the items you import are copied into your project. Some types of objects are
not copied but instead an alias to the original file is stored inside your project. In
the Project Editor, aliases are shown in italics.

When you build a stand-alone version of your project, most of these files are then
copied into the stand-alone application. Table 9 on page 306 shows how all of the
different file types are handled.

Because REAL Studio stores aliases to your imported files, they can be renamed and
even moved. If both the project file and the imported files are moved to another
drive, REAL Studio may have trouble locating the files. Should this happen, REAL
Studio will ask you to locate any files it can’t find.

When you import a picture into your project by dragging it into the Project Editor or
choosing Import from the File menu, the picture will be loaded into memory when
you run your application regardless of whether or not the picture is used.

Table 9: How REAL Studio handles imported files.

File Type Copied Into Project?
Copied into stand alone
applications?

Bitmap, PICT, JPEG, GIF N Y

Cursors Y Y

PowerPC Shared Libraries N N

QuickTime and WMP Movies N Y

REAL SQL Databasesa

a. Data sources, such as a REAL SQL database, appear in plain text in the Project Editor
even though the data is stored outside the project. The connection information to the data
source is stored within the project.

N N

REAL Studio Classes Y Y

REAL Studio Menubars Y Y

REAL Studio Modules Y Y

REAL Studio Windows Y Y

Resources N Y

Sounds N Y

AppleScripts N Y
306 REALbasic User’s Guide

Programming with Events and Objects
If you have several large pictures, your application may not behave very well or it
might even run out of memory. If you have large pictures, consider storing them
externally and loading them with the GetFolderItem method.

All file types except REAL SQL databases are included in the stand-alone version of
your application, so there is no need to include them with your application when
you distribute it.

Exporting The code for methods, events, constants, properties, and so forth can dragged to the
desktop as text clippings or into a text or word processor (Macintosh only). On
Windows and Linux, you can copy code to the Clipboard and paste into a text editor
or word processor.

You can also export your source code to a text file or in REAL Studio’s native format
using an Export… menu command. Which method you use depends on what you
will be doing with the exported code. If you are going to be including code in some
kind of documentation, drag the code to the other application or export your code to
a text file.

On the desktop, the exported objects have their own REAL Studio icons, shown in
Figure 262.

Figure 262. Icons for exported REAL Studio objects.

You can export REAL Studio objects using the Export command.

To export using the Export… command, do this:

1 Open the item so that it is displayed on the screen or select it in the Project
Editor.

2 Choose File . Export Item or display the item’s contextual menu and
choose Export.

3 When the Save As dialog box appears, type a name and click the Save
button.
On Windows and Macintosh, the Save As dialog gives you the option of saving as a
REAL Studio object, as XML, or in Version Control System (VCS) format.

Encrypting
Your Source
Code

If you want to distribute a copy of a window, menu bar, module, or class for others
to use but you do not want them to be able to view or edit your code, use the
Encrypt command to protect the object prior to exporting it. The icon belonging to
an encrypted item in the Project Editor has a small key in its lower-right corner.
307REALbasic User’s Guide

Programming with Events and Objects
Encryption is supported only in the Professional and Studio editions of REAL
Studio. Decryption is supported in all editions.

When a protected object is exported, its icon is no different from an unprotected
object.

You can encrypt (protect) or decrypt (unprotect) a window while it is in your project.
An encrypted window cannot be opened in a Window Editor and no one can access
any code associated with the window or any of the controls on the window.

When encrypting an item, you supply a password that can be used to decrypt it
later.

To encrypt an item, do this:

1 Right+click (or Control-click on Macintosh) on the item in the Project Editor
and choose Encrypt from the contextual menu or choose Edit . Encrypt.
You can optionally add an Encrypt button to the Project Editor toolbar. If you do
so, you can highlight an item in the Project pane and click the Encrypt button to
encrypt the selected item.
The Encrypt dialog box appears, as shown in Figure 263.

Figure 263. The Encrypt Dialog box.

2 Enter and confirm a password for decrypting and click the Encrypt button.

Important Note: Don’t forget the password.

3 If you want the item to be accessible only to REAL Studio 2003r3 and
above, check the “Use REAL Studio 2006r3 Encryption” checkbox.

An encrypted item appears in the Project Editor with a small key in the lower right
corner of its icon, such as this icon for the encrypted SaveChanges window.
308 REALbasic User’s Guide

Programming with Events and Objects
Figure 264. A project with an encrypted window.

When a programmer (including the original author) tries to open an encrypted
item, the Decrypt Object dialog box appears, shown in Figure 265.

To edit the object and/or its code, you must decrypt it using its encryption
password.

To decrypt an encrypted object, do this:

1 Right+click (or control-click on Macintosh) on the item in the Project Editor
and choose Decrypt from the contextual menu or choose Edit . Decrypt.
The Decrypt Object dialog box appears.

Figure 265. The Decrypt window dialog box.

2 Enter the password that was entered when the item was encrypted and
click Decrypt.
If the password is correct, the key will disappear from the item’s icon in the Project
Editor, indicating that it has been successfully decrypted. If you entered an incorrect
password, a dialog box will inform you of that fact.

If you have exported an encrypted item and then imported it into another project,
you can decrypt it with the original password.

Responding To User Actions with Event Handlers
The applications you create with REAL Studio are event-driven. This means that
the user takes some action which results in something happening. For example, the
user chooses Print from the File menu to print something or clicks a button to con-
firm a message in a dialog box. The user takes an action, and the application reacts
to that action. The user’s actions are called events. Earlier in this chapter, you learned
that some events are caused directly by the user. For example, the Action event of a

Encrypted window
309REALbasic User’s Guide

Programming with Events and Objects
PushButton occurs when the user clicks the PushButton. Other events are indirectly
caused by the user, such as the Open event of a window that occurs when the win-
dow opens.

The key to writing the code for your applications is to know what events (both
direct and indirect) you can respond to.

Object-
Oriented
Programming

REAL Studio’s programming language is object-oriented. This means that the code
that is executed in response to an event is actually part of the object itself. Code that
handles an event is called (appropriately) an event handler.

Objects can have their own methods. This allows you to associate code with an
object even though it may not be executed in response to an event directed at that
object. For example, suppose you have a window that displays the contents of a doc-
ument and allows the user to edit it. It would make sense that the window would
know how to save changes made to the document. You can add a method to the
window that is called automatically when the user indicates that he wants to save
changes to the document.

Because objects in your application are supposed to be just like objects in the real
world, you want to associate code with the object that it truly belongs to. For exam-
ple, if you want a window to change its size automatically when it opens based on
certain conditions, it makes the most sense to put that code in the window’s Open
event handler. On the other hand, if you want a button to be enabled or disabled
when the window opens that the button is a part of, you would put that code in the
PushButton’s Open event handler because the code affects the button. The code
works perfectly in both places, but it is more object-oriented to associate it with the
PushButton, since it affects the PushButton. For example, in the real world, when
the door to the room you are in suddenly opens, you probably turn to look at it to
see why it opened. The door does not turn your head. You have that ability to react
to the door opening (an event). You choose to handle that event by turning and
looking in the direction of the door. That ability is part of you — just as the code to
enable or disable the button when the window opens should be part of the button
and not the window.

Another benefit of associating code with the appropriate object is that the code goes
with the object when you use the object elsewhere. If the code is not associated with
the object, you will have to look for it or rewrite it. When you go somewhere, you
take your computer skills with you because they are part of you.
310 REALbasic User’s Guide

Programming with Events and Objects
Windows
Events

Windows get many different events. Table 10 describes these events in general. If
you need specific information about window events, see the Window class in the
Language Reference.

Table 10: Window class events.

Event Description

Activate The window is being made the active window of the
application.

CancelClose The Quit method or the Window.Close method has
been called. Returning True from this method will
cancel the quit and the window will remain open.

Close The window is about to close but hasn’t closed yet.
Controls also receive Close events. A window receives
its Close event after all of the controls have received
their Close events.

ConstructContextualMenu Occurs when it is appropriate to display a contextual
menu. Build and display the contextual menu in this
event for the window or the
ConstructContextualMenu event for a RectControl
(any visible control).

ContextualMenuAction The user has chosen an item from the contextual
menu but it has not been handled by the menu item’s
Action event or its menu handler. Handle a contextual
menu selection from a contextual menu created and
displayed in the ConstructContextualMenu event
handler.

Deactivate The window is being deactivated.

DropObject A file, piece of text, or a picture has been dropped on
the window itself (not on a control in the window).
This event handler is passed a parameter that gives
you access to the item dropped.

EnableMenuItems While the window is front of all other windows, the
user has clicked in the menu bar to select a menu item
or pressed a menu item’s keyboard equivalent. This
event handler gives you a place to decide which menu
items should be enabled before the user can actually
choose one.

KeyDown A key has been pressed that has to be handled by the
window. For example, the tab key is never sent to any
control. It is instead handled by the window itself. If
the window has no controls that can receive the
focus, any keys that are pressed will generate
KeyDown events for the window. This event handler
is passed a parameter that tells you which key was
pressed.
311REALbasic User’s Guide

Programming with Events and Objects
MouseDown The mouse button has been pressed and has not yet
been released. You can return False in this event
handler to filter the event causing the window to act
as if the mouse button was never clicked. This event
handler receives parameters that indicate where the
mouse was clicked in local window coordinates.

MouseDrag The user has moved the mouse inside the window
(but not over a control) while the mouse button is
held down. This event handler receives parameters
that indicate where the mouse is in local window
coordinates.

MouseEnter The user has moved the mouse inside the window
from a location outside the window.

MouseExit The user have moved the mouse outside the window
from a location inside the window.

MouseMove The user has moved the mouse inside the window.
This event handler receives parameters that indicate
where the mouse is in local window coordinates.

MouseUp The mouse button has been released inside the
window. This event will not occur unless you return
True in the MouseDown event handler. The idea
behind this is that if the mouse was never down, it
can’t be up. This event handler receives parameters
that indicate where the mouse was released in local
window coordinates.

Moved The window has been moved by the user or by code
that changes the window’s Left or Top properties.

Open The window is about to open but hasn’t been
displayed yet. Controls also receive Open events. A
window receives its Open event after all of the
controls have received their Open events.

Paint Some portion of the window needs to be redrawn
either because the window is opening or it’s been
exposed when a window in front of it was moved or
closed. This event handler receives a Graphics object
as a parameter which represents the graphics that will
be drawn in the window. Graphics objects have their
own methods for drawing graphics. See the Graphics
class in the Language Reference for more
information.

Resized The window has been resized by the user or by code
that changes the window’s Width or Height
properties.

Table 10: Window class events. (Continued)

Event Description
312 REALbasic User’s Guide

Programming with Events and Objects
Opening Windows
There are two different techniques you can use to open windows. The technique you
use depends on what you are going to do with the window once it’s open. If your
application will never have more than one copy of a particular window open at a
time, you can open the window simply by making reference to any of the window’s
properties or by using the window’s Show method.

The following example opens a window by accessing one of the window’s properties,
its Title property:

If you don’t need to change any properties of the window, you can simply call its
Show method to open it, as in this example:

This technique works when you will only have one copy of the window open at a
time because the name of the window acts as a reference to the window. If you have
two copies of the window open, REAL Studio will access the window that is already
open rather than opening a second copy of the window.

These techniques are available if the ImplicitInstance property of the window is set
to True in the IDE. This property enables you to instantiate an instance of the
window implicitly. It is set to True by default, so there is no reason to change it
unless you want to disable these two ways of opening windows. If ImplicitInstance
is set to False, you must explicitly create a new instance of the window using the
following technique. If you try to open a window by accessing one of its properties
or calling Show and ImplicitInstance is False, then you will get a compiler error.
Turn on ImplicitInstance to cure the errors.

If your application may have more than one copy of a window open at a time or you
have turned the ImplicitInstance property off, you need to use the New operator to
explicitly create a new instance of the window. To use the New operator, you must
have a local variable or a property defined as the window you are going to open. This
variable or property is used to store a reference to the window once it has been cre-
ated. You can then use this reference to access the window.

Resizing The user is in the process of resizing the window.

Restore The window is being restored from its minimized
state to its state prior to being minimized.

Table 10: Window class events. (Continued)

Event Description

aboutBoxWindow.Title="About My Application"

aboutBoxWindow.Show

Dim w as aboutBoxWindow
w=New aboutBoxWindow
313REALbasic User’s Guide

Programming with Events and Objects
A shorthand way of accomplishing the same thing is to create and instantiate the
reference to the window in the Dim statement. Do this by using the New operator
as a modifier in the declaration:

This single line of code opens the aboutBoxWindow.

Because aboutBoxWindow is an object of type Window, you can also declare the
variable as a Window, as in this example:

This is beneficial when your code may open many different windows and you can’t
be sure which window it will need to open, as in this example:

You could, of course, dimension two different variables; one as secretAboutBoxWindow
and the other as aboutBoxWindow. But that might be a bit more confusing, especially if
you had ten possible windows.

Because windows are objects, you can also dimension the variable as an object, as in
this example:

There is less of a need to dimension a window variable as type Object than there is
to use type “Window.” However, you might use this technique when you are
creating new instances of controls on the fly. With controls, you can have a variable
storing a reference to many different kinds of controls. See “Creating New Instances
of Controls On The Fly” on page 346 for more information. See “Accessing Items of
Other Windows” on page 342 for more information on how to use window
references.

Adding Properties to Windows
The properties of an object are pieces of information that help define the object.
They’re variables that are accessible in more than one event handler or method.
Windows have many pre-defined properties such as their title, width, height, etc.
You can also add your own properties to windows that allow you to store informa-

Dim w as New aboutBoxWindow

Dim w as Window
w=New aboutBoxWindow

Dim w as Window
If theAltKeyIsDown then
w=New secretAboutBoxWindow
Else
w=New aboutBoxWindow
End if

Dim w as Object
w=New aboutBoxWindow
314 REALbasic User’s Guide

Programming with Events and Objects
tion that is specific to the instance of the window. Window properties work like
variables except that they belong to the window and can be accessed by any of the
window’s event handlers and any of the window’s controls. You also have the option
of making a property of a window accessible to code outside the window. In con-
trast, a variable that is defined by a Dim statement inside an event handler is local.
It cannot be accessed outside that event handler.

For example, if you have a window that displays the contents of a document, you
might need to keep track of whether the user has modified the data to determine if
he should be given a chance to save changes when he quits your application. Where
do you keep track of this? Since the window is effectively a representation of the
document, you can add a boolean property called Changed to the window. When the
user makes a change in the window that affects the document, your code can change
the value of the Changed property from False to True. Later, when the user closes the
window, the code in the window’s Close event handler can check the Changed
property to determine if the user needs to be given the opportunity to save his
changes. The syntax for accessing the properties you add to windows is the same as
the syntax you use to access a window’s pre-defined properties. For example to set
the Changed property of a window called “myDocumentWindow” to True, you use
the following syntax:

The Changed property should not be changed (no pun intended) from anywhere but
the window. It wouldn’t make sense for another window to be changing this
property. However, six months after you add a property to a window, you might
have forgotten this fact and add some code to another window that changes the
Changed property. To avoid this problem, you can make the Changed property
Protected. Protected properties can be accessed only by the window they are a part of.

The Scope of
a Property

When you define a property of a window, you must decide whether the property
will be accessible only to code belonging to the window and its controls or to other
event handlers and methods outside the window. Your choices are:

n Public: Accessible from Anywhere: A Public property can be read or set
elsewhere in the project, not just within the window that “owns” the property. A
Public property can be accessed by event handlers and methods outside the window
using the “dot” notation: windowName.propertyName. Within the window’s own
event handlers and methods, you can access the property by its name.

n Protected: Accessible from the current window and its subclasses: A
Protected property can be read or set only by the event handlers and methods of the
window and the event handlers of the controls in the window. A Protected property
is accessed by its name. Code outside the window that owns the property cannot
“see” the property. If any code outside the window tries to access a Protected
property, REAL Studio will display an informative error message.

myDocumentWindow.Changed=True
315REALbasic User’s Guide

Programming with Events and Objects
n Private: Accessible from the current window only: A Private property behaves
like a Protected property but it cannot be accessed by other windows that are
subclassed from the current window. A window that is subclassed from another
window inherits its Public and Protected properties. For information about creating
subclasses, see the section “Understanding Subclasses” on page 533.

Declaring an
Array as a
Property

A property can be an array. For example, if you want to declare a four-element
integer array of properties called WindowParameters, you would write:

in the Declaration area. You can also declare a property as an array with no elements
and add elements later. In that case, you would declare WindowParameters using
empty parentheses:

This denotes that WindowParameters is being declared as an array. You can use the
Append method to add elements or the Array method to convert a list of items into
an array to add elements.

To add a property to a window, do this:

1 Display the Code Editor for the window by clicking on its tab or, if it has no
tab, double-click its name in the Project Editor.

2 If necessary, click the Code Editor button in the window’s Editor Toolbar to
access the Code Editor.

Figure 266. The Code Editor button in the Window Editor toolbar.

On Macintosh and Linux (top), the selected mode is highlighted; on Windows, it is
depressed.

3 Click the Add Property button or choose Project . Add . Property.
A Property declaration area opens just above the code editing area.

WindowParameters(3) as Integer

WindowParameters() as Integer

Code EditorLayout Editor
316 REALbasic User’s Guide

Programming with Events and Objects
Figure 267. The Property Declaration area.

The Property Declaration area has three fields. They are for the name of the
property, its data type, and its default value. The first two are required. If you do
not provide a default value, the new property will take the default value for the data
type that you choose. Strings have a default value of an empty string, numbers have
a default value of zero, booleans have a default value of False, colors have a default
value of black, and objects have a default value of Nil.

4 Fill in the Name and Data Type fields and, if desired, provide a default
value.
For example, the Changed property would be entered with the name Changed and
a data type of Boolean.
An example of a property declaration is shown in Figure 268.
317REALbasic User’s Guide

Programming with Events and Objects
Figure 268. A completed property declaration.

The data type can be a built-in data type, a built-in class, or a user-defined class. For
example, the declaration f as FolderItem declares a new property, f, as an instance
of the FolderItem class. The FolderItem is the REAL Studio class for representing
files and folders (a.k.a., directories). You could use this property to refer to the
document that is displayed in the window.

You will learn about classes in Chapter 10, “Creating Reusable Objects with
Classes” on page 531.

If you want to use a built-in class as the data type, simply enter it into the data type
field. The same is true for a user-defined class that is added to the project.

You can also create classes that belong to modules. A module is a stand-alone item
that serves as a container for classes, class interfaces, methods, properties, constants,
and other modules. For more information about module classes, see the section
“Adding Classes to Modules” on page 384.

If you want to use a module class as the data type, you need to use the “dot” syntax
to refer to it, i.e., moduleName.className. This refers to the class className in the
module moduleName.

5 Choose a Scope for the property by clicking on one of the three Scope
buttons.
Your choices, from left to right, are Public, Protected, and Private. See the section
“The Scope of a Property” on page 315 for information on Scope.

Figure 269. The Scope buttons (Public selected).
318 REALbasic User’s Guide

Programming with Events and Objects
6 (Optional) In the Code Editor area, add notes and comments about the
property.
The text entered into the Code Editor for a property is automatically non-execut-
able, even if you write valid REAL Studio code. Add any comments you wish,
including code samples.

You do not assign a value to the property in its Code Editor area. It is accessible
from the event handlers and methods of the window, the window’s controls, and, if
the property is Public, event handlers and methods outside this window.

Figure 270. Property notes and comments in the Code Editor area.

Any text that you enter in the Code Editor for a property is not executable, even if it
is code. When you add a comment to a property, the property declaration in the
Browser area changes to boldface.

If a property is Protected or Private, the name of the property is preceded by either
“Protected” or “Private.”

To Edit a property you’ve added to a window, do this:

1 Display the Code Editor for the window that contains the property.

2 In the Browser, expand the Properties category to display the list of
properties for the window.

3 Click on the property to display the Property Declaration pane above the
Code Editor.

4 If necessary, expand the Property Declaration pane by clicking its disclosure
triangle (to the left of the property’s name).
319REALbasic User’s Guide

Programming with Events and Objects
Figure 271. The Edit Property pane.

5 Make any necessary changes to the declaration.

To delete a property from a window, do this:

1 Open the Code Editor for the window that contains the property.

2 In the Browser, expand the Properties category to display the list of
properties for the window.

3 Click on the property you want to delete to select it.

4 Choose Edit . Delete or right+click (Control-click on Macintosh) and choose
Delete from the contextual menu.

The properties of a window can be accessed from any code within the window itself
or any of its controls using the property name alone. The window name is not
required as in this example that changes the window’s title:

In the absence of the window name, the current window is assumed. If you wish,
you can always use the built-in function Self to indicate that you are referring to a
window’s property. When used in a control’s event handler, Self refers to the parent
object, which would be the window in which the control is located. In other words,
the statement:

would also refer to the parent window’s Title property.

Title="My New Window"

Self.Title="My New Window"
320 REALbasic User’s Guide

Programming with Events and Objects
Computed
Properties

A computed property is made up of a pair of methods called Get and Set. The Set
method sets the value of the property and Get returns its value. You can implement
either or both, making the computed property Read Only, Write Only, or
Read/Write.

Computed properties can be declared as shared. See the following section, “Shared
Methods and Properties” on page 322 for information on shared properties and
methods.

To create a computed property, do this:

1 Click the Add Computed Property button in the Code Editor toolbar or
choose Project . Add . Computed Property.
REAL Studio adds an untitled property to the window and displays a Property Dec-
laration area above the Code Editor.

Figure 272. The Declaration Area for a Computed Property.

2 Enter the Name and Data Type for the computed property and set its
scope.
Notice that the browser area shows that you can expand the computed property.

3 Click the plus sign (Windows) or the disclosure triangle (Macintosh and
Linux) to reveal the Get and Set methods that belong to the computed
property.
The Get method returns a value of the declared data type. The Set method is passed
the value of the property. You do not have to implement both methods. You can
make the computed property Read Only, Write Only, or Read/Write.

4 Write either the Get or the Set method or implement both methods.
321REALbasic User’s Guide

Programming with Events and Objects
Converting a
Property to a
Computed
Property

You can have REAL Studio convert an existing “regular” property to a computed
property. It will rename the existing property and create getter and setter methods
that return the property’s value and set its value to the passed value.

To convert an existing property to a computed property, do this:

1 In the Code Editor browser area, expand the Properties item (if needed)
and right+click (Control-click on Macintosh) on the property that you want
to convert.

2 Choose Convert to Computed Property from the contextual menu.
REAL Studio creates the getter and setter methods for the property and enters the
code for them.

Suppose the name of the property was myProperty, It renames it “mmyProperty”.
The computed property is called “myProperty” and its Get method is:

Its Set method has one parameter, value as DataType, where DataType is the
declared data type of mmyProperty. The code is:

In other words, the computed property is all set up for the original “regular”
property. It holds the value that the getter and setter methods manage.

For an example of a computed property, see the section “An Example Computed
Property” on page 551.

Shared
Methods and
Properties

A shared method or property is like a ‘regular’ method or property, except it
belongs to the class, not an instance of the class. A shared method or property can be
accessed without instantiating an instance of the class or from any instance of the
class.

In contrast, “regular” methods and properties are considered instance methods and
properties. This means that they belong to a particular instance of the class.

The Self keyword is not available in a shared method or shared computed property
and you cannot access instance methods or instance properties inside a shared
method unless you are doing so via an instance.

To create a shared property or method, do this:

1 Pull down the Project . Add submenu and choose Shared Method, Shared
Property, or Shared Computed Property.
REAL Studio displays the declaration area for the type of item you chose. If the cat-
egory of item does not already exist, it is added to the Code Editor browser area.

2 Declare the property or method and set its scope the normal way.

3 If it is a method, write the method in the Code Editor.

Return mmyProperty

mmyProperty = value
322 REALbasic User’s Guide

Programming with Events and Objects
Figure 273 illustrates a shared property in the Code Editor.

Figure 273. A Shared property in the Code Editor.

Here is an example that illustrates the difference between instance and shared
methods. Create a class, myClass, in the Project Window and create the following
simple method of myClass:

If you create WelcomeMe as an instance method, you can only call it from an
instance of myClass, e.g.

If you create WelcomMe as a shared method, you can call WelcomeMe with the
line:

You can also call a shared method or property from any instance of the class, just
like an instance method or class. The key advantage of shared properties and
methods is that you can share them among all the instances of the class. For
example, if you are using an instance of a class to keep track of items (e.g., persons,
merchandise, sales transactions) you can use a shared property as a counter. Each
time you create an instance of the class, you can increment the value of the shared
property in its constructor and decrement it in its destructor. When you access it, it
will give you the current number of instances of the class.

Sub WelcomeMe(a As String)
MsgBox a

Dim greetMe as myClass
greetMe = New myClass
greetMe.WelcomeMe "Hello World"

myClass.WelcomeMe "Hello World"
323REALbasic User’s Guide

Programming with Events and Objects
For example, consider the example in the section “Using Classes in Your Projects”
on page 577. The local variable “person” stores a reference to the instance of the
custom class “Programmer”.

Suppose the Programmer class contains a shared Integer property, Total, that gets
incremented each time a Programmer instance is created. For example, give the
Programmer class a Constructor of:

The Destructor is:

Each time a Programmer instance is created or destroyed, the value of the Total
shared property is changed to reflect the current count. The value of Total can be
accessed from any Programmer instance or from the Programmer class itself.

Adding Constants to Windows
A constant acts like a property but it holds a fixed value for its entire “life.” When
you create a constant, you give it its value. You can read the constant’s value in your
code, but you cannot use an assignment statement to change the value of a constant.

You can create constants in REAL Studio for windows, modules, and classes. You
can also create a local constant inside any method you write. For information about
local constants, see the section “Constants” on page 236.

The Scope of
Window
Constants

A constant for a window has a Scope, just like properties. Scope determines which
parts of your application can “see” the constant and read its value.

A constant added to a window can be Public, Protected, or Private in Scope.

n Public: The constant can be read by all of the code in your project. To read the
value of a Public constant inside the window that owns it, you simply use its name,
constantName. To read a Public constant from another object’s method or event
handler outside the window, you use the “dot” notation, i.e., windowName.constantName.
For example if the window “SaveChangesWindow” has a Public constant called
“Accept”, you would refer to it as “Accept” from any method or event handler
belonging to SaveChangesWindow. However, code belonging to other windows,
modules or classes that don’t belong to SaveChangesWindow refer to the constant as
“SaveChangesWindow.Accept”.

n Protected: The constant can be read only by code owned by the window and its
controls. To read the value of a Protected constant, refer to it by name. For example,

Dim person as Programmer
person=New Programmer
person.name="Jason"

Programmer.Total=Programmer.Total+1

Programmer.Total=Programmer.Total-1
324 REALbasic User’s Guide

Programming with Events and Objects
a StaticText control that gets its Text property from a window constant can refer to
it by StaticText1.Text=constantName. If another window, a class, or a module tries to
access a Protected constant, REAL Studio will display an informative error message.

n Private: A Private constant is like a Protected constant except that any windows
subclassed from this window will not be able to access a Private constant. Protected
and Public constants are inherited by windows subclassed from the current window.
For information about creating subclasses, see the section “Understanding
Subclasses” on page 533.

Localizing an
Application
using
Constants

If you need to build separate copies of your application for different platforms and lan-
guage combinations, you should use constants instead of literal text strings for all your
interface items that present text to the user. REAL Studio allows you to define differ-
ent values for a constant for every platform and language combination that you need.

To do this, you use the Localization table in the New Constant declaration area to
enter different values for the constant for every platform/language combination that
you support. Often these constants are given Global scope—so that they can be
referred to by name only—and that is possible only in a module. If you put all of
your localization constants in one place it will be easier to maintain them.

The process is described in detail in the chapter on modules, but you can also use
the same process with constants for windows. If you want to use the Localization
table for window constants, follow the steps in the section “Adding a Constant to a
Module” on page 376.

To add a constant to a window, do this:

1 Display the Code Editor for the window.

2 Click the Add Constant button in the Code Editor toolbar or choose
Project . Add . Constant.
The Add Constant declaration area appears above the Code Editor area (Figure 274).
325REALbasic User’s Guide

Programming with Events and Objects
Figure 274. The Add Constant declaration area.

3 Enter the name of the constant, its value, and its data type.
When you enter a value, REAL Studio guesses the data type and sets the Type drop-
down list accordingly. Any number sets the data type to Number, a string other
than “True” or “False” sets it to String, and a hex value that starts with “&c” sets it
to “Color.” Entering “True” or “False” sets the Type to Boolean.

If its guess is incorrect, set its data type by selecting a data type from the Type drop-
down list, Number, String, Boolean, or Color. The data type of the constant will be
indicated by the small icon to the left of the constant’s name in the browser area.

If you chose Color, a color patch appears to the right of the Type drop-down list
with the default color of black. Click it to display the Color Picker to choose the
color constant. When you choose a color, its value in hexadecimal is added to the
Default Value area.

If you chose string, a “Dynamic” checkbox appears to the right of the Type drop-
down list. Dynamic constants are used to facilitate localization. For more
information about Dynamic constants, see the section “Dynamic Constants” on
page 379.

4 Set the Scope of the constant by clicking one of the three Scope buttons.
Your choices for a constant belonging to a window are Public, Protected, and Pri-
vate, from left to right.

Figure 275. The Scope buttons.
326 REALbasic User’s Guide

Programming with Events and Objects
5 (Optional) Use the Localization table at the bottom of the pane to define
different values for the constant for different platforms and language
combinations.
See the section “Using Constants to Localize your Application” on page 378 for
details on the Localization table.

Your application can then access the constant according to the Scope that has been
assigned to it. When you want to use the constant as the value of a property in the
Properties pane, precede its name with the number sign, #. If you’ve defined
different values for different platforms or languages, the correct value will be used
automatically for the version of the application built for that combination of
platform and language. You set the default region and language with the Build
Settings dialog box. For more information, see the section “Default Language” on
page 707.

Converting a
Literal to a
Constant

As a shortcut, you can convert a literal in your code to a constant. When you do so,
REAL Studio automatically creates a window constant and replaces the literal with
the name of the constant. By default, all converted literals are given a data type of
String. If needed, you can change the scope and the data type of the new constant.

To create a constant from a literal, do this:

1 Select the literal to be converted in the Code Editor.
If it is a string literal, be sure to include the quote marks.

2 Right+click (Command-click on Macintosh) and choose Convert to Constant
from the contextual menu.
In the following screen shot, the literal “Hello World” is being converted to a con-
stant.
327REALbasic User’s Guide

Programming with Events and Objects
Figure 276. Converting a literal to a window constant.

REAL Studio replaces the literal with the name of the constant and adds the new
constant to the Constants group in the window’s Code Editor. It uses the literal text
as the basis of the constant’s name and precedes it with the letter “k.”

Figure 277. The converted constant defined in the Code Editor.

In the Code Editor, the literal has been replaced by the constant name,
“kHelloWorld.”
328 REALbasic User’s Guide

Programming with Events and Objects
Figure 278. The constant in the Code Editor.

Adding Methods to Windows
Windows can also have their own methods. The benefit of associating a method
with a window is that you can keep code that will be used only with a particular
window with that window. For example, suppose you have a window that displays
the contents of a document. If the user can save changes to the document in the win-
dow, you will need some code that handles saving those changes. Since the window
is handling the document, it makes sense that the window should know how to save
changes to the document. Therefore, you might want to add a method called
SaveChanges to the window that handles this. Later, should you decide to use this
window for another project, it will have the SaveChanges method.

Passing
Parameters to
Methods

You can pass parameters to methods. Parameters are variables that the method uses
internally. When you call the method, you pass values to the method via its
parameters. The method can then use these values. Optionally, parameters return
new values.

Parameters are declared the same way that properties are (e.g., “Age as Integer”),
except that you write out the declaration instead of entering the name and data type
in separate fields. To indicate that the method will require parameters when it is
called, name and declare the data type of each parameter. If the method requires
multiple parameters, the parameter definitions should be separated by commas. For
example, if a method requires an integer and a string, you would declare two
parameters in the following manner:

Parameters are treated as local variables inside the method. This means the method
can change the value of a parameter—just as if it was created as a local variable
inside the method. In this example, the name “myInt” becomes the name of the

myInt as Integer, myString as String
329REALbasic User’s Guide

Programming with Events and Objects
local Integer variable inside the method and “myString” becomes the name of the
local String variable inside the method.

Passing Arrays A parameter that you pass to a method can be an array. To pass an array, you follow
the name of the array with empty parentheses when you declare the parameter. For
example, if you need to pass an array of real numbers, you would declare the array in
the following manner:

Since the declaration does not specify the number of elements of the array, the
method will accept arrays of any size. You can figure out the number of elements in
a particular array by calling the Ubound function inside the method. When you call
the method, you simply pass the name of the array you want to pass, without any
parentheses.

You can pass multi-dimensional arrays without specifying the number of elements
in each dimension, but you need to indicate the number of dimensions. Do this by
placing one fewer commas in the parentheses than dimensions. For example, if
aNames were a two-dimensional String array, you would declare the array in the
following manner:

Finally, there is one more way of passing a series of values to a method. You can use
the ParamArray keyword in the parameter declaration. The ParamArray keyword
signifies that any number of values of the specified data type will be passed as
parameters to the method. For example, if the method will accept a list of integers,
you would declare one Integer parameter using the ParamArray keyword:

When you call the method, you pass a list of integers, with the integers separated by
commas (just as if they had been declared as separate parameters). For example, you
can write:

Inside the method, “nums” is an array rather than an integer variable. You can
process the values as an array.

Returning
Values from
Methods

A method can also return a value. A method that returns a value is called a function.
You create a function using the same process as you use for defining a method; the
only difference is that you declare the data type of the value being returned (see
Figure 279 on page 332).

aNums() as Double

aNames(,) as String

ParamArray nums as Integer

myMethod(5,7,2,10)
330 REALbasic User’s Guide

Programming with Events and Objects
The value that a function returns can be an array or a single value. If your want to
return a single value, you specify the data type of the value. If you want to return an
array, write empty parentheses after the data type. For example, if you want to
return an array of integers, write Integer () as the Return Type. If you need to
return a multi-dimensional array, place one fewer commas in the parentheses than
dimensions. For example, to return a two-dimensional array of Doubles, write
Double(,) as the Return Type.

When you declare a Return Type, your method needs to use the keyword Return to
indicate the value to be returned. For example, if the method takes an array of
numbers, adds them up, and returns the sum into a local variable called “Total”, you
would need to include the line:

in the function. For more information, see the section, “An Example Method” on
page 335.

The Scope of
Methods

When you create a method, you indicate how much of your application can “see” the
method. You can choose to make the method available only to code belonging to
the window that “owns” the method or make it available globally, so that any
method or event handler can call the window’s method. This is called the scope of the
method. For windows, you have the following choices:

n Public: The method can be called from any event handler or method in the
application. For example, you would use this if you want a menu handler that
belongs to App class to be able to call the method. To call a Public method outside
the window that “owns” it, use the syntax windowName.methodName. In the
window’s own event handlers, methods, and controls, you can call it by referring to
its name only, methodName.

n Protected: The method can only be called by the window’s event handlers and
methods, its controls, and windows subclassed from this window. You would choose
Protected if the method performs operations on information in this window and you
do not want these operations to be started from outside the window itself. Call a
protected method by its name only, methodName. If you try to call a Protected
method from outside its window, REAL Studio will display an informative error
message.

n Private: The method can be called only by the window’s event handlers and
methods and controls in the window. It cannot be called by other windows that are
subclassed from this window. Windows that are subclassed from this window
automatically inherit all its Public and Protected methods. Call a private method by
its name only, methodName. If you try to call a Private method from outside its
window, REAL Studio will display an informative error message.

Return Total
331REALbasic User’s Guide

Programming with Events and Objects
To add a method to a window, do this:

1 Open the Code Editor for the window.

2 Click the Add Method button or choose Project . Add . Method.
The Method declaration area appears above the Code Editor area.

Figure 279. The Method Declaration area.

3 Enter the name of the method, its parameters, and, if it will return a value,
its return type.
When naming the method, be sure not to use a reserved word. A reserved word is a
term that REAL Studio uses elsewhere (see “Reserved Words” on page 240). Use the
Parameters and Return Type areas to declare the data type of each parameter and the
value to be returned (if the method will return a value).

For example, if you were going to pass the value of the TextChanged property
declared in Figure 271 on page 320, you would write, “TextChanged as Boolean” in
the Parameters area. If you want to pass several parameters, separate each parameter
declaration by a comma.

The Return Type is the data type of the value to be returned if your method will be
returning a value. The pop-up menu to the right of the Return Type field has a list
of common data types, but any valid data type can be defined in the Return Type
field.

There are several advanced options available in the parameter declarations area. For
more information, see the sections “Passing a Parameter by Value or Reference” on
page 336, “Setting Default Values for a Parameter” on page 338, “Setter Methods”
on page 340, “Accessing Items of Other Windows” on page 342, and “Constructors
and Destructors” on page 341.

4 Select the Scope of the method by clicking a Scope icon.
332 REALbasic User’s Guide

Programming with Events and Objects
Your choices for a method belonging to a window, from left to right, are Public,
Protected, and Private.

Figure 280. The Scope icons.

See the previous section, “The Scope of Methods” on page 331 for information on
Scope. A completed method declaration looks like Figure 281.

Figure 281. The SaveFile method declaration.

If you have declared the method as Private or Protected, the Sub or Function
statement indicates the scope of the method, as shown in Figure 282. If it is a
Public method or function, then the Sub or Function statement just says “Sub” or
“Function.”
333REALbasic User’s Guide

Programming with Events and Objects
Figure 282. A Protected method in the Code Editor.

To edit the name, parameters, or return type of a method you have added to a
window, do this:

1 Open the Code Editor for the window that contains the method.

2 In the Browser, expand the Methods category to display the list of
methods for the window.

3 Click on the method to display it in the Code Editor pane.

4 If necessary, expand the Method declaration area above the code by
clicking its plus sign (Windows) or disclosure triangle (Macintosh or Linux)
to the left of the method declaration.

5 Edit the name, parameters, return type, or scope as needed.

To delete a method you’ve added to a window, do this:

1 Open the Code Editor for the window that contains the method.

2 In the Browser, expand the Methods category to display the list of methods
for the window.

3 Click on the method you want to delete to select it.

4 Choose Edit . Delete or right+click (Control-click on Macintosh) and choose
Delete... from the contextual menu.

Dynamic
Method
Creation

When you are coding your application, you will sometimes reach a point where you
decide that you need call a method that you haven’t written yet! What you can do is
write pseudo-code in which you do a proper call to the method and then write the
method later. This is how Dynamic Method creation works.
334 REALbasic User’s Guide

Programming with Events and Objects
In the midst of your code, you can type the method that you intend to write and
pass the parameters that it requires. Then select the complete call to the method and
right+click (Command-click on Macintosh) and choose Define Missing Method
from the contextual method. REAL Studio will use the declaration to create the new
method with the parameters that you specify. It is best to declare the parameters’
data types so that REAL Studio knows how to write the declaration.

To use Dynamic Method Creation, do this:

1 Write pseudo-code for your new method where you wish to call it.
For example, you can write:

2 Select “myNewMethod(i,s)” and right+click (Command-click on Macintosh)
to display the contextual menu.

3 Choose Define Missing Method.
REAL Studio creates a new method according to the pseudo-code you’ve written.

4 Write the code for the new method.

An Example
Method

The following example shows how to write a method and call it from any event han-
dler in the window.

Suppose your application needs to allow the user to open pictures and assign the pic-
tures to various objects. You can use a simple method to open the file and return the
picture. The event that calls the method can then assign the object to an interface
object.

The method will take the name of the file to open as its parameter and return the
picture object. Therefore, you declare it as a function, as shown in Figure 283.

Figure 283. The openPicture declaration.

Dim i as Integer
Dim s as String
myNewMethod(i,s) //undefined method
335REALbasic User’s Guide

Programming with Events and Objects
The method consists of the following code (the function declaration is editable in
the Method declaration area):

With this method, you can then open a picture file by simply passing it the path to
the file as a string. For example, the following line of code displays an image in an
ImageWell control by assigning the picture to the Image property of the
ImageWell:

Passing a
Parameter by
Value or
Reference

When you define the method’s parameters, you can choose between two types of
parameter passing: passing by value and passing by reference.

The default is passing parameters by value. With this option, the method receives
the value of the parameter and can perform operations on it. The parameter is
treated as a local variable within the method. You don’t have to do anything special
to pass a parameter by value. Passing by value is illustrated in the previous example:
a string parameter that contains a pathname is passed to the method and the method
uses the passed parameter as a parameter in another function call.

When you use passing by reference, you instead pass a reference to the parameter
(i.e., a pointer to the parameter’s value). When the method receives a parameter
passed by reference, it is free to change the value of the parameter and return the
changed value to you after completing the call to the method.

For example, the following method declaration uses one parameter that is passed by
reference.

Function openPicture (s as String) as Picture
Dim f as FolderItem
Dim p as picture
f=GetFolderItem(s)
if f.exists then

p=f.openAsPicture
else

MsgBox "Invalid file!"
end if
Return p

ImageWell1.image=openPicture("BackgroundImage")
336 REALbasic User’s Guide

Programming with Events and Objects
Figure 284. Passing a parameter by reference.

The ByRef keyword in the parameter declaration indicates that the parameter is
being passed by reference rather than by value. The method itself consists only of
the line:

That is, the method changes the value of the parameter being passed. Such a method
can be called like this:

When you run this method, you will see that the value of i changes after the call to
SquareIt. This is not possible when you pass by value.

You can also pass arrays by reference using the same syntax. Simply precede the
name of the array with the ByRef keyword. When you pass an array ByRef, the
method can change all or some elements of the array.

d=d*d

Sub Action ()
Dim Label as String
Dim i as Double
If TextField1.text <> "" then

i=Val(TextField1.text)
Label="The square of "+TextField1.text+" is "
SquareIt(i) //passed by reference
StaticText1.Text=Label+Str(i)+"."

Else //no value entered
Beep
MsgBox "Please enter a number into the text box."

End if
337REALbasic User’s Guide

Programming with Events and Objects
Setting Default
Values for a
Parameter

When you declare the parameters to a method, you can optionally provide a default
value for each parameter. You do so by making the declaration an assignment
statement in the Method declaration area. For example, if you want to declare the
parameter “StartValue” as an Integer and give it value of 1, you would write

in the Parameters area of the Method declaration area. This is shown in Figure 285.

Figure 285. Declaring an Integer parameter.

When you call the method, any parameter that is provided with a default value in
the declaration statement becomes optional.

When you don’t provide a default value for the parameter, you must pass an integer
value to myMethod whenever you call it. When a default value is provided, you can
omit the parameter in the call. When you want to use the default value, simply omit
the parameter in the call:

In this case, the default value of 1 will be used.

If you want to use another value, pass it as a parameter in the normal way. For
example,

In this case, myMethod will use the passed value,10, and ignore the default.

StartValue as Integer = 1

myMethod

myMethod(10)
338 REALbasic User’s Guide

Programming with Events and Objects
You can provide default values for more than one parameter. For example, the
following declaration is valid.

Figure 286. Assigning default values to two parameters.

In this case, you can call the method with the statement:

The two default values will be used. If you want to override the default value for the
first parameter, pass one value. For example:

passes the value of 100 to the parameter a. If you want to override only the value of
the second parameter, you must pass two parameters. Just pass the default value for
the first parameter.

When you assign a default value when you declare a parameter, you can use a literal
value (as shown here) or a constant or an enumeration. See the section “Constants”
on page 236 and the section “Adding an Enumeration to a Module” on page 397. A
constant is like a variable except that it is assigned its value when it is created and
retains its value for its life. An Enumeration holds a list of constant values.

For example, suppose you define a global constant in a module, InitialValue. You
can use it as a default value for a parameter like this:

Similarly, you can use an enum as a default value. Suppose you have created an enum
in a module called SecurityLevel, with values None, Minimum, Maximum, and

myMethod

myMethod(100)

a As Integer = InitialValue
339REALbasic User’s Guide

Programming with Events and Objects
Forced. You can then assign the default value of a parameter using one of the enum
values:

Making a
Parameter
Optional

If you need to specify that one of the parameters in the method is optional without
giving it a default value, use the “Optional” keyword. This modifier precedes the
parameter name. An optional parameter does not take on a default value in the
called method. If the caller omits this parameter, it will receive the standard default
value for its data type.

Setter
Methods

When you pass a value to a method, you have the option of using the assignment
operator. For example, you can pass the value of 10 to a method using the
statement:

However, the assignment operator can be used only if you use the “Assigns”
keyword when you declare the method. In Figure 287, the “Assigns” keyword is
used. This syntax must be used whenever you want to use the assignment operator
when you pass a value.

Figure 287. Using the “Assigns” keyword in a Method Declaration.

If myMethod is declared as shown in Figure 287, then you can pass a value in the
following way:

a As Integer = SecurityLevel.Forced

myMethod=10

myMethod = 10
340 REALbasic User’s Guide

Programming with Events and Objects
You can use the “Assigns” keyword with methods that take more than one parame-
ter. When you do so, you must use the Assigns keyword with the last parameter.
You can use “Assigns” for only one parameter per method. For example, the follow-
ing method declaration is valid:

Figure 288. Using “Assigns” with more than one parameter.

To call this method, use the following syntax:

When you use the Assigns keyword as shown in Figure 288, you cannot use the
‘normal’ syntax shown below:

Constructors
and
Destructors

A constructor is a method that runs automatically when the object that owns it is first
created. You usually use a constructor to do some type of initialization of the object.
A destructor is a method that runs when the object is destroyed or goes out of scope.

For information on constructors and destructors, see the section “Constructors and
Destructors” on page 569.

Attributes Attributes are compile-time properties that can be added to both Project and Code
Editor items. An attribute consists of an identifier as the Name and an optional
value. For Code Editor items, attributes are created via the Attributes Editor within
the Code Editor.

The names “Deprecated” and “Hidden” are reserved for internal use and should not
be used as an attribute’s Name.

myMethod(5,4)=10

myMethod(5,4,10) //doesn’t work
341REALbasic User’s Guide

Programming with Events and Objects
Each Code Editor item has a contextual menu, from which you can add, modify, or
delete the item’s attributes.

To add an attribute, do this:

1 Right+Click (Command-Click on Macintosh) on the Code Editor item and
choose Attributes... from the contextual menu.
The Attributes Editor appears.

Figure 289. The Attributes Editor

2 To add an attribute, click on the Plus sign.
An entry area for the attribute appears. The first column is for the (mandatory) attri-
bute name; the second column is for the optional attribute value.

3 Enter the name and, if desired, its value.

4 Repeat this process for each additional attribute.

5 Click OK to put away the Attributes Editor.
To modify or delete an attribute, do this:

n To modify an existing attribute, click twice in its name field to get an
insertion point an replace the text as desired.

n To delete an existing attribute, click on its minus sign.

Accessing an
Attribute

Attributes can be accessed at runtime via the Introspection system. Use the Attribu-
teInfo class. See the example for the AttributeInfo class in the Language Reference.

Accessing Items of Other Windows
Items in other windows can be accessed using the window name followed by a dot
and the control, method, or property name, i.e., windowName.itemName.
342 REALbasic User’s Guide

Programming with Events and Objects
Of course, this is true only if the Scope of the item you want to access is Public. If
the item’s Scope has been declared Protected or Private, you cannot access it from
another window.

All controls have a Scope property that can be set to either Public or Private. A
control’s Scope must be set in the IDE, not in code. If a control’s Scope is set to
Public, then it can be accessed from outside its parent window in the manner
described in this section. Setting a control’s Scope property to Private makes it
impossible to access the control outside its own window. You would do this to
prevent code outside the window from inadvertently changing one of a control’s
properties or calling one of its methods. If the window and its controls is designed
to operate independently of the rest of the application, then you can make its
controls Private.

For example, a button in Window1, when clicked, passes the value “Hello” to the
“Find” method of Window2. The syntax is:

The properties of other windows can also be accessed using this syntax. For example,
if a button in Window1 should, when clicked, change the title of Window2 to
“Hello World”, the syntax is:

In the case of controls, the control name can then be followed by one of its property
names. For example, suppose a button in Window1 will, when clicked, place the
text “Hello World” in the Text property of a Public control called StaticText1 in
another window, Window2. The syntax is:

That is, the syntax is windowname.controlname.propertyname. If you don’t want code
that is outside Window2 to change StaticText1’s Text property, you should set its
Scope to Private in the IDE.

The syntax in the previous examples works provided there is only one instance of the
target window open. If there are two instances of Window2 open, the code in the
previous examples would affect only the first instance of Window2 that was opened.

If there can be more than one instance of the target window open, you need to store
a reference to that window somewhere so your code will know which instance of the
window you are referring to. Where you store this reference depends on how your
application works. Suppose you have many instances of a window named
“DocWindow” open that displays the contents of a text document. A button in this
window opens a Find window that lets the user enter a value he wishes to search for
in that instance of DocWindow. Since there can be many DocWindows open, you
will need to store a reference to the specific instance of the DocWindow that opens

Window2.Find "Hello"

Window2.Title="Hello World"

Window2.StaticText1.Text="Hello World"
343REALbasic User’s Guide

Programming with Events and Objects
the Find window in a property of the Find window. You do this by adding a
property (let’s call it “Target”) to the Find window of type DocWindow. When the
Find button in an instance of the DocWindow opens the Find window, it can store a
reference to the DocWindow in that property. Assuming your application only
allows one Find window to be open at a time (perhaps by making the Find window
modal), the syntax looks like this:

The Self function returns a reference to the instance of a window (or class) that calls
the Self function. In this case, the target property of the FindWindow is being set to
a reference to the specific instance of the DocWindow that executed this code. Later,
when the user clicks the Find button in the FindWindow, the FindWindow can use
the Target property to reference the instance of the DocWindow that opened the
FindWindow in the first place.

Figure 290. An Example Find window.

In Figure 290 the FindWindow has a TextField named “FindValue” where the user
types what he wishes to find. Let’s also assume that the DocWindow has a method
called “Find” that, when passed a value, locates that value (if it exists) in a TextField
in the DocWindow and highlights the value found. When the user clicks the Find
button in the FindWindow, the Find button’s Action event handler calls the Find
method of the instance of the DocWindow that opened the FindWindow. It does
this using the FindWindow’s target property and the following syntax:

The Target property contains a reference to the DocWindow, so its Find method
can be called. In this example, the Find method is being passed the value of the Text
property of the FindValue TextField.

The Target property can also be used to change properties of controls in the target
window. For example, if you want to disable the Find button in the DocWindow
from the FindWindow, you can do so using the following syntax:

In this example, the Target property of the FindWindow is defined as being of type
DocWindow. However, if the FindWindow needs to reference more than one

FindWindow.target=Self

Target.Find FindValue.Text

Target.FindButton.Enabled=False
344 REALbasic User’s Guide

Programming with Events and Objects
window class, you would define the Target property as type Window to be more
generic. This allows the Target property to store a reference to an instance of any
kind of window rather than just an instance of DocWindow. However, it also makes
the code less readable because it is not clear which windows the FindWindow meant
to work with. For this reason, use the generic Window type only when necessary.

Controls Controls that appear inside a window can have their own code to respond to events
directed to them. You cannot add methods or properties to the Built-in controls.
However, you can create controls that have custom properties, methods, event
definitions, and even menu handlers by creating new classes based on Built-in
controls.

To do this, you first create a new class in the Project Editor that is based on one of
the controls. You declare its Super class to be a control and then add custom
methods, properties, and/or event definitions to the new class. To add an instance of
the custom class to a window, use the Controls pop-up menu in the Window Editor
to switch to the Project controls and then add the custom control to the window in
the usual way.

Figure 291. Adding a custom control based on the Canvas class to a window.

This action adds an instance of the custom control class to a window. See the
section, “Understanding Subclasses” on page 533 for information on custom classes
based on controls.

Events Controls, like windows, receive events and have event handlers to respond to the
events they receive. For every event a control receives that you can respond to, there
is a corresponding event handler. The Language Reference contains the complete list
of events that windows and controls can respond to. When reading the Language

Choose Project
Controls from the
pop-up menu

Add the custom
control to the
window
345REALbasic User’s Guide

Programming with Events and Objects
Reference, keep in mind the fact that each control inherits properties and events from
its parent. For example, most controls are subclassed from the RectControl class,
and therefore have all the RectControl class’s events and properties.

Creating New Instances of Controls On The Fly
There may be situations where you can’t build the entire interface ahead of time and
need to create some or all of the interface elements on the fly. This can be done in
REAL Studio, provided that the window already contains a control of the type you
wish to create. The existing control is used as a template. For example, if you wish
to create a PushButton via code, there must already be a PushButton in the window
that you can “clone.” Remember that controls can be made invisible, so there is no
need for your template control to appear in the window. Once you have created a
new instance of the control, you can then change any of its properties.

Suppose you need to clone a PushButton that is already in the window, named
PushButton1.

To create a new PushButton control on the fly via code, do this:

1 In the Properties pane for the PushButton, set its Index property to zero.

When the new controls are created while the application is running, they will, be
elements of a control array.

Figure 292. The template control and its properties.

In this example, a new PushButton will be created when the user clicks on the
original PushButton.
346 REALbasic User’s Guide

Programming with Events and Objects
2 In the Action event of PushButton1, dimension a variable of type
PushButton.

3 Assign the variable a reference to a new control using the New operator
and pass it the name of the template control.

This example shows a new PushButton being created using an existing PushButton
named PushButton1 as a template. When the new control is created, it is moved to
the right of the template control:

The Code Editor for PushButton1 should look like this:

Figure 293. Action event that clones PushButton1.

4 Click the Run button.

5 When the application launches, click the “Original” button.
REAL Studio creates a new PushButton to the right of Original. You can see it’s the
variable “pb” from its Caption property. Your screen should show the sequence
shown in Figure 294.

Figure 294. The test application before and after creating the cloned PushButton.

If you click “Clone,” you will create another clone to the right of the first two, and
so on.

Dim pb as PushButton
pb= New PushButton1 //clone of PushButton1
pb.Caption="Clone" //change caption just to be clear about this
pb.Left=me.Left+me.Width+10 //move it to the right
347REALbasic User’s Guide

Programming with Events and Objects
Since any new control you create shares the same code as the template control, you
may need to be able to differentiate between them in your code. You use the index
property of the control to identify which control was clicked. For more information
on using the Index parameter, see the following section, “Sharing Code Among An
Array of Controls” on page 348.

If your code needs to create different kinds of controls and store the reference to the
new control in one variable, you can dimension the variable as being of the type of
object that all the possible controls you might be creating have in common. For
example, if a variable can contain a reference to a new RadioButton or a new Check-
Box, the variable can be dimensioned as a RectControl because both RadioButtons
and CheckBoxes are derived from the RectControl class. Keep in mind, however,
since the variable is a RectControl, the properties specific to a RadioButton or
CheckBox will not be accessible. If you need to see which classes of control are com-
mon to different controls, see the sections on each control in the Language Reference.

Sharing Code Among An Array of Controls
When you have several controls of the same type that all have essentially the same
code, the best solution is a control array. A control array allows two or more controls
to share the same code. You create a control array by assigning all of the controls the
same name and using the Index property to identify the elements of the array of con-
trols.

The first time you give a control the same name as another control (that’s not
already part of a control array), REAL Studio will ask you if you wish to create a
control array. For example, if you create a PushButton called pb1 and then add
another PushButton to the window that you also name pb1, REAL Studio will pres-
ent the dialog box shown in Figure 295.

Figure 295. Creating an array of controls with a dialog box.

If you click OK, REAL Studio will assign the first control’s Index property the
value 0. The control you are renaming will then have its Index property set to 1.
348 REALbasic User’s Guide

Programming with Events and Objects
Figure 296. The ID properties of the first two controls in a control array.

Notice that the names of the two controls described in Figure 296 have the same
name and are distinguished only by the value of their Index property. After that,
any controls in the same window with the same name will be assigned the next Index
number in the sequence automatically.

The other way to create an array of controls is to enter zero as the value of the Index
property of the first control and then assign the first control’s name to the second
control. REAL Studio will then automatically assign 1 to the Index property of the
second control, and so on. This process bypasses the dialog box shown in Figure 295
but achieves the same effect.

In the Code Editor, rather than seeing several controls with the same name, the
control will appear only once followed by parentheses to let you know it’s a control
array. All of the controls in the control array share one set of events. Each event in a
control array is automatically passed an Index parameter which tells you which
control in the control array actually receives the event.

In the following example, the three RadioButton controls actually consist of a
control array. All three controls are named “rb1” and are differentiated by their
Index property. In the Code Editor, the value of the Index property is automatically
passed to each method. The Action event handler, for example is where you
determine which RadioButton was clicked.

In Figure 297, notice that the Index parameter is automatically added to the
method declaration line. Instead of just saying “Sub Action”, it says “Sub Action
(Index as Integer)”. The parameter Index is the index value shown in the Properties
pane (shown in Figure 296).

Here is a simple Select Case statement that tests the value of the Index parameter
and determines which RadioButton was clicked. This Select Case statement looks at
a control array with three RadioButtons.

Within each Case, simply insert the code for handling that selection.

Sub Action(Index as Integer)
Select Case Index

Case 0
MsgBox "you selected radio button "+Str(index)

Case 1
MsgBox "you selected radio button "+Str(index)

Case 2
MsgBox "you selected radio button "+Str(index)

End select
349REALbasic User’s Guide

Programming with Events and Objects
Figure 297. A control array and its Action event handler.

Drag and Drop
Drag and drop is a very important part of the interface of many applications. It
extends the concept of the mouse’s being an extension of the user’s hand. Fortu-
nately, drag and drop is easy to implement in REAL Studio. Dragging and drop-
ping of text, pictures, documents, and specified data types is supported.

When something is dragged, a DragItem object is created. DragItems have a Text
property that is used to hold text being dragged, a Picture property for holding
images being dragged, a RawData or PrivateRawData property for holding a speci-
fied data type, and a FolderItem property that can contain an object that references a
document, folder, or application being dragged. In some cases, you need to populate
these properties with data you wish dragged, while in others, the appropriate prop-
erty will be populated automatically.

A DragItem object can actually contain more than one item and the items don’t
necessarily have to be of the same type. When you allow the user to drag multiple
items, you need to create additional items within the DragItem object and, when
the DragItem is dropped, cycle through all items in the DragItem.

DragItems that are dragged to the Desktop or to other applications will act just as
you would expect them to. For example, dragging text to the Desktop creates a text
clipping file. A DragItem containing a picture that is dragged to the Desktop cre-
ates a picture clipping file.

Dragging Text
From
TextFields

Only text in TextFields and TextAreas, rows in ListBoxes, portions of Canvas controls,
images in ImageWells, and Windows can be dragged. If you have never implemented
drag and drop before, this may sound like a limitation, but in fact, it isn’t. These con-
trols are the only types of objects that can be dragged in other applications that sup-
port drag and drop.

When the user
clicks a radio
button, it sets
the value of
the Index
parameter.
350 REALbasic User’s Guide

Programming with Events and Objects
The text in a TextArea can be dragged automatically without any coding necessary.
A DragItem object is automatically created and the text the user is dragging is
placed in the Text property of the DragItem.

Dragging a
Row From a
ListBox

In order for the user to be able to drag a row from a ListBox, the EnableDrag prop-
erty of the ListBox must be set to True. When the user attempts to drag a row, the
DragRow event handler of the ListBox executes and is passed the DragItem that was
created and the row number of the row being dragged. You then have to populate
the Text property of the DragItem passed. Finally, since the DragRow event handler
is actually a function, your code must return True to allow the drag to occur.
Returning False or returning nothing at all prevents the drag. This example code
from the DragRow event handler of a ListBox handles dragging a row from the List-
Box:

Dragging
from an
ImageWell

Drag and drop to or from an ImageWell is simple. When dragging from an
ImageWell control you must:

n Create a DragItem object using the DragItem constructor,

n Load the data to be dragged into the new DragItem instance,

n Call the DragItem’s Drag method to allow the drag to occur

The DragItem object is the container that holds the dragged image. The DragItem
constructor takes as its parameters the window from which the drag originates and
the left, top, width, and height of the drag rectangle you want displayed when the
user begins the drag. The Drag method is called when the data to be dragged is
loaded in the DragItem. You place this code in the ImageWell’s MouseDown event
handler, since the user presses the mouse button to initiate the drag.

Self is a reference to the parent window, X and Y are coordinates where the user held
the mouse button down, and Me.Width, and Me.Height are the width and height
of the ImageWell.

Function DragRow(Drag as DragItem, Row as Integer)
Drag.Text=Me.List(Row)+chr(13) //get the text
Return True //allow the drag

Function MouseDown(X as Integer,Y as Integer) As Boolean
Dim d as New DragItem(Self, X, Y, Me.width, Me.height)
d.picture=Me.image
d.Drag //Allow the drag
351REALbasic User’s Guide

Programming with Events and Objects
Dragging
from a Canvas
Control

Dragging the backdrop image from a Control is the same as dragging the image
from an ImageWell. You place this code in the Canvas control’s MouseDown event
handler, since the user presses the mouse button to initiate the drag.

When you program the Drop, you will assign the Picture property of the DragItem
to a property of the control receiving the drag.

Dropping In order for the user to be able to drop a DragItem on a control or window in your
application, the control or window must have previously indicated that it will
accept the kind of data the user wishes to drop on it. There are four methods that
any control can call to indicate the type or types of data that can be dropped on that
control. You can indicate that the control or window can accept more than one data
type by using as many methods in Table 11 as appropriate.

Typically, the control or window will call one or more of these methods in its Open
event handler. However, if a control or window only accepts items dropped on it
under certain conditions, these methods can be called once those conditions are met
even after the window is opened.

In most cases, when something acceptable is dropped on a control or window, the tar-
get’s DropObject event handler is executed. This event handler is passed a DragItem
object that represents the item being dropped. If the target has indicated that only

Function MouseDown(X as Integer,Y as Integer) As Boolean
Dim d as New DragItem(Self, X, Y, Me.width, Me.height)
d.Picture=Me.backdrop //populate DragItem with data
d.Drag //Allow the drag

Table 11: Methods that control the type of data that can be dropped on a
control.

Name Description

AcceptTextDrop Indicates that the control or window will accept text
being dropped on it.

AcceptPictureDrop Indicates that the control or window will accept a
picture being dropped on it.

AcceptFileDrop (Type) Indicates that the control or window will accept files
(of the type or types passed) being dropped on it. The
file types must be defined as file types for this project
in the File Type Set or via the FileType class. See the
section “Using The File Types Editor” on page 480 for
information on defining file types.

AcceptRawDataDrop
(Type)

Indicates that the control or window will accept the
data type specified by the four-character Type code,
e.g., AcceptRawDataDrop ("mytp"). Use this to drag
and drop data in special formats or to control where
text strings can be dropped.
352 REALbasic User’s Guide

Programming with Events and Objects
some kinds of data are acceptable, your code can get the data from the appropriate
property of the DragItem. The data types are shown in Table 12:

If more than one kind of data can be dropped, the code in the DropObject event
handler needs to determine what kind of data has been dropped. This can be done
using these functions of the DragItem:

Dropping
Items On
TextAreas

Text dropped on a TextArea is placed in the TextArea at the insertion point automat-
ically. The TextArea’s DropObject event handler is not called. Pictures and files
dropped on a TextArea, however, cause the DropObject event handler to execute. For
example, if you want to be able to drop a text file on a TextArea and have the contents
appear in the TextArea, you need to get the FolderItem from the DragItem that is
passed to the TextArea DropObject event handler and read the contents of the file.

Table 12: DragItem properties that indicate the type of object dropped on a
control.

Name Description

FolderItem Represents an application, folder, or document that has
been dropped.

Picture The picture, if any, that has been dropped.

Text The text, if any, that has been dropped.

RawData (Type) Data of the Type indicated by the four-character type code.
Data of the format indicated by the Type code is returned as
a string. Supported only on Macintosh and within the REAL
Studio application on Windows.

PrivateRawData
(Type)

The data (of the Type specified) being dragged. Type is a
four-character resource type or programmer-defined four-
character code. This data cannot be dragged to another
application.

Table 13: DragItem functions indicating the type of data that has been
dropped.

Name Description

FolderItemAvailable Returns True if one or more applications, folders, or
documents have been dropped.

PictureAvailable Returns True if a picture was dropped.

TextAvailable Returns True if text was dropped.

RawDataAvailable
(Type)

Returns True if data of the type indicated by the four-
character Type code was dropped.
353REALbasic User’s Guide

Programming with Events and Objects
In this example, a TextArea has been set up to accept text files dropped on it. Me is
the generic representation for the object that owns the event handler:

The Open method of the TextArea opens the FolderItem passed to it and adds its
contents to the TextArea.

If more than one file can be dropped at a time, you need to place the code in a Do
loop that will read all the files. In this way you can determine when it has processed
the last file to be dropped.

The easiest way to this is to use the TextInputStream class. TextInputStreams have
methods that allow to read from a file, check to see if you are at the end of the file, and
close the file when you are done reading from it. They are created by calling the Open
shared method of the TextInputStream class. If you are working with a file with an
encoding that is not UTF-8, you should set the value of the Encoding property.

The following example allows the user to drag several text files from the desktop to
a TextArea. The example places the contents of all the text files in the TextArea,
appending each file’s contents to the Text property of the TextArea.

To support several files, the NextItem function is used to determine whether there are
any more files remaining to be dropped.

The TextArea has the line:

in its Open event handler, where FileTypes1 has a common file type of Text.

Dropping
Items on
ListBoxes

If you want to drag text to a ListBox, you need to tell the ListBox to receive dragged
items by placing the following line in its Open event handler (or another event han-
dler that runs prior to the user’s drag and drop):

Sub DropObject(Obj as DragItem, action as Integer)
If Obj.FolderItemAvailable then

Call Me.Open(obj.FolderItem)
End if

Dim textStream as TextInputStream
If obj.folderItemAvailable then

Do
textStream=TextInputStream.Open(obj.FolderItem)
Me.AppendText(textStream.ReadAll)

loop until Not obj.NextItem
End if

Me.AcceptFileDrop(FileTypes1.Text)

Me.AcceptTextDrop
354 REALbasic User’s Guide

Programming with Events and Objects
Next, you need to tell the ListBox what to do when dragged text is coming its way.
You do that in its DropObject event handler:

The following DropObject event handler determines whether the dragged item has
text; if it does, it creates a new row and assigns the dragged item’s text property to
the new row.

This will work, for example, on text clippings dragged from the desktop on a
Macintosh. If you want to drag text files, then you need to modify this code to
support dragged files. In the Open event, change the code to:

The DragItem event handler needs to be modified to accept files instead of text
clippings:

The first row of text from each file will appear in a new row in the ListBox.

Dropping
Items on
ImageWells
and Canvas
controls

To allow the user to drop a picture or a PICT document that is being dragged from
the desktop, add the following statements to another ImageWell or Canvas control’s
Open event handler:

The second statement assumes that the PICT file type has previously been added in
the File Types Set Editor or via the FileType class via the language (see “Using The
File Types Editor” on page 480 for more information).

Sub DropObject (Obj as DragItem, action as Integer)
If Obj.TextAvailable then
Me.AddRow(obj.text)
end if

Me.AcceptFileDrop(FileTypes1.Text)

Dim textStream as TextInputStream
If obj.folderItemAvailable then

Do
textStream=TextInputStream.Open(obj.FolderItem)
Me.Addrow(textStream.ReadAll)

loop until Not obj.NextItem
End if

Me.AcceptPictureDrop
Me.AcceptFileDrop("image/x-pict")
355REALbasic User’s Guide

Programming with Events and Objects
Next, you need to tell the ImageWell or Canvas what to do when the user drops either
type of DragItem. You do this in the DropObject event handler. The following works
for an ImageWell.

It tests whether the DragItem is a picture or a file (FolderItem). If it’s a picture, it
assigns the Picture property of the DragItem to the Image property of the
ImageWell; if it’s a FolderItem, it opens the document as a PICT file and assigns
that to the ImageWell’s Image property.

If you want to assign the dropped object to a Canvas control’s BackDrop property,
the DropObject event handler is practically identical:

You can also drag a text item to a Canvas control and use the DrawString method in
the Graphics class to draw the text. To allow the drag, use the line:

in an event handler that runs prior to the user’s drop. Next, test for text in the
DropObject event handler. The following code accepts dragged text and writes it at
a specified location:

You will need to update the data using the Paint event handler if you want the data
to persist.

RawData and
PrivateRaw-
Data Proper-
ties

The RawData and PrivateRawData properties allow you to drag and drop other data
types. Each property takes a four-character Type that corresponds to the four-charac-
ter resource code of the format you wish to drag. For example, if you want to sup-
port dragging sound clippings, you would use “snd “ as the four-character code.

Regardless of format, the data is stored in the DragItem as a string and the
DropObject event handler would pass the data to a property that stores a string. The

Sub DropObject (Obj as DragItem, action as Integer)
If Obj.PictureAvailable then
ImageWell1.Image=Obj.Picture
Elseif Obj.FolderItemAvailable then
me.image=Obj.FolderItem.OpenAsPicture
End if

If Obj.PictureAvailable then
Canvas1.Backdrop=Obj.Picture
Elseif Obj.FolderItemAvailable then
Canvas1.Backdrop=Obj.FolderItem.OpenAsPicture
End if

me.AcceptTextDrop

If Obj.TextAvailable then
Canvas1.Graphics.DrawString(obj.text,20,20,50)
End if
356 REALbasic User’s Guide

Programming with Events and Objects
REAL Studio control or window that receives the DragItem must be capable of
working with the format. In most cases, that means that the control is a custom
control, uses toolbox calls, and/or uses a plug-in that manages the data.

For example, to allow the user to drop a ‘snd ‘ resource on a control, you would write

in the control’s Open event handler. The DropObject event handler would pass the
data to a property that stores a string. To actually play the sound, the control would
have to make toolbox calls or pass the data to a plug-in since REAL Studio doesn't
provide a way to pass sound data into a Sound class.

You can also use RawData or PrivateRawData to manage internal drag and drop. If
you make up a format type that is different than the name of any resource type, you
can use it to control which objects are dropped on a control. For example, the
DragRow event handler of a ListBox:

uses the Type “mytp” to define the format. The DragItem is assigned the row in a
ListBox that is being dragged. Although the row is an ordinary string, this
DragItem cannot be dropped on a control unless it accepts dragged data in the
“mytp” format. In this manner, for example, you can create a control that will only
accept a DragItem from a specific control and reject dragged items from the
desktop, other applications, and other controls.

The ListBox receiving the data would use the statement:

to permit the data to be dropped. The DropObject event handler assigns the data to
a new row:

The PrivateRawData property works the same way, except that the DragItem
cannot be dragged to the desktop or to any other application.

Menus and Menu Items
Menus and menu items are handled in a way similar to controls and are just as
object-oriented. This means that you can handle menu selections at the application,
window, or even control level. When you create a new Desktop Application project,
REAL Studio automatically includes one menubar object in the project, named

acceptRawDataDrop("snd ")

Function DragRow(drag as DragItem, row as Integer) as Boolean
Drag.RawData("mytp")=me.List(row)
Return True

me.AcceptRawDataDrop("mytp")

If obj.RawDataAvailable("mytp") then
me.AddRow(obj.RawData("mytp"))
End if
357REALbasic User’s Guide

Programming with Events and Objects
MenuBar1. This is the default global menubar for the entire application. By default,
this is the only menubar that is used for the application.

You can also add additional menubars to your project and assign menubars to
windows. On Windows and Linux, the menubar “belongs” to the window and is
always used when the window is visible. On Macintosh, the window’s menubar
replaces the current menubar when the window becomes active. For information on
creating menus, see “Adding Menus and Menu Items” on page 189 of chapter 3.

When the user selects a menu item or presses the menu item’s command key
equivalent, an event occurs much in the same way that an event occurs when the
user clicks on a PushButton. In this case, the event is called a menu event and the
event handlers are instead called menu handlers.

A menu event message is sent to objects in the following sequence:

n If a control has the focus, that control receives the menu event,

n The frontmost non-modal window receives the event, if it exists,

n The “blessed” App class in the Project Window receives the event1,

n If the menu item is an instance of a MenuItem subclass, it receives the event,
provided a modal window does not put the application in a modal state.

Except for the last item in the sequence, the menu event has the same name as the
menu item and, if it is handled, it is handled by a menu handler that you must add.
The menu handler matches the name of the menu event. You add the menu handler
via the procedure described below, in the section “Adding Code To a Menu
Handler” on page 359.

In the last case, the menu event message goes to the menu item’s Action event
handler. This event handler is present by default and you only need to add your
code.

Menu handlers can be added to a project at four levels. These options give you the
flexibility to handle most any situation, but normally you will add only one menu
handler per menu item.

n Controls that receive the focus can manage menu items. You can add a menu
handler to such a control and it will receive a menu event only when the control gets
the focus. For example, you might want to define menu items and menu handlers
for managing the cells in a Listbox that work only when the ListBox has the focus or
work differently when the ListBox has the focus.

n Any window except a modal or floating window. They receive the menu events
when the window is frontmost.

1. The “blessed” App class is the one that has the properties of the application in its Prop-
erties pane. Usually there is only one App class in a project, but others can be added.
358 REALbasic User’s Guide

Programming with Events and Objects
n The “blessed” App class. It can manage menu events for the whole application,
except when the application is in a modal state because of a modal window.

n If the menu item is subclassed from the MenuItem class, it has its own menu
handler in the form of its Action event.

When a menu event occurs (that is, when the user chooses a menu item), the menu
event message is sent to the relevant objects in the application in the order shown
above. If you have created more than one menu handler for the same menu item at
several levels, they will receive the menu event message in the above order.

By default, the menu handlers for the menu item will execute sequentially. Any
menu handler in the sequence can prevent the message from proceeding to the next
level by returning True. For example, if a menu item should have a different menu
handler when a ListBox has the focus than other controls in a window, you should
put menu handlers in both the window and the ListBox, but return True from the
ListBox’s version of the menu handler to prevent the window’s version from
executing.

Adding Code
To a Menu
Handler

To add a menu handler to a window or class, do this:

1 Open the Code Editor for the window or class.

2 Click the Add Menu Handler button in the Code Editor toolbar or choose
Project . Add . Menu Handler.
The Menu Handler declaration area appears in the Code Editor.

Figure 298. The Menu Handler declaration area.

3 Choose a menu item from the Menu Item pop-up menu.

Menu Item pop-up
menu populated with
existing menu items
359REALbasic User’s Guide

Programming with Events and Objects
4 Click in the Code Editor area and enter the code that will execute when the
user chooses the menu item.
Each menu handler optionally returns a Boolean value. The default is False. Return
True from a menu handler to prevent subsequent menu handlers in the chain from
handling the menu event. Comment this line out to return False.

Enabling
Menu Items

Each menu item object has a boolean AutoEnable property. When the AutoEnable
property is set to True, the menu item is enabled unless you explicitly disable it.
You set the AutoEnable property in the Behavior group in the menu item’s Proper-
ties pane.

Figure 299. The AutoEnable property in a menu item’s Properties pane.

Unless you turn the AutoEnable property off, a menu item that has a menu handler
will be enabled automatically. You should take advantage of the AutoEnable
property of menu items that should be enabled all the time, such as a menu
command that creates a new document or opens an existing document.

If you turn off AutoEnable, the menu item is disabled by default. You have the
responsibility of enabling it whenever it is appropriate for it to be enabled. You do
so with the EnableMenuItems event handler. You will want to turn AutoEnable off
and use the EnableMenuItems event when a menu item should be enabled only
under certain conditions. For example, if you want a “Save” menu item to be
enabled only when the user has made changes to a document since the last Save, you
would use the EnableMenuItems event to determine when to enable and disable the
menu item.

When the user clicks on a menu to select a menu item or presses a keyboard
equivalent, an EnableMenuItems event occurs. The purpose of this event is to give
you the opportunity to determine whether the menu item being selected should be
enabled or disabled based on conditions at the time. REAL Studio first checks to see

Autoenable
property
360 REALbasic User’s Guide

Programming with Events and Objects
if the control that has the focus is capable of handing menus. If it is, it is sent an
EnableMenuItems event. Then, assuming a window is open, the frontmost window
is sent the EnableMenuItems event. Finally, the application object is sent the
EnableMenuItems event.

Menu items are objects just like controls. Consequently they have an Enabled
property that determines if the menu item is enabled or disabled. You can enable a
menu item by setting this property to True or by calling the menu item’s Enable
method from within an EnableMenuItems event.

For example, this EnableMenuItems event handler is checking a property called
Changed to determine if the Save menu item should be enabled:

Handling
Menu Items
From
Individual
Controls

If the control that has the focus is capable of handling menus, its EnableMenuItems
event handler will be executed. If the menu item selected is then enabled and the
user selects it, the control’s menu handler for the selected menu item (if it has one)
will be executed. In order for a control to be able to handle menu items, it must be
able to receive the focus and it must be based on a class you have added to your
project rather than created by dragging a control from the Controls list. See Chapter
10, “Creating Reusable Objects with Classes” on page 531 for more information on
handling menu items from control classes.

Handling
Menu Items
When a
Window Is
Open

You already know that when the user attempts to select a menu item, the frontmost
window’s EnableMenuItems event handler is executed followed by the application
object’s EnableMenuItems event handler. This gives you the opportunity to
determine if conditions in the current window are right to permit the user to select
various menu items. When the user selects the menu item, REAL Studio executes
the frontmost window’s menu handler for the selected menu item (assuming one
exists) followed by the application object’s menu handler.

Handling
Menu Items
When No
Windows Are
Open

When there are no windows open, the EnableMenuItems event is sent to the
Application object. This condition can occur on Macintosh. Assuming the
Application object enables the menu item and the user selects the menu item, the
Application object’s menu handler for the selected menu item (if one exists) is
executed.

When you create a new project, a class based on the Application class is included in
your Project Editor. This is the App class.

If the user closes all windows in your application and then decides to use the menu
item to create a new window, you must enable such a menu item in the Application
object, since no windows are available to enable the menu item and handle the

Sub EnableMenuItems()
If Me.Changed Then
FileSave.Enable
End If
361REALbasic User’s Guide

Programming with Events and Objects
menu selection (assuming you are not using the menu item’s AutoEnable property).
Open the App class’s Code Editor from the Project Editor, expand the Events item,
and select the EnableMenuItems event. Add code that enables the menu item under
the correct circumstances.

Creating New
Menu Items
On The Fly

This approach uses a subclass of MenuItem rather than the Index property approach
that was covered in the section “Creating MenuItems on the Fly” on page 205. This
approach doesn’t use the Menu Editor.

You begin by creating an instance of MenuItem in the Project Window and then
instantiate an instance of the subclass to create each menuitem. This class does most
of the work. Instead of using a menu handler, you use the subclass’s Action event to
handle the menu selection.

Suppose you want to create the dynamic Fonts menu that was used in the example
in Chapter 3. To create the Font menu, you can use the App.Open event.

First, add a subclass of MenuItem to the Project Editor. In this example, it is called
“AddFont” (For more information on classes, see the section “Creating Classes” on
page 539).

Figure 300. The MenuItem subclass in the Project Editor.

Double-click the new subclass to add code in its Code Editor. The subclass has two
Events: Action and Enable Menu. EnableMenu is not used in this example because
AutoEnable is True by default and there are no conditions in which any of the
menuitems should be disabled.
362 REALbasic User’s Guide

Programming with Events and Objects
The Action event specifies what will happen when a user chooses a font from the
Font menu. We want it to set the selected text in a TextArea to the chosen font.
Therefore, the Action event is:

TextWindow is the name of the window that contains the TextArea and TextField
is the TextArea. Text is the name of the selected font.

To create the Fonts menu and its menuitems, you can use either the Open event of
the App class (for the global menu) or the open event of a Window, in case you want
the menu to be local to a window. If you use the App class, the App class’s menubar
will be used for all the windows that have menus.

In this case, we’ll use the App class. In its Open event, the following code will create
the Fonts menu:

It is simply appended to the main menubar. Next we add the code that dynamically
adds the menu items:

This code identifies the parent menuitem (FontsMenu) and then instantiates
AddFont for each font on the user’s system. Each instantiation uses AddFont’s
constructor, which takes the menuitem’s text as the only parameter. A call to
Append appends the new menuitem to FontsMenu.

TextWindow.TextField.SelTextFont=Text
Return True

Dim m,mNew as MenuItem
m=self.MenuBar
mNew=New MenuItem
mNew.text="Fonts"
mNew.name="FontsMenu"
m.append mNew
if mNew = Nil then
MsgBox "parent is nil!"
Return

End if

Dim child as MenuItem
Dim nFonts as Integer
nFonts=FontCount-1

//build the font menu
For i as Integer=0 to nFonts
child=New AddFont(Font(i))
mNew.Append(child)

Next i
363REALbasic User’s Guide

Programming with Events and Objects
Displaying a
Contextual
Menu

In addition to the menus that you add to your application via the Menu Editor, you
can also add menus that display only as contextual menus. There are several ways to
display a contextual menu in REAL Studio.

The preferred way is to use the ConstructContextualMenu and
ContextualMenuAction events of the Window class (for windows) and the
RectControl class (for all visible controls).

The ConstructContextualMenu event handler “figures out” when the user has
requested a contextual menu, regardless of how he did it. It could be a right+click
(Windows and Linux), Ctrl-click (Macintosh), the user has pressed the contextual
menu button on a Windows keyboard, or the user has pressed Shift+F10. It also
takes care of cross-platform differences in when the contextual menu is displayed.
On Windows and Linux, it is displayed in the MouseUp event but on Macintosh, it
is displayed in the MouseDown event.

The ConstructContextualMenu event is passed a “base” menu item, which serves as
the “menu bar” for the contextual menu. You add your contextual menu items to
the base. It is also passed the X and Y coordinates of the mouse click, so you know
where to draw the contextual menu.

You can build the contextual menu in the ConstructContextualMenu event. To
display the contextual menu, simply return True.

The following is a simple ConstructContextualMenu event handler. It constructs a
contextual menu with two items and displays it.

To handle the menu selection, you can use a Select Case statement in the
ContextualMenuAction event. The following Select statement in the
ContextualMenuAction event handler inspects the selected menu item, which is
passed in as the HitItem as MenuItem parameter.

base.append(New MenuItem("Import"))
base.append(New MenuItem("Export"))

Return True //display the contextual menu

Select Case HitItem.text
case "Import"
MsgBox "You chose Import"
case "Export"
MsgBox "You chose export"

End select

Return True
364 REALbasic User’s Guide

Programming with Events and Objects
Displaying a
Menu as a
Contextual
Menu

In some applications, you will want to give the user the option of choosing a menu
item from one of the application’s menus from a contextual menu. For example, you
may want to let users choose the Cut, Copy, and Paste menu items from the
“regular” Edit menu.

You use the PopupMenu method of the MenuItem class to do exactly this. If you
want to display the contextual menu when the user when the user right+clicks an
object, use the IsContextualClick function to test whether the user has
right+clicked (or Control-clicked on Macintosh) in the correct area. Then call the
Popup method.

By default, the contextual menu will appear where the mouse button was depressed.
If you want it to appear elsewhere, pass the PopupMenu method the X and Y
coordinates of the desired point on the screen. The top-left corner of the monitor is
the 0,0 point.

The following example is in the MouseDown event handler of a TextArea. If the
user right+clicks, the Edit menu is displayed as a contextual menu. The selected
menu item is returned in the MenuItem, m. Before the MenuItem is returned, the
selected MenuItem’s Action event occurs, so you can handle the menu selection
there, just as if the user chose the menu item from the menu in the menu bar or
window title bar

Classes Classes can be used to create custom controls that can also respond to the user. For
more information on using classes to create custom controls, see Chapter 10, “Creat-
ing Reusable Objects with Classes” on page 531.

if IsContextualClick then
Dim m as New MenuItem
m=EditMenu.Popup

End if
365REALbasic User’s Guide

Programming with Events and Objects
366 REALbasic User’s Guide

CHAPTER 6 Adding Global Functionality
with Modules

Object-oriented programming can be very efficient but you may find occasions when
you need to add items that are not associated with any one object. For example, you
might need to add some custom financial functions that will be called from many dif-
ferent places within your application. You may need to store values that are associated
with those functions. In most cases, when you need to add an item that isn’t associated
with any particular object and needs to be accessible globally, a module is the perfect
place to add it.

In addition to storing methods, properties, and constants, a module can store classes
and class interfaces. A class in a module can have its own properties, computed
properties, methods, event definitions, and constants. Each item can have its own
Scope settings.

Modules can also contain other modules. The relationship between the modules is
hierarchical; a contained module is nested in the higher-level modules. The nesting
affects what the items in a module can “see.” Nested modules can also contain
classes, class interfaces, and other modules.

The ability of modules to contain classes, class interfaces, and other modules
represents the module namespace system in REAL Studio. The classes, interfaces, and
modules “live” in the module’s namespace. A module namespace is in contrast to the
root namespace, which is represented by the project itself. Classes, class interfaces, and
modules that are listed in the Project Editor are technically at the “root” namespace
of the project.
367REALbasic User’s Guide

Adding Global Functionality with Modules
In this chapter, you will learn what modules are, when to use them, and how to add
items to them.

Contents

n Understanding Modules

n Adding Items to Modules

n Importing and Exporting Modules

n Encrypting Modules

Understanding Modules
Modules are not objects. A module is not a class and does not have a Super Class. You
don’t instantiate modules with the New command in order to access them. Once you
add a module to your project and then add items to it, global and public items are
immediately accessible outside the module.

Although a module is not an object, it can (optionally) contain objects. A class in a
module can contain properties, methods, and constants just like a Project class.

In order to understand classes in modules, it is best to first read Chapter 10,
“Creating Reusable Objects with Classes” on page 531. Chapter 10 covers Project
classes, class interfaces, and event definitions.

Adding A New Module
You can add a new module to your project by clicking the Add Module button in
the Project Editor Toolbar or by choosing Project . Add . Module. You can also
use the Project Editor’s contextual menu to add an item to the project. Right+click
(Control-click on Macintosh) in the Project Editor and choose Add to
Project . Module from the contextual menu.
368 REALbasic User’s Guide

Adding Global Functionality with Modules
Figure 301. Adding a module to the project with the contextual menu.

The new module appears in the Project Editor with a default name (the first module
you add will be named “Module1,” for example). You can use the Properties pane to
rename the module to something more appropriate. For example, if the module will
contain your financial functions, you might name it “Financial.”

You create and modify modules with the Code Editor. To access the Code Editor for
a module that is not already open, simply double-click the module’s name in the
Project Editor. If it is open, click on its tab in the Tab bar. Modules can be identi-
fied by their special icon in the Project Editor.

Figure 302. A module in the Project Editor

A module in the Project Editor has a disclosure widget (a plus/minus sign on
Windows and a triangle on Macintosh and Linux). It looks like the disclosure

A Module
369REALbasic User’s Guide

Adding Global Functionality with Modules
widget for a folder. However, a folder is only an organizational convenience that
enables you to group similar items and helps you organize a complex project. On
the other hand, placing a item in a module affects how the application is compiled.
Items in a module belong to the module and are contained in its namespace.

Scope of a
Module’s
Items

When you add an item to a module, you need to set its Scope attribute. The Scope of
an item determines which other items in the project can access it. There are three
possible values:

n Global: A Global item is available to code throughout the application. The Global
scope is available only for items in modules. For example, you can use a global
property to store a piece of information that needs to be available to several different
windows and to the application as a whole even if no window is open (Macintosh
only). When your code needs to access a global item you simply reference it by name
from anywhere in the application. The Global scope is not available for items in
nested modules.

n Public: A Public item is also available to code throughout the application. When
you need to access a public item outside of the module, you use the “dot” notation
and precede its name with the module’s name. For example, if you declare a Public
property, myPublicProperty, in Module1, you call it with the syntax
“Module1.myPublicProperty” outside Module1. If you create a Public property in a
nested module, you need to include the full path to the property when referring to it
outside its module. For example, if you declare a Public property, myPublicProperty,
in Module2 which is nested in Module1, you refer to it outside its module as
Module1.Module2.myPublicProperty.

n Private: A Private item is available only within the module. It is “invisible” to the
rest of the application. When you need to access the Private item inside the module
in which it was created, you simply reference it by name. If you create a Private item
in a nested module, it cannot be accessed by higher-level modules. However, Private
items in higher-level modules can be accessed from nested modules.

Adding Methods to Modules
Adding methods to modules is done in the same way you add methods to a window.
If you have created classes, a method can be either a method of the module or a
method of one of the module’s classes. In the first case, the method is referred to as
ModuleName.MethodName. In the second case, it is referred to as ModuleName.Class-
Name.MethodName.For more information, see the discussion about creating methods
in the section, “Adding Methods to Windows” on page 329.

If you have not created any classes, then a new method is contained within the
module itself. If you have created module classes then you have the ability to add a
method to one of the classes.
370 REALbasic User’s Guide

Adding Global Functionality with Modules
To add a method to a module, do this:

1 If the Code Editor for the module is not already open, double-click the
module’s name in the Project Editor.
The module’s Code Editor appears.

2 Click the Add Method button in the Code Editor toolbar or choose
Project . Add . Method.
The Method Declaration area appears above the Code Editor area (Figure 303).

Figure 303. The Method declaration area.

3 Enter the method name and parameters.
When you enter the parameters, indicate the data type of each parameter. For exam-
ple, if you are going to pass the value of a real number that you’ll refer to as “X” in
the method, write “X as Double” in the Parameters area. If you want to pass several
parameters, separate each parameter declaration by a comma. If you want to pass an
array, write empty parentheses after the name of the array.

4 If the method is going to be a function, choose the data type of the value
the function will return in the Return Type field.

The value that a function returns can be an array or just a single value. If you want
to return an array, write empty parentheses after the name of the data type in the
Return Type area. For example, if you want to return an array of integers, write
“Integer ()” as the Return Type.

There are several advanced options available in the parameter declarations area. For
more information, see the sections “Passing a Parameter by Value or Reference” on
page 336, “Setting Default Values for a Parameter” on page 338, “Setter Methods”
371REALbasic User’s Guide

Adding Global Functionality with Modules
on page 340, “Accessing Items of Other Windows” on page 342, and “Constructors
and Destructors” on page 341.

5 Choose the Scope of the method by clicking one of the three Scope
buttons.
Your choices, from left to right, are Global, Public, and Private. If the method is in
a nested module, its Scope cannot be Global.
Note that elsewhere in REAL Studio, the icons stand for Public, Protected, and Pri-
vate.

Figure 304. The Scope buttons.

For more information, see the previous section “Scope of a Module’s Items” on
page 370.”

To add a method to a module class, do this:

1 In the module’s Code Editor, double-click on the name of the class in the
browser area.
The Code Editor for the module class appears. If there are no items belonging to the
class, its browser area is blank.

2 Click the Add Method button in the Code Editor toolbar or choose
Project . Add . Method.
A new, untitled method is added to the Module class’s Code Editor. If it is the first
method, a “Methods” group is added and the new method is its first member.

Figure 305. A new method belonging to a module class.
372 REALbasic User’s Guide

Adding Global Functionality with Modules
Notice that the Location area indicates that the method will be accessed via the
syntax ModuleName.ClassName.MethodName.

3 Follow steps 3 to 5 in the prior section to specify the name, parameters,
return type and scope of the class method.
If you are creating a method in a nested module, the Global scope is not available.

Adding Properties to Modules
Adding properties to modules is done in the same way you add properties to a
window. You can add properties to modules or to module classes. You set the Scope
of a property to determine whether the property will be available to the whole
application or only to code within the module.

To add a property to a module, do this:

1 If the Code Editor for the module is not already open, double-click the
module’s name in the Project Editor to open it.
The Module’s Code Editor appears.

2 Click the Add Property button in the Code Editor toolbar or choose
Project . Add . Property.
The Property declaration area appears above the Code Editor area. A “placeholder”
property declaration is entered by default.

Figure 306. The Property declaration area.

The Property Declaration area has three fields. They are for the name of the
property, its data type, and its default value. The first two are required. If you do
not provide a default value, the new property will take the default value for the data
type that you choose. Strings have a default value of a empty string, numbers have a
default value of zero, booleans have a default value of False, colors have a default
value of black, and objects have a default value of Nil.
373REALbasic User’s Guide

Adding Global Functionality with Modules
3 Fill in the Name and Data Type fields and, if desired, provide a default
value.
A property can be an array. For example, if you want to declare a four-element inte-
ger array of properties called myProperties, you would write myProperties(3) in
the Name field and Integer in the Data Type field.
If the data type of the property is a Module class, use the syntax ModuleName.Class-
Name in the Data Type field.

You can also declare a property as an array with no elements and add elements later.
In that case, you would declare myProperties using empty parentheses,
myProperties().

4 Choose a Scope for the property by clicking one of the three Scope
buttons.
Your choices, from left to right, are Global, Public, and Private. Note that else-
where in REAL Studio, the icons stand for Public, Protected, and Private.

Figure 307. The Scope buttons.

For information on Scope, see the section “Scope of a Module’s Items” on page 370.
If the property is in a nested module, its Scope cannot be Global.

If a property is Public or Private, a Scope icon appears with a badge in the Code
Editor browser.

5 (Optional) In the Code Editor area, add notes and comments about the
property.
The text entered into the Code Editor for a property is automatically non-execut-
able, even if you write valid REAL Studio code. Add any comments you wish,
including code samples.

If you are creating a module for the sole purpose of adding properties to your appli-
cation that will be global (accessible from everywhere in the application), consider
placing them in the App class that was included in your project by default. Declare
the Scope of these properties as Public. This enables you to access them throughout
the application using the syntax. App.PropertyName.

They will still be global and this approach is more object-oriented since the
properties are associated with the application directly rather than with a module
that happens to be part of the application. See the section “The Application Class”
on page 580 for more information on the App class.

To add a property to a module class, do this:

1 If the Code Editor for the module class that the property will belong to is
not open, double-click it in the Project Window or in the module’s browser.
The Code Editor for the Module class appears.
374 REALbasic User’s Guide

Adding Global Functionality with Modules
2 Click the Add Property button in the Code Editor toolbar or choose
Project . Add Property.

A new property appears in the Module class’s Code Editor with a “placeholder”
declaration.

Figure 308. A new property in a Module class.

Notice that the Location area indicates that the property will be accessed via the
syntax ModuleName.ClassName.PropertyName.

3 Follow steps 3 to 5 in the previous set of instructions to specify the name,
data type, initial value, and scope of the property.
If the data type of the property is a Module class, use the syntax ModuleName.Class-
Name in the Data Type field.

The Scope of a property in a nested module cannot be Global.

Adding Constants to Modules
A constant acts like a variable but it holds a fixed value for its entire “life.” When
you create a constant, you give it its value. You can read the constant’s value in your
code, but you cannot use an assignment statement to change the value of a constant.

You can create constants in REAL Studio for windows, modules, and classes that are
added to the Project Editor. You can also create a local constant inside any method
you write.

Each constant has a Scope. The Scope determines which parts of your application
can “see” the constant and read its value. A constant added to a module can be
Global, Public, or Private in Scope. For information about Scope, see “Scope of a
Module’s Items” on page 370.

Global constants cannot be assigned non-printing characters such as Return, Tab,
Space, and so on. One way to create a global object that returns a non-printing
375REALbasic User’s Guide

Adding Global Functionality with Modules
character is to add a function to a module that returns the desired character. For
example, to create an object that returns a Carriage Return character (ASCII 13),
add the following function to a module:

Adding a
Constant to a
Module

To add a constant to a module, do this:

1 If the Code Editor for the module is not already open, double-click the
module’s name in the Project Editor to open it.
The Code Editor for the module appears.

2 Click the Add Constant button or choose Project . Add . Constant.
The Add Constant declaration area appears above the Code Editor area.

Figure 309. The Add Constant declaration area.

3 Enter the name of the constant, its value, and its data type.
When you enter a value, REAL Studio guesses the data type and sets the Type drop-
down list accordingly. Any number sets the data type to Number, a string other
than “True” or “False” sets it to String, and a hex value that starts with “&c” sets it
to “Color.” Entering “True” or “False” sets the Type to Boolean.

If its guess is incorrect, set its data type by selecting a data type from the Type drop-
down list, Number, String, Boolean, or Color. The data type of the constant will be
indicated by the small icon to the left of the constant’s name in the browser area.

If you chose Color, a color patch appears to the right of the Type drop-down list
with the default color of black. Click it to display the Color Picker to choose the

Function CR as String
Return Chr(13)
376 REALbasic User’s Guide

Adding Global Functionality with Modules
color constant. When you choose a color, its value in hexadecimal is added to the
Default Value area.
If you chose string, a “Dynamic” checkbox appears to the right of the Type drop-
down list. Dynamic constants are used to facilitate localization. For more informa-
tion about Dynamic constants, see the section “Dynamic Constants” on page 379.

4 Enter the value for the constant in the Default Value area.

5 Choose a Scope for the constant by clicking one of the three Scope buttons.
Your choices, from left to right, are Global, Public, and Private. If the constant is in
a nested module, its Scope cannot be Global.
Note that elsewhere in REAL Studio, the three icons stand for Public, Protected,
and Private.

Figure 310. The Scope buttons.

For information on Scope, see the section “Scope of a Module’s Items” on page 370.

NOTE: The New Constant pane supports standard Cut, Copy, and Paste operations.

To add a constant to a module class, do this:

1 If the Code Editor for the module class that the constant will belong to is
not open, double-click it in the Project Window or in the module’s browser.
The Code Editor for the Module class appears.

2 Click the Add Constant button in the Code Editor toolbar or choose
Project . Add Constant.

A new constant appears in the Module class’s Code Editor.

Figure 311. A new constant in a Module class.
377REALbasic User’s Guide

Adding Global Functionality with Modules
Notice that the Location area indicates that the constant will be accessed via the
syntax ModuleName.ClassName.ConstantName.

3 Follow steps 3 to 5 in the previous set of instructions to specify the name,
data type, value, and scope.
If the constant is in a nested module, its Scope cannot be Global.

Color
constants

You can create constants of type color. Using color constants is a great way to ensure
that the colors your application uses are consistent. When you specify the value of a
color constant, you use the RGB (Red, Green, Blue) model. You specify the
amounts of each primary color using the following format:

where RR is the value of Red in hexadecimal, GG is the value of Green in
hexadecimal, and BB is the value of Blue in hexadecimal. If you type the character
string “&c” into the Default Value area, the Type pop-up menu will switch to
“Color” and display the color patch to its right, shown in Figure 312. Or, you can
choose “Color” from the pop-up instead of entering any value.

Click on the color patch to the right of the value area to display the Color Picker and
select the color. When you close the Color Picker, REAL Studio inserts the RGB
values for the selected color in the Value area. A color constant is shown in Figure 312.

Figure 312. A constant of type Color.

Using
Constants to
Localize your
Application

Global constants also provide a very convenient way to localize your application. If
you use global constants for all the text that appears in your application’s interface,
you can instantly localize the application simply by changing the Default Language
setting in the Build Settings dialog box when you are ready to create a standalone
application. For more information, see the section “Building Your Application” on
page 695.

&cRRGGBB

Click to display
the Color Picker
378 REALbasic User’s Guide

Adding Global Functionality with Modules
Public constants are equally suitable for localization; the only advantage of Global
scope is that you can refer to them by name only, without needing to precede the
name with the name of the module, class, or window in which they were declared. If
you like, you can put your localization constants in the App class or even in a
window, as long as you make them Public. The App class in the default Desktop
Application project has constants that are used in the IDE to customize menu items
on Macintosh, Windows, and Linux.

The Localization table at the bottom of the Add Constant declaration area lets you
assign different values to the constant depending on platform and language. When
you change the Default Language in Project Settings or the Build Application
dialog box, the corresponding values for each constant take effect automatically. All
you need to do is define a value for each combination of platform and language that
you build.

Your choices for platform are:

n Windows (Windows 2000, XP, Vista),

n Macintosh Universal Binary (Mac OS X 10.2 or above on either a PowerPC or Intel
Mac; REAL Studio no longer builds in the Macintosh PEF format or for Mac OS
“classic.”)

n Linux (GTK 2.8 or higher).

This set of features allows you to create different definitions of the constant for each
type of operating environment.

Dynamic
Constants

String constants that have values for multiple languages can be set to be
dynamically localizable. That means that the built application will load the proper
values for the language on which the application is running. On Mac OS X, it will
generate .lproj folders inside of a package that will contain a single
Localizable.strings file with the values of the strings. On Linux and Windows, it
will generate .mo files according to the gettext format.

To enable the dynamically localizable feature, click the Dynamic checkbox that
appears to the right of the blocks of data types. The Dynamic checkbox appears only
if you have selected String as the constant’s data type.

REAL Software provides a free localization utility, Lingua, that enables you to
localize strings outside of the REAL Studio IDE. To utilize Lingua, you first set up
all of your string constants to be localized as “Dynamic.”

An Example of
a Localized
String
Constant

The following illustrates how to set up a constant that will be used as the caption for
a button control that is used generically as the ‘accept’ button (i.e., “Save”, “OK”,
and so forth). This illustrates how to localize within REAL Studio; for information
on how to localize externally, see the section “Using Lingua to Localize your
Application” on page 383.

To define several values for a constant, do this:
379REALbasic User’s Guide

Adding Global Functionality with Modules
1 Using the New Constant declaration area, add a new constant.

2 Enter a value for the constant for the default language and set the type to
String.

3 Choose the Scope for the constant.
Ordinarily you will make the scope of the constant Global so that it can be used in
menus, menu items, and in windows and their controls. You can also use Public.

4 Click the Plus sign in the Localization table.
REAL Studio adds a new blank row to the Localization table. This is shown in Figure 313.

Figure 313. A new row added to the Localization table.

The Platform column enables you to choose whether the value will be for any
platform, any Windows version, Linux, and Mac OS X (Note: REAL Studio 2007
Release 4 and above builds only for Mac OS X 10.2 and above for the PowerPC,
Intel architecture, or Universal Binary). The Language column offers choices of
Default (the default language of the host OS) or virtually any specific language.

5 Use the pop-up menus to choose a Platform and Language and enter the
value for that platform/language combination in the Value area.
If you are entering a string constant that will be used as an item’s Text property and
want to assign a keyboard accelerator, precede the letter with the ampersand (&)
character. On Windows and Linux, the key will be underlined.

6 Repeat these steps to add additional platform/language combinations, as
needed.

It is mandatory that a value be provided for each Platform/Language combination
that you build. If you omit a value, REAL Studio will have no idea what to use when
you build the application for that platform and language.
380 REALbasic User’s Guide

Adding Global Functionality with Modules
You can localize menus and menu items in exactly the same way. Create a global
constant for each text string that will be used as a menu and menu item. Then use a
constant’s name as the menu’s Text property, preceded by the number sign (“#”). If
you want to specify a keyboard accelerator, place an ampersand prior to the
accelerator character.

A Localization
table example

The App class that is included in Desktop applications by default contains constants
that are used to manage the File . Exit and the Edit . Delete menu items. On
Macintosh, these menu items are Quit and Clear respectively. MenuBar1 contains
references to these constants rather than literal text. Since the constant uses different
values by platform, the localization table is filled in for platform only, not language.

For example, the constant for the File . Exit menu item specifies the value of “Quit”
which is used on Macintosh, and has entries in the Localization table for Windows
and Linux. They change the Value to “Exit” and specify a keyboard accelerator.

Figure 314. The specifications for the kFileQuit constant.

The kFileQuit constant is referred to in the Text property of the Quit menu item in
the Menu Editor for MenuBar1. Note the use of the number sign in the Text prop-
erty. Since the constant’s Scope is Public, not Global, it is necessary to include the
name of the object in which it is declared, thus it’s “#App.kFileQuit”. Notice that
the Menu preview area shows that it has picked up the value of “Quit”.
381REALbasic User’s Guide

Adding Global Functionality with Modules
Figure 315. The properties of the Quit menu item (Macintosh).

On the Windows version of the same application template, the Menu Editor shows
that the value of “Exit” is used.

Figure 316. The Exit menu item in the Windows IDE.

On Windows, the keyboard accelerator is indicated by the underscore in the Local-
ization table.

This technique also works for all static text that appears in windows: PushButtons,
bevel button menus, contextual menus, tab panel labels, etc. You can reference the
constant simply by entering its name in the Properties pane, preceded by the num-
ber sign, as shown in Figure 316. If it is a public constant, you need to include the
name of the object that contains the constant; if it is a global constant that was cre-
382 REALbasic User’s Guide

Adding Global Functionality with Modules
ated in a module, then you can omit the name of the module that contains the con-
stant.

You can also use constants in enterable fields in App class’s Properties pane where
you could also enter static text. For more information, see Chapter 15, “Building
Stand-Alone Applications” on page 693.

Using Lingua
to Localize
your
Application

REAL Software provides a free utility called Lingua that you can use to localize
REAL Studio applications. It does the localization outside the REAL Studio IDE.

Lingua utilizes the dynamic constants option that you can select when you create a
constant. The first step is to create dynamic constants for all strings that need to be
localized. A recommended approach is to create a separate module for your
localizable constants, but you can put these constants anywhere.

When all of your strings have been defined as dynamic constants, choose
File . Export Localizable Values. A dialog box will appear, asking you to select the
language you want to localize to. Select the language you are localizing to and click
Export.

REAL Studio will then write out a file that can be opened by Lingua on Windows,
Linux, and Mac OS X.

Launch Lingua and then open the file you exported. The main Lingua window
opens, showing a list of all the dynamic strings in your application. The values are
grayed out when there is no localized version. If there are any different values
specific to Windows, Linux, or Mac OS X, there will be an icon to the far right of
the string in the list. Like the strings, the icons will be grayed out if the value is not
localized.

To localize a string, select it in the list. The original value will be displayed in its
entirety in the upper right pane, and in you can type the translated text in the lower
right panel.

Figure 317. The Lingua main screen.
383REALbasic User’s Guide

Adding Global Functionality with Modules
To add a value specific to a platform, expand the string in the list (as shown for the
OK button, above), and select the individual platform to edit it.

To test the strings, choose File . Export to Application. Lingua presents an open-
file dialog box. Select the target application and click Open. When the import is
complete, switch back to the REAL Studio application and debug the application
normally.

When finished localizing, you can save the file from within Lingua and then import
the strings file back into REAL Studio by dragging it into a project or choosing
File . Import.

Adding Classes to Modules
A module can contain classes. Unlike classes that are added to the project, a class in
a module “lives” inside the module. Outside the module, a module class is
referenced by dot notation, e.g., “Module1.Class1”. Items in a module class are also
referenced by dot notation, e.g., “Module1.Class1.Method1”.

To add a class to a module, do this:

1 Highlight the module in the Project Editor and right+click (Control-click on
Macintosh) and choose Add to ModuleName . Class from the contextual
menu.
This is illustrated Figure 318 on page 384.

Figure 318. Adding a class to a module.

A new class is added to the module’s namespace. It appears as a nested item when
you expand the module in the Project Editor. This is shown in Figure 319 on
page 385.
384 REALbasic User’s Guide

Adding Global Functionality with Modules
Notice that the Properties pane for a module class includes an item for setting its
Scope. This setting is unavailable for a project class. A project class is available
throughout the application and this cannot be changed.

By default, the Scope of a module class is Public. This means that you need to refer
to it outside the module using the format ModuleName.ClassName. If the class is
Public, the it has no badge in the Project Editor. If it is global, it gets the “globe”
badge and if it is private, it gets the standard “private” badge.

Figure 319. A new Public module class in the Project Editor.

2 Use the Properties pane to set the Super for the class, its name, and Scope.

3 To add items to the class, double-click on the class to display its Code
Editor.
For information about adding items to classes, see the section “Modifying Classes”
on page 543.

4 Add items to the class using the same procedures that you would use for
adding items to a project class.
See the section referred to above for information on adding items to a class. The cru-
cial difference is that items added to a module class “live” inside the module. For
example, if you add a method to Class1 inside Module1, it is referred to as
Module1.Class1.Method1.

Converting a
Project Class
to a Module
Class

You can also change a project class to a module class. Project classes appear in the
Project Editor and are available globally to the project.

To convert a Project class to a module class in the Project Editor, drag the class
diagonally to the right and over the name of the module (If you do not drag toward
the right, the class will remain at the project level, but change position).
385REALbasic User’s Guide

Adding Global Functionality with Modules
Figure 320. Dragging a global class to a module.

Notice that the horizontal line that indicates the destination position of the drag is
indented.

When the drag is successful, the class appears indented (as shown in Figure 319) in
the module.
386 REALbasic User’s Guide

Adding Global Functionality with Modules
Adding Class Interfaces to Modules
A class interface is a construct that you can use to tie together classes that do not
share a super class but have something in common in your application. Class
interfaces are used to specify what an object does without specifying how it does it.

In order to understand class interfaces better, it’s best to read Chapter 10, “Creating
Reusable Objects with Classes” on page 531 in order to understand the role of
classes and interfaces in project development. Class Interfaces enable you to separate
the code that implements a method or function from the calling methods. If two or
more classes need to do the same thing, but do it in different ways, you use an inter-
face instead of a super class. The class interface is the “public” interface that outside
methods call, while the class’s methods are the “private” implementations.

This means you can use private interfaces to provide an extra level of access between
classes that live in the same module, without exposing those methods to code
outside the module. Simply define the methods you want to expose on the private
interface, then have the class implement the interface with private methods. The
code inside the module will be able to cast the object to that interface and call the
methods, but code outside the module won't be able to use the interface.

Class interfaces in modules are created in the same way as project-level class
interfaces, as described in Chapter 10.

The process involves three basic phases:

n Creating the class interface,

n Creating the classes that implement the class interface,

n Adding the classes to your project and calling the class interface methods in your
program. Typically, that means writing generic code that tests whether a class
implements a class interface and executing class interface methods where
appropriate.

To create a class interface in a module, do this:

1 In the Project Editor, right+click (Control-click on Macintosh) on the module
to which you want to add the class interface and choose Add to
ModuleName . Class Interface.
A new class interface is added to the selected module in the Project Editor. It is
indented and its icon is hollow, indicating that it doesn’t actually hold code.
387REALbasic User’s Guide

Adding Global Functionality with Modules
Figure 321. The Project Editor with a new module class interface.

The Properties pane for the interface enables you to name it and set its scope.

2 If desired, use the Properties pane to change the name of the class
interface.

3 Use the Properties pane to set the Scope for the class interface.
Unlike project class interfaces, module interfaces have a Scope. Global interfaces are
accessible to classes outside the module.

4 Double-click the Class Interface item in the Project Editor to display the
Code Editor for the class interface.
The Code Editor for a class interface has items only for methods and notes. You can-
not create properties or constants for a class interface.

5 Click the Add Method button or choose Project . Add . Method to add a
method declaration to the class interface.
The Method declaration area appears above the Code Editor area.
388 REALbasic User’s Guide

Adding Global Functionality with Modules
Figure 322. The Method declaration area for a Class Interface.

6 Enter the name of the method, its parameters, and, if it will return a value,
the data type of the value being returned.
In other words, declare the method in the normal manner. You use the Method dec-
laration only to provide the ‘spec’ for the methods that will be written (a.k.a.,
“implemented”) elsewhere. The method will have several implementations, one in
each class that implements the class interface.

For more information on declaring a method, see the section “Adding Methods to
Windows” on page 329.

7 Repeat steps 4 and 5 for each method or function declaration of the Class
Interface.

After you have created your class interface, you must ‘hook it up’ to one or more
custom classes. To be non-trivial, we assume it will be two or more custom classes.
You add the code for the methods declared in the class interface in each class that
implements the class interface.

To implement a class interface, do this:

1 In the Project Editor, select the class to which you want to add the class
interface.
Notice that the Properties pane for the class contains a field for specifying the class
interface (or interfaces) for the custom class.

You can specify the class interface or interfaces that the class implements by enter-
ing their names in the Interfaces field in the Properties pane or via the Project pane’s
contextual menu.
389REALbasic User’s Guide

Adding Global Functionality with Modules
Figure 323. The Interfaces property for a module class.

2 In the Properties pane’s Interfaces field, click on the ellipsis (the box on the
right with three dots in it) or right+click (Control-click on Macintosh) on the
name of the class in the Project Editor and choose Implement Interface.
The Implement Interface dialog box appears. It presents a list of all the currently
defined class interfaces in the application.

Figure 324. The Implement Interfaces dialog box.

3 Click the checkboxes for the class interface or interfaces you wish to add
and click OK.
When you do so, the names of the class interfaces are added to the Interfaces field in
the class’s Properties pane. REAL Studio also adds an Interfaces column to the Proj-
ect Editor shows the names of the newly added interfaces.

When you choose a class interface, REAL Studio adds all the method declarations
for the interface to the class’s Method Editor. The class’s Method Editor then
displays the first such method, ready for you to write the method. Each method that
390 REALbasic User’s Guide

Adding Global Functionality with Modules
is generated by the Implement Interface dialog has a comment line that explains
which Class Interface the method belongs to.

4 If desired, choose the “Include #error” option.
If you select the “Include #error in the source of each method” option in the Imple-
ment Interfaces dialog, it also includes an uncommented line with the directive
“#error”. This line causes the compiler to generate a syntax error. The purpose of the
line is to remind you to implement the method. If it weren’t there and you forget to
implement the method, you would satisfy the technical requirement that the
method exists, but it would be an empty method. The resulting compiler error
would remind you to implement the method.

When you finish implementing the method, you should remove or comment out
this line.

Here is an example method that was generated by the Implement Interface dialog.

Figure 325. The Flush method of the Writeable class interface.

You can also enter the names of class interfaces directly into the Interfaces field in
the Properties pane. Click in the text area of the Interfaces field to get an insertion
point and enter the name of the interface into the Interfaces field of the Properties
pane. When you enter an interface, REAL Studio displays a dialog asking you
whether you’d like it to generate all the method declarations for the interface.

Figure 326. The Add Methods dialog.
391REALbasic User’s Guide

Adding Global Functionality with Modules
If you click Yes, it displays the Implement Interface dialog where you can choose
the interface you entered.

If you don’t accept this choice, you must take care to implement all the methods
yourself.

Adding Event
Definitions to
Modules

When you add code to an event handler of a module class, you cannot, by default,
add more code to that event handler for an instance of the module class. Consider
this example. You create a module class based on the ListBox class and you put some
code in its Open event handler. Any instances of that class that appear in a window
will not have their own Open event handler. The assumption is that since the event
handler of the class has code for the Open event, it is handling that event.

There may be times, however, when you want the module class to have code in an
event handler but you also want to be able to put code in that event handler for an
instance of the module class. You want the code in the class instance to override the
module class’s event handler.

You solve this problem by adding an event definition to the module class. For
information about event definitions, see the section “Adding Event Definitions” on
page 558.
392 REALbasic User’s Guide

Adding Global Functionality with Modules
Adding Delegates to Modules
A Delegate data type is an object representing a specific method. Delegates
decouple interface from implementation in a similar way to events or interfaces.
This decoupling allows you to treat a method implementation as a variable, that is
changeable based on run-time conditions. They represent methods that are callable
without knowledge of the target object. You can change the function the delegate
points to on the fly.

In effect, a delegate is a class with a single method, named “Invoke,” whose
parameters and return value match the delegate’s parameters and return type. The
Invoke method calls the method the delegate instance represents. While delegates
are objects, you cannot create a subclass of a delegate type.

A Delegate can be created in modules and classes. You use the Add Delegate menu
command or the Add Delegate button in the module’s Code Editor to create a
Delegate.

To create a delegate, do this:

1 Open the module to which you want to add the delegate.
Its Code Editor appears.

2 Choose Project . Add . Delegate.
REAL Studio adds a Delegates folder in the module’s browser area and creates a
new, untitled delegate.

Figure 327. A new delegate.

3 Declare the delegate by specifying its parameters and, optionally, its return
type.
This declaration creates a new object type: in effect, a class with a single method,
named “Invoke.” Its parameters and return value match the delegate’s parameters
and return type. The Invoke method calls the method the delegate instance repre-
393REALbasic User’s Guide

Adding Global Functionality with Modules
sents. Although delegates are objects, you cannot create a subclass of a delegate
type.

Delegate values come from the AddressOf operator. The AddressOf operator returns
a delegate representing the target method. Invoking the delegate invokes the
method on the same object instance the delegate originally came from.

Delegate types are considered to be compatible if their parameter lists and return
types match. Casting, assignment, and the IsA operator work by comparing the
delegate type signatures, not by comparing actual types as with classes.

The delegate type has an implicit conversion to Ptr, so you can continue to use the
AddressOf function to obtain function pointers for use as external callbacks. In
addition, you can create a new instance of a delegate using the New operator; its
constructor expects a Ptr to an external function which the delegate will represent.

Structures
A Structure is a compound value type. It consists of a series of fields that are grouped
together as a single block. You can control the size and order of the fields so you can
declare a structure in REAL Studio to match a structure defined by an external
library or as part of a binary file format or communications protocol. A structure can
provide a convenient alternative to the MemoryBlock.

You might also use a Structure when porting a Visual Basic application to REAL
Studio; it is very similar in concept and syntax to Visual Basic’s “User-Defined
Type” feature, also known as a “UDT”. In Visual Basic .NET this is called a
structure.

A Structure is a data type, like an integer or a color. It is not a reference type like an
object or an array. When you assign an object value to an object variable, you copy a
reference to the object data; when you assign a structure value to a structure
variable, you copy the entire contents of the structure. When you pass a structure as
a parameter ByVal, the whole contents of the structure is copied; when you pass a
structure ByRef, the callee ends up modifying the caller’s original structure instead.

The New operator does not apply to structures. When you create an array of
structures, each element is an actual value (not a reference, like it would be with an
array of objects). You can use the same dot syntax to access structure fields as you
would use to access object properties, but when you use dot syntax with a structure,
you are manipulating the structure variable itself, not a reference to data somewhere
else.

Creating a
Structure

Structures can be created in modules and classes. In modules, they can be given
Global, Public, or Private scope. A structure contains a list of fields and/or arrays.
You must declare the data type of each field or array.

Structure fields can be defined as arrays, using the usual array syntax:
fieldName(UBound) As DataType
394 REALbasic User’s Guide

Adding Global Functionality with Modules
Arrays in structure fields can’t be manipulated in the same ways as normal arrays;
they represent a fixed chunk of storage inside the structure, not a dynamic object
that can be resized and manipulated. Structure field arrays cannot be resized, cannot
be assigned, and do not support any of the array methods.

Strings also have a special syntax and behavior inside a structure:

fieldName As String * size

A string in a structure is a simple array of bytes. Unlike String variables, a string
field has a fixed size and does not store text encoding information. If a string value
contains fewer bytes than the declared size, unassigned bytes are assigned null bytes.
If you use the Len function to get the length of the field, it will return the declared
length.

Just as you convert text to a specific encoding when writing it to a file or a socket,
and assign the correct encoding to it when reading it back in, you must convert
strings to a specific encoding when you assign them to a structure and define them
to the correct encoding when reading them back out.

Structure fields can contain any of the simple value types, but cannot contain
objects. The Structure Editor in the IDE will show you the size and location of each
field, so that you can match your structure up exactly with an external data format.

To create a Structure, do this:

1 Open the Code Editor for a module and choose Project . Add . Structure.
If you have added the Add Structure button to the Code Editor toolbar, you can
click that button instead. A structure has a name and a list of fields, and can be
global or private.

2 In the structure declaration area, give the structure a name.

3 Click the plus button in the field list to create a new field, then type in the
declaration.

The field declaration syntax is the same as for a Dim statement or a property
declaration: fieldName As DataType.

Like a property or local variable, fieldnames must be simple identifiers and must be
unique within the field.

A completed structure definition is shown in Figure 328 on page 396.
395REALbasic User’s Guide

Adding Global Functionality with Modules
Figure 328. A Structure declaration.

Using
Structures

Once you’ve defined a structure, you can use it in almost any context in which you
would use any other data type. Use the dot syntax to access the fields. You can
define an object or module property as a structure; you can declare a method
parameter as a structure; you can even embed one structure as a field in another.
Variants, however, cannot contain structures. Store the StringValue instead.

In addition to the fields you define, structures contain three built-in items:

The StringValue getter and setter methods let you treat the structure as a string.
This is useful for copying structures into and out of MemoryBlocks, for reading and
writing structures to files, and for transmitting structures through sockets.

Name Parameters Description

Size This constant returns the total size of the
structure in bytes.

StringValue littleEndian as
Boolean

Gets the StringValue of the structure. You must
pass the desired endianness, which should
match the LittleEndian property on the
MemoryBlock on BinaryStream. StringValue
will convert the structure’s fields to or from the
appropriate endianness as necessary.

StringValue littleEndian as
Boolean

Sets the StringValue of the structure. You must
pass the desired endianness, which should
match the LittleEndian property on the
MemoryBlock on BinaryStream. StringValue
will convert the structure’s fields to or from the
appropriate endianness as necessary.
396 REALbasic User’s Guide

Adding Global Functionality with Modules
To work with the structure, you can declare a variable or property as a structure and
get and set the fields that you declared. For example,

Then you can get any of the values in the structure, i.e.,

Structure
Alignment

Structure alignment refers to aligning the data at a memory offset equal to some
multiple of the word size. Alignment can increase the computer’s performance.

Structures can be aligned via the Attributes system. You add the attribute
“StructureAlignment” and use one of the legal values: 1, 2, 4, 8, 16, 32, 64, and
128.

To specify a structure alignment, right+click the structure name in the Module’s
Code Editor and choose Attributes... from the contextual menu. The Attributes list
appears. Add an attribute to the list and specify “SructureAlignment” in the Name
field and enter the desired value.

Adding an Enumeration to a Module
An enum or enumeration is a set of constants. It’s a group of constants that are
assigned values. You can assign a value to each constant or accept the default values.
By default, the constants are numbered consecutively, starting with zero.

When you create an enumeration, you create a new data type. Enumerations accept
only integer constants. When you want to get an enumeration, you need to cast it to
an integer data type.

You can add an enum to a module or a class.

To create an Enum, do this:

1 Open a module and choose Project . Add . Enum.
If you have added the Add Enum button to the Code Editor toolbar, you can click
that button instead. An Enum has a declaration area in which you name the Enum
and set its Scope.

Dim Employee1 as Employee
Employee1.EmpNumber=5
Employee1.EmpOffice="Tyler Hall"
Employee1.EmpPhone="555-1212"

MsgBox Employee1.EmpOffice
397REALbasic User’s Guide

Adding Global Functionality with Modules
Figure 329. The Enum Declaration area.

2 In the declaration area, give the Enum a name and click one of the Scope
buttons to set its scope.

3 Click the plus button in the list to enter the name of the first constant.

4 If desired, assign a value to the constant by typing an equals sign, followed
by the value.
For example, if the first constant is named “Windows” and you want its value to be
13, you’d write:

If you only enter the constant name, its value is its sequence number in the list, with
the first item being zero.

Here is an example of a finished Enum. It defines the Enum named “SecurityLevel”
and gives it four constants: Unauthorized, Minimal, Maximum, and Forced. Their
values range from 0 to 3 since no values are included in the definition.

Windows = 13
398 REALbasic User’s Guide

Adding Global Functionality with Modules
Figure 330. A global Enum defined for ‘Security Level’.

You use the dot notation to get the values of the items. For example, the expression

accesses the value of 2 because Maximum is the third constant in the Enum
definition. To return the integer 2, you need to explicitly cast the enum using the
desired integer data type. There is no implicit conversion from the enum data type
to an integer data type. For example, the following code in a window returns the
integer value 2 associated with this item.

You can also declare a variable of the data type of the enum and get its values that
way:

Nesting a Module in a Module
A module can contain other modules. A module nested in another module can have
classes, class interfaces, methods, properties, constants, structs and enums just like
the top-level module. The scope of the item determines how you refer to it outside
its module. However, higher-level modules cannot “see” the items in nested
modules.

SecurityLevel.Maximum

Dim i as Integer
i=Int32(SecurityLevel.Maximum)

Dim MaxSec as SecurityLevel
Dim i as integer
MaxSec=SecurityLevel.Maximum
i=int32(MaxSec)
399REALbasic User’s Guide

Adding Global Functionality with Modules
To add a module to an existing module, do this:

1 In the Project Editor, highlight the module to which you want to add the
new module.

2 Right+Click on the module and choose Add to ModuleName . Module.
The new module appears in the Project Editor, nested inside the existing module.

Figure 331. A new module nested in an existing module.

The new module can contain other modules. The nesting of modules can continue
indefinitely.

A method inside a class inside a module sees the module’s members in the same way
that a method directly inside the module would. The contained class has access to
all the private module members, and can refer to the public module members
without having to specify the module’s name.

Scope of a
Nested
Module’s Items

When you add an item to a nested module, you need to set its Scope attribute. The
Scope of an item determines which other items in the project can access it. There are
two possible values:

n Public: A Public item is also available to code throughout the application. If you
create a Public item in a nested module, you need to include the full path to the
item when referring to it. For example, if you declare a Public property,
myPublicProperty, in Module2 which is nested in Module1, you refer to it outside
its own module as Module1.Module2.myPublicProperty. If you declare a Public
property in Module1, it can be accessed in Module2 as Module1.myPublicProperty.

n Private: A Private item is available only within the module. It is “invisible” to the
rest of the application. When code inside the module needs to access a Private
400 REALbasic User’s Guide

Adding Global Functionality with Modules
method, property, or constant, you simply reference it by name. If you create a
Private item in a nested module, it cannot be accessed by higher-level modules.
However, Private items in higher-level modules can be accessed from nested
modules.

Class Extension Methods
A “class extension method” is a method that can be called using syntax that
indicates that it belongs to another object. For example, you can add a method that
is called from any FolderItem object that saves in a particular format. After you add
the class extension method to a module, you can call it as if it were built into the
FolderItem class.

To define a method as a class extension method, use the “Extends” keyword prior to
the first parameter. The data type of the first parameter is the object type from
which the method must be called. In other words, the use of the “Extends” keyword
indicates that the parameter is to be used on the left side of the dot (“.”) operator in
a calling statement.

For example the following example creates a method that will be called as a method
of the FolderItem class.

Figure 332. Declaring a class extension method of the FolderItem class.

The Extends keyword can be used only for methods that reside in modules. As long
as the module is in the project, the class extension method can be called from any-
where in the project. The Scope of this method is Global.

To use the class extension method in another project, simply import the module
into that project. For information about importing modules, see the section
“Importing and Exporting Modules” on page 402.

For an example of a class extension method, see the section, “Extending Classes” on
page 568.
401REALbasic User’s Guide

Adding Global Functionality with Modules
Importing and Exporting Modules
Modules can be imported from other REAL Studio projects. Modules that have been
exported from other projects appear on the desktop with a cube icon.

A nice feature of modules is that they are modular. For example, you might want to
create a module that contains basic trig functions that you use in animations. You
can easily reuse the module in other projects.

Exporting Modules can be exported for use in other REAL Studio projects. You can export a
module using two different procedures:

n Right+click on the module in the Project Editor and choose Export from the
contextual menu. The Export menu item will not be available if it is a namespace
module.

n Click on the module in the Project Editor to select it and choose File . Export
Module.

Either procedure will export the module in its current state—protected or
unprotected. Encrypted and unprotected modules share the same desktop icon; an
encrypted module’s protected status is apparent only within the Project Editor.

Figure 333. An exported module’s desktop icon (Windows).

Encrypting Modules can be encrypted prior to exporting to prevent other developers from
accessing your code (see the following section, “Encrypting Modules” on page 403).
When an encrypted module is imported into another project, it appears in the
Project Editor with a key icon (); if the developer double-clicks the module to
display its Code Editor, he is prompted to enter the decryption password.

The developer can use the encrypted module in the project, but he/she cannot access
any of the module’s code. Encryption is a great way to sell standalone modules that
provide enhancements to others’ applications without the risk of having your work
stolen.

Encryption is supported only in the Professional and Studio editions of REAL
Studio. Decryption is supported in all editions.

Importing To import a module into your project, choose File . Import and locate the module
to be imported using the open-file dialog box. If the module is encrypted, the
locked version of the module’s icon appears in the Project Editor.

If you need to share a module among two or more projects, you can import it as an
external project item. For more information, see the section “External Project
Items” on page 80.
402 REALbasic User’s Guide

Adding Global Functionality with Modules
Encrypting Modules
You can encrypt (protect) or decrypt (unprotect) a module while it is in your proj-
ect. When a module is encrypted, no one can access its code (including you) without
supplying the decryption password.

Encryption is supported only in the Professional and Studio editions of REAL
Studio. Decryption is supported in all editions.

Namespace modules (i.e., modules that contain a class) cannot be encrypted.

When encrypting a module, you supply a password which can be used to decrypt it
later.

To encrypt a module, do this:

1 Right+click on the module in the Project Editor (Control-click on Macintosh)
and choose Encrypt from the contextual menu or choose Edit . Encrypt.
You can optionally add an Encrypt button to the Project Editor toolbar. If it is
available, you can encrypt a module by selecting the module in the Project Editor
and clicking the Encrypt button.
The Encrypt Module dialog box appears, as shown in Figure 334.

Figure 334. The Encrypt Module Dialog box.

2 Enter and confirm a password for encryption.

Important Note: Don’t forget your password.

3 If you want the module to be accessible only to REAL Studio 2006r3 and
above, check the “Use REAL Studio 2006r3 Encryption” checkbox.

An encrypted module appears in the Project Editor with a small key in the lower
right corner of the module icon. This is shown in Figure 335.
403REALbasic User’s Guide

Adding Global Functionality with Modules
Figure 335. A project with an encrypted module.

When a programmer tries to open an encrypted module, REAL Studio presents the
Decrypt Module dialog box, shown in Figure 336.

To decrypt an encrypted module, do this:

1 Right+click on the module in the Project Editor (Control-click on Macintosh)
and choose Decrypt from the contextual menu or choose Edit . Decrypt.
The Decrypt Module dialog box appears.

Figure 336. The Decrypt Module dialog box.

2 Enter the decryption password and click Decrypt.
If the correct password was entered, the key will disappear from the module’s icon,
indicating that it has been successfully decrypted. If you entered an incorrect pass-
word, a message box will inform you of that fact.
404 REALbasic User’s Guide

CHAPTER 7 Working With Text and
Graphics

Almost every application manipulates text and graphics in some way. Fortunately,
REAL Studio provides a rich set of functions for creating, manipulating, displaying,
and printing text and graphics. Should you wish to create your own custom control,
you can use the Canvas control and its graphics methods to create it.

Contents

n Working With Fonts

n Working with the Selected Text

n Handling Styled Text

n Working with Text Encodings

n Formatting Numbers, Dates, and Times

n Searching using Regular Expressions

n Understanding the Canvas Control and the Graphics Object

n Drawing Pictures

n Working with Color

n Printing Text and Graphics

n Transferring Text and Graphics with the Clipboard
405REALbasic User’s Guide

Working With Text and Graphics
Working With Fonts
REAL Studio gives you the ability to set the font, font size, and font style of many of
the objects and controls in your application. TextAreas support multiple fonts,
styles, and sizes (collectively referred to as styled text) and ListBoxes support multiple
styles. Controls that use a single font have a TextFont property that you can set by
assigning it the name of the font you want used to display text for the control. Tex-
tAreas have a TextFont property but they can also display multiple fonts. For infor-
mation on TextAreas, See “Handling Styled Text” on page 409.

The System
and
SmallSystem
Fonts

The System font is the font used by the system software as its default font. It’s the font
used for the menus as well.

If you want text to be displayed or printed in the user’s System font, use the name
“System” as the font when you assign it. You can enter it as the TextFont property
in the Properties pane. If you also enter zero as the TextSize, REAL Studio will
choose the font size that works best for the platform on which the application is
running. Because of differences in screen resolution, different font sizes are often
required for each platform. This feature enables you to use different font sizes on
different platforms without having to create separate windows for each platform.
Use the Properties pane to set the TextFont to “System” and the TextSize to zero.

Figure 337. Using the System font with Font Size of 0.

If the system software supports both a large and small System font, you can also
specify the “SmallSystem” font as your TextFont. This option selects the small
system font on the user’s computer, if there is one. If there is no small system font,
the System font is used.

On Mac OS X, both System font and the small System font are supported.
Figure 338 illustrates the difference between the two fonts. The TextSize is zero in
both cases.

Figure 338. The System and SmallSystem fonts on Mac OS X.

What Fonts
Are Available?

You may want to use fonts other than the System font. In this case you will need to
determine if a particular font is installed on the user’s computer. REAL Studio has
two global functions, FontCount and Font, that make determining available fonts
406 REALbasic User’s Guide

Working With Text and Graphics
easy. The following function, when passed a font name, will return True or False to
inform you if the font passed is installed:

Building a Font
Menu on the
Fly

Suppose you want to create a Fonts menu that will display all the fonts on the user’s
computer. You don’t know which fonts are installed in advance, you need to create
the menuitems dynamically at startup.

To do so, you create a instance of the MenuItem class and instantiate it for each font.
The Action event for the class instance handles the menu selection. For details of
this technique, see the section “Creating New Menu Items On The Fly” on
page 362.

Working with the Selected Text
The term “Selected Text” refers to text that is selected (or “highlighted”) in TextFields
and TextAreas that currently has the focus. TextFields and TextAreas have three prop-
erties that can be used to get and/or set the selected text.

TextFields and TextAreas have one method, SelectAll, that performs the same
function as the Edit . SelectAll menu item. A call to SelectAll selects all the text in
the field.

Function FontAvailable(FontName as String) As Boolean
Dim i,nFonts as Integer
nFonts=FontCount-1
For i=0 to nFonts
 If Font(i)=FontName Then
 Return True
 End If
Next
Return False

Table 14: Properties for getting or setting selected text.

Name Description

SelLength The number of characters currently selected. You can change the
selected text by changing this number. Setting this value to 0 (zero) will
position the insertion point based on the value in the SelStart property
rather than selecting any text.

SelStart The number of the character just before the selected text. For example, if
the fifth character in a TextField was selected, this property would be 4.
Setting this value to 0 (zero) will start the selection at the beginning of the
TextField.

SelText A string containing all of the selected text. Changing this value will
replace the selected text with the SelText value. If no text is selected,
the SelText value will be inserted at the insertion point (the value in
SelStart).
407REALbasic User’s Guide

Working With Text and Graphics
If you need to execute some code when the user moves the insertion point or
highlights some characters, place your code in the SelChange event handler of the
TextField or TextArea.

Creating a Password Field
TextFields have Password and LimitText properties that can be used to create pass-
word fields. When you set the Password property, asterisks (on Windows and
Linux) or bullet characters (on Macintosh) appear instead of the characters you type.
However, the characters you enter are placed in the TextField’s Text property. The
LimitText property allows you to control the maximum number of characters the
user can type in the TextField.

Formatting and Filtering Text Entry
The TextField has two properties that enable you to format text when it is entered
and filter entries on a character-by-character basis. These properties are especially
useful when a TextField is used as a data entry field in a database or has an
equivalent role in applications that don’t explicitly use a database engine to store
the information.

For example, if a TextField is used to enter a US Social Security number, a valid
entry must adhere to a specific format—namely three numbers followed by a dash,
two more numbers and another dash, and four numbers, e.g., “578-68-7891”. Many
other types of information follow a regular structure—phone numbers, credit card
numbers, drivers licence codes, and so forth.

The Format
Property

The TextField’s Format property is designed to allow a TextField to have a different
display value than what was entered. For example, you could display all numbers
with 2 digits of precision using this property. When the TextField has the focus,
any formatting is cleared and the text is shown in its unaltered state. If a TextField
doesn’t have the focus and you have specified a format, the text will be shown
according to the given format. The formats supported are exactly the same as those
supported in the Format function. See the Format function in the Language Reference
for definitions.

To turn off formatting, set the format property to the empty string, "" — two
quotes with nothing between them.
408 REALbasic User’s Guide

Working With Text and Graphics
Example
Formats

Here are some sample formats for real numbers:

The Mask
Property

The TextField’s Mask property is designed to permit only certain types of characters
in certain positions of the field. For example, if you want users to enter a US Social
Security number, you can use a mask to ensure that the user doesn’t type any letters
(numbers only), and that the number given is only nine digits long. Each character
in the mask corresponds to a place holder for a specific type of character or a literal
character. Such a mask is “###-##-####”.

The input mask is completely compatible with Visual Basic with the exception of
the “~” which REAL Studio reserves for future use and expansion.

If a TextField has a Mask property, there is no visible indication of that to the end
user until text that is not permitted by the Mask is rejected or the user tries to enter
too many characters.

See the entry for TextField in the Language Reference for the symbols you can use in a
mask.

Example Masks Here are some simple masks that illustrate how the feature works.

Handling Styled Text
The term styled text refers to text that can have more than one font, font size, and/or
font style. The TextArea supports styled text. In order for a TextArea to support
styled text, its MultiLine property must be True (checked) and its Styled property

// Always display number with 2 decimal places pad with 0 if necessary.
TextField1.format = "0.00"

// Display at most 2 decimal places but don't pad with 0.
TextField1.format = "#.##"

// Turn off formatting
TextField1.format = ""

// Allow U.S. Social Security numbers to be entered.
TextField1.Mask = "###-##-####"

// Allow dates of the form 14-Dec-1972
TextField1.Mask = "##-???-####"

// Auto-capitalize a serial number of the form AWS-1925-ASD
TextField1.Mask = ">???-####-???"

// Turn off the mask
TextField1.Mask = ""
409REALbasic User’s Guide

Working With Text and Graphics
must also be True (checked).These are the defaults. In order to print styled text, you
must use the StyledTextPrinter class. See the section “Printing Styled Text” on
page 450 for more information.

Determining
the Font, Size,
and Style of
Text

TextAreas have properties that make it easy to determine the font, font size, and
font style of the selected text. The SelTextFont property can be used to determine
the font of the selected text. If the selected text has only one font, the SelTextFont
property contains the name of that font. If the selected text uses more than one font,
the SelTextFont property is empty.

This function returns the names of fonts for the selected text of the TextArea passed:

The SelTextSize property is used to determine the font size of the selected text and
works the same way as the SelTextFont property. If all characters of the selected text
are the same font size, the SelTextSize property will contain that size. If different
sizes are used, the SelTextSize property will be 0.

There are also boolean properties for determining if all of the characters in the
selected text are the same font style. Since text can have multiple styles applied to it,
these properties determine if all of the characters in the selected text have a
particular font style applied to them. For example, if all of the characters in the
selected text are bold but some are also italic, a test for bold returns True. On the
other hand, a test for italic returns False since some of the selected text is not in the
italic font style. For all of these properties, you test to see if the property is True or
False. If the test returns True, then all of the characters in the selected text have that
font style. If it returns False, the selected text contains more than one font style. If

Function Fonts(item as TextArea) as String
Dim fonts, theFont as String
Dim i, Start, Length as Integer
If Field.SelTextFont="" Then

Start=Field.SelStart
Length=Field.SelLength
For i=Start to Start+Length

Field.SelStart=i
Field.SelLength=1
If InStr(fonts,Field.SelTextFont)=0 Then

If fonts="" Then
fonts=Field.SelTextFont

Else
fonts=fonts+", "+Field.SelTextFont

End if
End if

Next
Return fonts

Else
Return Field.SelTextFont

End If
410 REALbasic User’s Guide

Working With Text and Graphics
you want to determine which styles are in use, you can programmatically select each
character in the selected text and then test the style properties. This is an operation
similar to the sample Fonts function that determines which fonts are in use in the
selected text. The properties for testing the various available font styles are:

In this example, if the selected text of the TextArea is bold, then the Bold menu
item is checked:

If all of the characters in the selected text are not bold then TextArea1.SelBold
returns False which will then be assigned to the Checked property of the StyleBold
menu item.

Setting the
Font, Size,
and Style of
Text

The properties used to check the font, font size, and font styles of the selected text
are also used to set these values. A TextArea can support multiple fonts, font sizes,
and styles. A TextField can support one font, one font size, and the plain style. On
Windows only, a TextField can also support the Bold, Underline, and Italic styles
for all the text in the TextField. It cannot support a mixture of styles.

For example, to set the font of the selected text to Helvetica, you do the following:

Keep in mind when setting fonts that the font must be installed on the user’s com-
puter or the assignment will have no effect. You can use the FontAvailable function
mentioned earlier in this chapter to determine if a particular font is installed.

You can set the TextSize property of a control to zero to tell REAL Studio to use the
font size that looks best for the platform on which the application is running.

You can set the font size of the selected text using the SelTextSize property. For
example, the following code sets the font size of TextArea1 to 12 point:

To apply a particular font style to the selected text, set the appropriate style
property to True. For example, the following code applies the Bold style to the
selected text in TextArea1:

Table 15: Properties that test for font styles.

Property Style

SelBold Bold

SelItalic Italic

SelUnderline Underline

 StyleBold.Checked=TextArea1.SelBold

TextArea1..SelTextFont="Helvetica"

TextArea1.SelTextSize=12

TextArea1.SelBold=True
411REALbasic User’s Guide

Working With Text and Graphics
Table 15 on page 411 lists all the font style properties of TextAreas that can be used
in this same way. They are also available for TextFields, but TextFields permit only
one font for all of its text.

TextAreas also have built-in methods for toggling the font styles on and off.
“Toggling” in this case means applying the style if some of the selected text doesn’t
have the style already applied or removing the style from any of the selected text
that already has it applied. The following code toggles the bold style of the selected
text in TextArea1:

The methods for toggling the styles of the selected text are shown in Table 16.

Working with StyledText Objects
When you are working with styled text that is displayed in a TextArea, you can
work with the properties of TextAreas that get and set style attributes (as described
in the previous section) to manage styled text. However, REAL Studio also provides
tools for opening, saving, and managing styled text separately from a TextArea or
any other control. In fact, the styled text doesn’t even have to be displayed at all.

This set of techniques uses the properties and methods of the StyledText class. Its
Text property contains the styled text that is managed by the StyledText object. It
has six properties for getting and setting style attributes:

TextArea1.ToggleSelectionBold

Table 16: Methods for toggling text styles.

Method Name Style

ToggleSelectionBold Bold

ToggleSelectionItalic Italic

ToggleSelectionUnderline Underline

Table 17: Properties for getting or setting Style Attributes.

Name Description

Bold Gets or sets the Bold style to the selected text in Text.

Font Gets or sets the font for the selected text in Text.

Italic Gets or sets the Italic style to the selected text in Text.

Size Gets or sets the font size to the selected text in Text.

TextColor Gets or sets the color of the selected text in Text.

Underline Gets or sets the Underline style to the selected text in Text.
412 REALbasic User’s Guide

Working With Text and Graphics
Each method takes parameters for the starting position and length of the text for
which the attribute applies. These numbers are zero-based. For example, a call to
the Bold property would look like this:

This sets the first word, “How,” in bold. Each contiguous set of characters that has
the identical set of style attributes makes up a StyleRun object. In this example, the
first three characters make up one StyleRun. The remaining text is the second
StyleRun. In the language of a word processor, each StyleRun is an instance of a
character style. The entire Text property is made up of a sequence of StyleRuns.

The StyledText class has six methods for managing StyleRuns.

The Text method of a StyledText object can have multiple paragraphs. A paragraph
is the text between two end-of-line characters. A paragraph can be defined either
with the EndOfLine function or the end-of-line character for the platform the
application is running on.

A paragraph can be made up of multiple StyleRuns. It has only one style property of
its own, paragraph alignment (Left, Centered, or Right).

There are three methods of the StyledText class for working with paragraphs:

Dim st as New StyledText
st.Text="How now Brown Cow."
st.Bold(0,3)=True

Table 18: Methods of the StyledText class for working with StyleRuns.

Name Description

AppendStyleRun Appends a StyleRun to the end of Text.

InsertStyleRun Inserts a StyleRun at a specified position.

RemoveStyleRun Removes a specified StyleRun from Text.

StyleRun Provides access to a particular StyleRun in Text. The StyleRun
class has its own properties that describe the style that’s applied
to all the characters in the StyleRun.

StyleRunCount Returns the number of StyleRuns that make up Text.

StyleRunRange Accesses the starting position, length, and end position of the
StyleRun.

Text The text that is managed by the StyledText object. Technically, Text
is a method, but you can get and set its value as if it were a
property.

Table 19: Methods of the StyledText class for working with Paragraphs.

Name Description

Paragraph Provides access to a particular Paragraph in Text. The
Paragraph class has its own properties that return the start
position, length, end position, and alignment of the
paragraph.
413REALbasic User’s Guide

Working With Text and Graphics
Although you can work with a StyledText object entirely in code—without ever
displaying it—the TextArea control is “hooked up” to the StyledText class in the
sense that you can access all the methods and properties of the StyledText class via
the StyledText property of the TextArea.

In order to work with a StyledText object in a TextArea, you must turn on the
MultiLine and Styled properties of the TextArea. You can do this using the
Properties pane.

Suppose the styled TextArea already has the text that you want to manipulate using
the StyledText class. The following code loads the text into the StyledText object.

The StyledText object is actually an alias to the TextArea’s text, not a static copy.
This means that the third line of code changes the contents of the TextArea and the
last line sets the first four characters of the TextArea to bold.

In the following example, the line:

sets the Text property of the StyledText object and displays it in the TextArea.
From there, you can go ahead and assign style properties to the text. The changes

ParagraphCount Returns the number of Paragraphs that make up Text.

ParagraphAlignment Sets the alignment of the specified paragraph (Default,
Left, Centered, or Right). The ParagraphAlignment method
takes one parameter, the number of the paragraph to be
aligned (starting at zero). You assign it a Paragraph
alignment constant. The four alignment constants are:
AlignDefault (0): Default alignment
AlignLeft (1): Left aligned
AlignCenter (2): Centered
AlignRight (3): Right aligned
For example, to right align the first paragraph, you would use
a statement such as
StyledText1.ParagraphAlignment(0)=Paragraph.AlignRight

Table 19: Methods of the StyledText class for working with Paragraphs.

Name Description

Dim st as New StyledText
st=TextArea1.StyledText
TextArea1.AppendText("This is the appended text.")
st.Bold(0,4)=True

TextArea1.StyledText.Text="Here is my styled text."+EndOfLine _
+"Aren’t you really impressed?"
414 REALbasic User’s Guide

Working With Text and Graphics
reformat the contents of the TextArea. Here is a simple example that works with
these two paragraphs:

The result is shown in Figure 339.

Figure 339. The StyledText as it appears in a TextArea.

This example happens to work with the StyledText object “hooked up” to the
TextArea, but you can also work with styled text “offline.” You declare a StyledText
object in a Dim statement and operate on it without reference to any control. When
you’re ready to display it, you can assign it to the StyledText property of a TextArea.
You would do this with a line such as:

You can also export the styled text as a series of StyleRuns and read them back in
and reconstruct the StyledText object using the AppendStyleRun method. See the
entries on StyleRun and StyledText in the Language Reference for more information.

Dim st,ln as Integer
Dim Text as String
Text="Here is my styled text."+EndOfLine+"Aren’t you really impressed?"
TextArea1.StyledText.Text=Text

//assign Font and Size to entire text
TextArea1.StyledText.Font(0,Len(Text))="Arial"
TextArea1.StyledText.Size(0,Len(Text))=14

//apply character hightlights to 'my' in first paragraph
TextArea1.StyledText.Bold(8,2)=True
TextArea1.StyledText.textColor(8,2)=&cFF0000 //Red

//get positions of second paragraph; the index is zero-based.
st=TextArea1.StyledText.Paragraph(1).StartPos-1
ln=TextArea1.StyledText.Paragraph(1).Length

//Second paragraph in Bold
TextArea1.StyledText.Bold(st,ln)=True
//Second paragraph Centered
TextArea1.StyledText.ParagraphAlignment(1)=Paragraph.AlignCenter

Dim st As New StyledText
//do whatever you want right here; when you’re done, just write...
TextArea1.StyledText=st
415REALbasic User’s Guide

Working With Text and Graphics
Working with Text Encodings
All computers use encoding systems to store character strings as a series of bytes.
The oldest and most familiar encoding scheme is the ASCII encoding. It is
documented in the Language Reference. It defines character codes for only values 0-
127. These values include only the upper and lowercase English alphabet, numbers,
some symbols, and invisible control codes used in early computers. You can use the
Chr function to get the character that corresponds to a particular ASCII code.

Many extensions to ASCII have been introduced which handle additional symbols,
accented characters, non-Roman alphabets, and so forth. In particular, the Unicode
encoding is designed to handle any language and a mixture of languages in the same
string. REAL Studio supports two different Unicode formats, UTF-8 and UTF-16.
All of your constants, string literals, and so forth are stored internally using UTF-8
encoding.

If the strings you work with are created, saved, and read within REAL Studio, you
shouldn’t have to worry about encoding issues because REAL Studio stores the
encoding it uses along with the content of the string.

If you are creating applications that open, create, or modify text files that are created
outside of REAL Studio, you need to understand how text encodings work and what
changes you may need to make to your code to make sure it continues to work
properly.

Text
Encodings:
From ASCII to
Unicode

As you know, computers don’t really store or understand characters. They store each
character as a numeric code. For example, the Return is ASCII character number 13.
When the computer industry was in its infancy, each computer maker came up with
their own numbering scheme. A numbering scheme is sometimes called a character
set. It is a mapping of letters, numbers, symbols, and invisible codes (like the
carriage return or line feed) to numbers. With a character set, information can be
exchanged between computers made by different manufacturers.

In 1963 the American Standards Association (which later changed its name to the
American National Standards Institute) announced the American Standard Code for
Information Interchange (ASCII) which was based on the character set available on
an English language typewriter.

Over the years, computers became more and more popular outside of the United
States and ASCII started to show its weaknesses. The ASCII character set defines
only 128 characters. That covers what is available on an English-language
typewriter, plus some special “control” characters that can be used on computers to
control output. It doesn’t include special characters that are commonly used in
typeset books such as curved quotes or the curved apostrophe, bullet characters, and
long dashes—like this one. Also, many languages (like French and German) use
accented characters that are not defined as part of the ASCII specification.

When the Macintosh and Windows operating systems were introduced, each OS
defined extensions to standard ASCII by defining codes from 128-255. This enabled
416 REALbasic User’s Guide

Working With Text and Graphics
both operating systems to handle accented characters and other symbols that are not
supported by the ASCII standard. However, the Macintosh and Windows
extensions do not agree with one another. Cross-platform applications have to build
in some way of managing text that uses characters in the 128-255 range.

The problem is even worse for users of languages that don’t use the standard Roman
alphabetic characters at all—like Japanese, Chinese, or Hebrew. Because there are so
many characters, the character sets devised to support some of these languages use
two bytes of data per character (rather than one byte per character, as in ASCII).

Apple eventually created various text encodings to make it easier to manage data.
MacRoman is a text encoding for files that use ASCII. MacJapanese is a text encoding
for files that store Japanese characters. There are others as well. But these encodings
were Mac specific. They didn’t make exchanging data with other operating systems
any easier and mixing data with different encodings (typing a sentence in Japanese in
the middle of an English-Language document, for example) was problematic.

In 1986, people working at Xerox and Apple Computer both had different prob-
lems to solve that required the same solution. Before long, the concept of a universal
character encoding that contained all the characters for all languages, became the
obvious solution. The universal encoding was dubbed “Unicode” by one of the peo-
ple at Xerox that helped to create it. Unicode solves all of these problems. Any char-
acter you need from any language is supported and will be the same character on any
computer that supports Unicode. And as a bonus, you can mix characters from dif-
ferent languages together in one document since all are defined in Unicode.

Unicode support began appearing on the Macintosh with System 7.6 and on
Windows with Windows 95. You could translate files between other text encodings
and Unicode but Unicode was still the exception and not the rule. It wasn’t until
Mac OS X and Windows 2000 that Unicode became the standard.

Computer users are now in a transition. There are some using older systems where
Unicode is not the standard. All new systems that are running Mac OS X,
Windows, or Linux use Unicode as the standard encoding. As a result, you may have
to deal with text files of different encodings for a while. That means you may need
to modify your code to handle this. At some point in the future, it may be so rare
that you can assume all files are in Unicode format but until then, you may need to
make some modifications to your code so that your application operates properly
when it encounters text with different types of encoding.

Changing
Your Code To
Handle Text
Encodings

Unfortunately, there is no perfectly accurate way to determine the encoding of a file.
You have to know what encoding the file is using. If it is coming from an English-
speaking user of Windows 98, it’s probably Windows ANSI.

If the encoding of a string is defined, you can use the Encoding function to get its
encoding, like this:

TextEnc=Encoding(s)
417REALbasic User’s Guide

Working With Text and Graphics
where the variable s contains the string whose encoding is to be determined and
TextEnc is a TextEncoding object. If the encoding is not defined, the Encoding
function returns Nil.

Reading a Text
File

This example code reads data from a text file and displays it in a TextArea. It makes
no assumptions about encoding. If it’s not a Unicode file, it may not display
properly. This example has been kept simple intentionally to focus on the encoding
issue:

If you know the encoding, this code can easily be changed to read the file properly.
The TextInputStream class has an Encoding property that you can use to set the
Encoding of the text that will be read using either the Read or ReadAll methods.

In the following example, the Encoding property of the TextInputStream is set to
MacRoman. If the example file is in MacRoman format, it will display properly.

The line that sets the value of the Encoding property uses the Encodings module. It
contains functions for all the different encodings. The default encoding is UTF-8, a
specific format of Unicode. When you type “Encodings.” in the Code Editor and
press Tab, the autocomplete feature of the Code Editor will display all the
encodings that are available.

Dim f As FolderItem
Dim t as TextInputStream
f = GetFolderItem("Sample.txt")
t = TextInputStream.Open(f)
TextArea1.text = t.ReadAll
t.close

Dim f As FolderItem
Dim t as TextInputStream
f = GetOpenFolderItem(FileTypes1.Text)
If f<> Nil Then

t = TextInputStream.Open(f)
t.Encoding = Encodings.MacRoman
TextArea1.text = t.ReadAll
t.close

End if
418 REALbasic User’s Guide

Working With Text and Graphics
You can set the Encoding in another way. Instead of assigning a TextEncoding to
the Encoding property, you can pass it as an optional parameter to the Read or
ReadAll methods. Here is an example of this:

Writing a Text
File

If your application needs to write out a file in a particular encoding, you must
specify it when you write out data. This can come up when the file will be read by a
different application, sent to someone in another country, or to someone using a
different operating system.

You use the ConvertEncoding function to convert text in one encoding to another
encoding. Here’s a simple example that writes text from a TextArea to a file
specifying MacRoman as the encoding. The ConvertEncoding function converts the
encoding of the text to MacRoman before passing it to the Write method:

If your application reads and writes its own files, you don’t have to worry about this
issue. UTF-8 is assumed when reading text files and is assumed when writing text
to a file. If you do nothing, your files will be read as Unicode and will write out in
Unicode format.

Getting an
Individual
Character

As was mentioned earlier, when you need to obtain an individual ASCII character,
you can use the Chr function by passing it the ASCII code for the character you
want. But if you want a non-ASCII character, you must specify the encoding as well.
The Chr function is for the ASCII encoding only; you may not get the expected
character if you pass it a number higher than 127. You should instead use the Chr
method of the TextEncoding class. It requires that you specify both the encoding

Dim f As FolderItem
Dim t as TextInputStream
f = GetFolderItem("Sample.txt")
If f<> Nil Then

t = TextInputStreamOpen(f)
TextArea1.text = t.ReadAll(Encodings.MacRoman)
t.close

End if

Dim f As FolderItem
Dim t as TextOutputStream
f = GetFolderItem("Sample.txt")
If f<> Nil Then

t = TextOutputStream.Create(f)
t.Write ConvertEncoding(TextField1.text, Encodings.MacRoman)
t.Close

End if
419REALbasic User’s Guide

Working With Text and Graphics
and the character value. For example, the following returns the ™ symbol in the
variable, s:

Formatting Numbers, Dates, and Times
REAL Studio provides the ability to display and print numbers, dates, and times in
many different formats.

Numbers Numbers are stored unformatted. Fortunately, REAL Studio provides a Format
function that makes providing formatting to numbers easy. To use this function,
pass it a format specification and the number you wish formatted. The Format func-
tion then returns a string that represents the number with the formatting applied to
it. The syntax for the Format function is:

The FormatSpec is a string made up of one or more characters that control how the
number will be formatted. For example, the format spec “$###,##0.00” applies the
dollars and cents formatting used in the United States.

On Windows, the character that is used as the Decimal and Thousands separator is
specified by the user in the Regional Settings Control Panel. In Mac OS X, these
characters are specified on the Formats panel of the International system preference.

Dim s as String
s=Encodings.MacRoman.Chr(170)

result=Format(Number, FormatSpec)

Table 20: Characters used in FormatSpec.

Character Description

Placeholder that displays the digit from the value if it’s present.

0 Placeholder that displays the digit from the value if it’s present. If
no digit is present, 0 (zero) is displayed in its place.

. Placeholder for the position of the decimal point.

, Placeholder that indicates that the number should be formatted
with thousands separators.

% Displays the number multiplied by 100.

(Displays an open paren.

) Displays a closing paren.

+ Displays a plus sign to the left of the number if the number is
positive or a minus sign if the number is negative.

_ Displays a minus sign to the left of the number if the number is
negative. There is no effect for positive numbers.

E or e Displays the number in scientific notation.

\character Displays the character that follows the backslash.
420 REALbasic User’s Guide

Working With Text and Graphics
Figure 340. The Regional Settings and Formats Control Panels.

By default, the FormatSpec applies to all numbers. If you want to specify different
FormatSpecs for postive numbers, negative numbers, and zero, simply separate the
formats with semi-colons within the FormatSpec. The order in which you supply
FormatSpecs is: positive, negative, zero. The last three examples in Table 21 on
page 421 show this. It shows some examples of FormatSpecs:

Dates Dates are objects and have properties that hold the date in various different formats.
To get a date as a string formatted in a specific way, you simply access the appropri-

Table 21: Examples of various FormatSpecs.

Format Syntax Result

Format(1.784, "#.##") 1.78

Format(1.3, "#.0000") 1.3000

Format(5, "0000") 0005

Format(.25, "#%") 25%

Format(145678.5, "#.##") 145,678.5

Format(145678.5, "#.##e+") 146e+5

Format(-3.7, "-#.##") -3.7

Format(3.7, "+#.##") +3.7

Format(3.7, "#.##; (#.##); \z\e\r\o") 3.7

Format(-3.7, "#.##; (#.##); \z\e\r\o") (3.7)

Format(0, "#.##; (#.##); \z\e\r\o") zero
421REALbasic User’s Guide

Working With Text and Graphics
ate property. Table 22 on page 422 lists the properties of date objects and an exam-
ple of the format the property contains:

Date formats are controlled by the user’s Date Properties (Windows) or Date
Formats (Macintosh) system settings. On Macintosh, the Date Formats dialog is
accessed from the Formats panel of the International system preference (Click
Customize... in the Date area in the Formats panel shown in Figure 341). On
Windows, Date Properties is a screen in the Regional Options control panel. Users
can choose the order of the day, month, year, as well as the separators.

These screens are shown in Figure 341.

Figure 341. The Date Formats (Windows) and International Formats (Macintosh)
screens.

The Date class’s ShortDate, AbbreviatedDate, and LongDate properties use
whatever format that the user has set in these system settings. Therefore, the
example formats shown in Table 22 are not necessarily the ones that a particular
computer will use.

Table 22: Formatting properties of Date objects.

Property Example (default)

ShortDate 12/31/97

LongDate Wednesday, December 31, 1997

AbbreviatedDate Wed, Dec 31, 1997
422 REALbasic User’s Guide

Working With Text and Graphics
To get the current date in any of these formats, simply create and instantiate a date
object and then access the appropriate property. In this example, the current date
formatted as a long date, is assigned to a variable:

The TotalSeconds property of a Date object is the ‘master’ property that stores the
date/time associated with the object. The TotalSeconds property is defined as the
number of seconds since 1/1/1904.

Other property values are derived from TotalSeconds. If you change the value of the
TotalSeconds property, the values of the Year, Month, Day, Hour, Minute, and
Second properties change to reflect the second on which TotalSeconds occurs.
Conversely, if you change any of these properties, the value of TotalSeconds changes
commensurately.

Times Time values are stored as part of a date. Date objects have two properties that store
time values in two different formats. Table 23 lists the two properties and shows
examples of how the time is returned.

To get the current time in either of these formats, create and instantiate a Date
object and then access the appropriate property. In this example, the current time
formatted as a LongTime, is assigned to a variable:

As is the case with date formats, several aspects of the Short Time and Long Time
formats are controlled by the user via the Time screen in the Regional Settings
Control panel on Windows or the Time Formats panel in International preferences
(Macintosh). These screens are shown in Figure 342 on page 424.

Dim today as New Date
Dim theDate as String
theDate=today.LongDate

Table 23: Formatting properties of Time objects.

Property Example

ShortTime 2:32 PM

LongTime 2:32:34 PM

Dim today as New Date
Dim Now as String
Now=today.LongTime
423REALbasic User’s Guide

Working With Text and Graphics
Figure 342. The Time Formats and Time Properties screens.

Searching using Regular Expressions
REAL Studio enables you to search and replace text using regular expressions. Regular
expressions use a meta-language in which you can search for special characters, spe-
cific characters (e.g., only vowels), and search by position (e.g., at the beginning or
end of a line). You use the language to define the string to search for and (option-
ally) the replacement string.

You use the properties of the RegEx class to define a regular expression
search/replace or search operation. Table 24 shows these properties:
Table 24: Properties of the RegEx class.

Name Description

Options These options are various states which you can set for the
Regular Expressions engine. See Table 26.

ReplacementPattern This is the replacement string, which can include references
to substrings matched previously, via the standard '\1' or '$1'
notation common in regular expressions. This pattern is used
either with the Replace property or passed to the
RegExMatch class when Search returns, and subsequently
used with Replace if no parameters are specified.

SearchPattern This is the pattern you are currently searching for.

SearchStartPosition Character position at which you want to start the search if
the optional TargetString parameter to Replace is not
specified. Keep in mind if you set it, it will only be used if
you don't specify a TargetString, since setting a new
TargetString resets the value.
424 REALbasic User’s Guide

Working With Text and Graphics
The methods of the RegEx class, shown in Table 25, are used to do the find and
replace.

The RegExOptions class lets you specify the options shown in Table 26:

Table 25: Methods of the RegEx class.

Name Parameters Description

Replace Optional:
TargetString as String;
SearchStartPosition as
Integer

Finds SearchPattern in Target and replaces the
contents of SearchPattern with
ReplacementPattern. Returns the resulting
String. Replace can take the optional parameters
shown at left. Returns a String.

Search TargetString as String
SearchStartPosition as
Integer

Finds SearchPattern in TargetString. If it
succeeds it returns a RegExMatch. The
RegExMatch will remember the
ReplacementPattern specified at the time of the
search.

Table 26: Regular Expression options.

Name Description

CaseSensitive Specifies whether case is to be considered when matching
a string. The default is False.

DotMatchAll Normally the period matches everything except a new line,
this option allows it to match new lines.

Greedy Greedy means the search finds everything from the
beginning of the first delimiter to the end of the last
delimiter and everything in-between. For example, Say
you want to match the following bold-tagged text in
HTML:

The quick brown fox jumped
If you use this pattern:

 .+
You end up matching "quick brown fox",
which isn't what you wanted.

So, you can turn Greedy off or use this syntax:
 .+?

and you will match "quick", which is exactly what
you wanted.)
425REALbasic User’s Guide

Working With Text and Graphics
When you find a match using a regular expression search, you use the properties of
the RegExMatch class to obtain the matching string (or strings) and optionally
replace the match with a string that you provide. The properties of the RegExMatch
class are shown below:

LineEndType This is in effect for the current Regular Expression
“session”)
Has no effect on SearchPatterns if TreatAsOneLine is True.
Changes the way \n is expanded for ReplacementPatterns
0 = any line ending (Mac or Win32 or Unix)
1 = defaultForPlatform (if running on Mac same as 2)
(if running on Win32 same as 3)
2 = Mac ASCII 13 or \r
3 = Win32 ASCII 10 or \n
4 = Unix ASCII 10 or \n

MatchEmpty Indicates whether patterns are allowed to match the
empty string.

ReplaceAllMatches Indicates whether all occurrences of the pattern are to be
replaced.

StringBeginIsLineBegin Indicates whether a string's beginning should be counted
as the beginning of a line.

StringEndIsLineEnd Indicates whether a string's end should be counted as the
end of a line.

TreatTargetAsOneLine Ignores internal newlines for purposes of matching
against ‘^’ and ‘$’.

UTF8 If True, treats all processed characters as UTF8 characters.
If False, ASCII is assumed.

Table 27: Properties of the RegExMatch class.

Name Description

SubExpressionCount Number of SubExpressions that are available with the search
just performed. SubExpressions allow replacement of parts
of the pattern.

SubExpressionString Returns the SubExpression as a string for the given
matchNumber. 0 returns the entire MatchString (the implicit
0th subExpression), and 1 is the first real subExpression.

SubExpressionStart Returns the starting position of the subExpression given by
the matchNumber parameter.

Replace Substitutes the matched result in a manner specified by the
given ReplacementPattern. If no ReplacementPattern is
specified, it uses the ReplacementPattern which was
specified in the RegEx object at the time of the search.

Table 26: Regular Expression options.

Name Description
426 REALbasic User’s Guide

Working With Text and Graphics
See the entries in the Language Reference for more information about these three
classes and a description of the syntax of regular expressions.

Adding Pictures and Drawing Graphics
You can add pictures from documents or draw your own pictures in REAL Studio. In
some cases you can add the graphics you want without writing any code. When you do
need to write code, REAL Studio provides methods for creating all kinds of graphics.

Understanding
the Coordinates
System

Most of the graphics methods require you to indicate the location inside the window
or within a Canvas control where you wish to begin drawing. This location is speci-
fied using the coordinates system. This system is a grid of invisible horizontal and
vertical lines that are 1 pixel apart. If you have never done a computer drawing with a
coordinates system, you might expect the origin (0,0) to be in the center of the win-
dow, but it’s not. The origin is always in the upper-left corner of the area. For the
entire screen, this is the upper-left corner of the screen. For a window, the origin is
the upper-left corner of the window, and for a control, it’s the upper-left corner of the
control. The X axis (the horizontal axis) increases in value moving from left to right
and the Y axis (the vertical axis) increases in value moving from top to bottom.

So, a point that is at 10, 20 (within a window) is 10 pixels from the left side of the
window and 20 pixels from the top of the window. If you are working within a
Canvas control, the point 10, 20 is 10 pixels from the left edge of the control and 20
pixels down from the top edge of the control.

Figure 343. The X,Y Coordinates System.

0,0 Canvas control coordinates

0,0 Window coordinates

X-Axis

Y-Axis
427REALbasic User’s Guide

Working With Text and Graphics
Displaying
Pictures In a
Window

There are different techniques you use to display pictures in a window. The tech-
nique you use depends on what you plan to do with the picture.

Using the
Entire Window

If you want to use a window to display a picture, the window’s Backdrop property is
one way to do it. The Backdrop property is a picture that will be displayed behind
any controls in the window. By default, the Backdrop is set to “None” meaning that
no Backdrop picture will be displayed.

There are several ways to assign a picture to a window’s BackDrop property. You
can assign a picture to a window’s Backdrop property by dragging a picture
document into your Project Editor and then choosing it by name as the picture for
the Backdrop property in the Properties pane. If you are not displaying the Project
Editor, you can instead drag the picture to the Tabs bar. The IDE will accept the
picture and add it to the Project Editor. If you are using the Window Editor, the
Backdrop property will list the picture in its drop-down list.

If the picture is not already added to the project, you can display the Backdrop
property’s drop-down list and choose Browse. The IDE displays an open-file dialog
in which you can select a picture. When you select a picture, it appears as the
window’s backdrop and is also added to the Project Editor.

If you wish, you can also add a picture using code. For example, in a window’s Open
event handler, you can write:

where picturename is the name of the image, as it appears in the Project Editor.

This example presents the standard open file dialog box and lets the user choose a
TIFF, JPEG, or GIF file to be used as the backdrop of the current window. The file
types used as parameters in the GetFolderItem call must be defined in the File Type
Sets Editor or by the FileType class. In this case, the TIFF, JPEG, and GIF file types
were defined individually in File Type Sets editor as components of FileTypes1. In
the File Type Sets editor, use the Add Common File Types button to add these three
file types, as shown in Figure 344 on page 429.

Backdrop=picturename
428 REALbasic User’s Guide

Working With Text and Graphics
Figure 344. JPEG, TIFF, and GIF file types defined in the File Type Sets Editor.

Thus, “FileTypes1.All” refers to all three types:

After you have assigned a picture to the BackDrop property, you can then resize the
window to the size of the picture by setting the window’s width and height
properties to the backdrop’s width and height properties:

You don’t need to worry about redrawing the Backdrop. REAL Studio will handle
redrawing the Backdrop when necessary.

Using a Portion
of the Window

If you only want to display the picture in an area in the window, you can use an
ImageWell control. An ImageWell is similar to a Canvas control, except that it has
no drawing tools: you can only display an image that has been created elsewhere.

To assign a picture to an ImageWell’s Image property, simply drag it from the
desktop to the Project Editor and then assign it to the ImageWell’s Image property
using its Properties pane. Or, you can use the Browse menu command in the
ImageWell’s Image pop-up menu in the Properties pane.

Dim f as FolderItem
f=GetOpenFolderItem(FileTypes1.All)
If f<> Nil Then

Backdrop=f.OpenAsPicture
End If

width=Backdrop.width
height=Backdrop.height
429REALbasic User’s Guide

Working With Text and Graphics
You can also add a picture at runtime by loading an image using code. For example,
the following code displays an open-file dialog box that allows the user to choose a
PICT, JPEG, or GIF file and display it in the ImageWell. It is assumed that the file
types used as parameters in GetOpenFolderItem have been assigned in the File Type
Sets Editor or with the FileType class via the language.

You can also allow your users to drag a picture document from the Finder to the
ImageWell rather than using the open-file dialog box. In the ImageWell's Open
event handler, allow a file drop using the line:

In the ImageWell’s DropObject event handler, use the code:

Your other option is to use a Canvas control to display a picture in a portion of the
window. This type of control also gives you a graphics area that can be drawn in and
also receives events. You might use a Canvas control if you need to display a picture
that the user will interact with. With the Canvas control’s Backdrop property you can
display an existing picture. This can be done manually in the Window Editor by
clicking on the Canvas control in a window to select it and then choosing a picture
from the Backdrop property’s pop-up menu in the Properties pane. The picture must
have been added to the project in the Project Editor. A picture can also be assigned to
the Backdrop property at runtime. This example displays an open-file dialog box
when the user clicks on the Canvas control and then lets the user choose a picture to be
displayed in the Canvas control:

You can also support drag and drop to a Canvas control in the same manner as for
ImageWells. The advantage of using a Canvas control is that you can also customize
the image using the methods of the Graphics class using the Canvas control’s Paint
event handler. This feature is described in the following section.

Dim f as FolderItem
f=GetOpenFolderItem(FileTypes1.All)
if f <> Nil then
ImageWell1.Image=f.OpenAsPicture
End if

Me.acceptfileDrop(FileTypes1.All)

Sub (DropObject (Obj as DragItem)
If Obj.FolderItemAvailable then
Me.Image=Obj.FolderItem.OpenAsPicture
End if

Dim f as FolderItem
f=GetOpenFolderItem(FileTypes1.All)
If f<> Nil Then
Me.Backdrop=f.OpenAsPicture
End If
430 REALbasic User’s Guide

Working With Text and Graphics
Creating
Pictures

You can create pictures programmatically using the methods of the Graphics class.
A Graphics object is simply an object in memory that holds an image. For example,
windows and Canvas controls have a Paint event. This event is executed any time
the window or Canvas control needs to be redrawn. For example, when a window
opens, its Paint event is executed because the contents of the window needs to be
drawn. Any Canvas controls in a window will also execute their Paint event when
the window opens because the Canvas control needs to be drawn. These Paint events
are also executed when a portion of the window and/or Canvas control that was pre-
viously hidden by another window is exposed.

The Paint event is passed a Graphics object. When the Paint event is finished
executing, this graphics object will be drawn in the window or Canvas control. You
draw in a window or Canvas control by calling the drawing methods of this graphics
object.

Displaying
Pictures

You can display a picture in a Graphics object using the DrawPicture method of the
Graphics class. This method is used for three common tasks:

n Displaying a picture

n Cropping a picture

n Scaling a picture

The method takes as many as nine parameters depending on your objective. If you
want to display a picture full size, it needs only three parameters. It is passed a
picture and the coordinates that describe where you want the picture drawn within
the graphics object.

In this case, its syntax is:

where Image is the picture to be displayed and x and y are the distance in pixels from
the top-left corner of the control.

This example uses the Paint event of a Canvas control to draw two pictures that have
been dragged into the Project Editor (BartPict and LisaPict) side by side:

Note that the second call to DrawPicture offsets the horizontal coordinate by the
width of the first image.

Copying a
Portion of a
Picture

The DrawPicture method of the Graphics class can be used to copy a portion of a
picture to a Graphics object. This is done using the optional parameters of the
DrawPicture method. The parameters allow you to specify the portion of the picture

g.DrawPicture image, x, y

Sub Paint(g As Graphics)
 g.DrawPicture BartPict, 0,0
 g.DrawPicture LisaPict,BartPict.Width, 0
431REALbasic User’s Guide

Working With Text and Graphics
you want to draw. You can specify the coordinates where you wish to begin copying
from the picture as well as the amount (in width and height) you wish to copy. In
this case, the parameters are:

The following example draws a 20 pixel square portion of the source picture starting
10 pixels from the left and 10 pixels from the top of the source picture and drawing
the picture 5 pixels from the left and 5 pixels from the top of the Canvas control or
window background:

Scaling
Pictures

The DrawPicture method of the Graphics class can scale a picture when it is drawn.
To do this, you must include all of the DrawPicture parameters. Scaling is done by
specifying a destination width and/or height that is larger or smaller than the pic-
ture’s original width and/or height. This example draws a picture at two times its
original size:

Here’s a very useful example that automatically scales an imported picture to fit in a
Canvas control.

Assume that you have a window that has a Canvas control and a PushButton (or
other control) that triggers code that does the import and scaling.

Image X, Y, DestWidth, DestHeight, SourceX, SourceY, SourceWidth, SourceHeight

Sub Paint(g As Graphics)
g.DrawPicture Lisa,5,5,Lisa.width,Lisa.height,10,10,20,20

Sub Paint(g As Graphics)
Dim w,l as integer
w=lisa.width
l=lisa.height
g.DrawPicture lisa, 0,0,w*2,l*2,0,0, lisa.width,lisa.height
432 REALbasic User’s Guide

Working With Text and Graphics
Create a property of the parent window that will hold the scaled picture. For
example:

In the Action event of the PushButton, use the following code to import the picture
and do the scaling:

This assumes you want to import a PICT file and you have defined a file type of
ImagePict in the File Type Sets Editor using the Common File Type of image/pict.

Dim f As FolderItem
Dim p As Picture
Dim maxWidth, maxHeight As Integer
Dim factor As Double

maxWidth = Canvas1.width
maxHeight = Canvas1.height

f = GetOpenFolderItem(FileTypes1.ImagePict)
If f <> Nil then

p = f.OpenAsPicture
end if

factor = Min(maxWidth / p.Width, maxHeight / p.Height)
factor = Min(factor, 1.0) // (don't scale it up if it's too small!)

pic = NewPicture(p.Width * factor, p.Height * factor, 32)
pic.graphics.DrawPicture p, 0,0,pic.width,pic.height, 0,0,p.width,p.height

Canvas1.Refresh
433REALbasic User’s Guide

Working With Text and Graphics
The values of maxWidth and maxHeight are set in this example to the size of the
Canvas control, but you can, of course, supply other values. The DrawPicture
method of the Graphics class uses the following parameters:

The final step is to add code to the Paint event of the Canvas control to actually
assign the scaled image, pic, to the Backdrop property of the Canvas.

Scrolling
Pictures

A picture that is drawn into a Canvas with the DrawPicture method can be scrolled
by calling the Canvas class’s Scroll method. It takes three parameters: the picture to
be scrolled, and the amounts to be scrolled in the horizontal and vertical directions.

To use the Scroll method to scroll the picture in a Canvas control, you need to store
the last scroll value for the axis you are scrolling so you can use this to calculate the
amount to scroll. This can be done by adding properties to the window that
contains the Canvas control or by creating a new class based on the Canvas control
that contains properties to hold the last X scroll amount and last Y scroll amount.

The following example scrolls a picture. The picture has been added to the project.
The properties XScroll and YScroll have been added to the window to hold the
amounts the picture has been scrolled.

A convenient way to scroll a picture is with the four arrow keys. To do this, you
place code in the KeyDown event handler of the active window. This event receives
each keystroke. Your code can test whether any of the arrow keys have been pressed

Parameter Type Description
Image Picture The picture to be drawn at the location specified by X and

Y.
X Integer X coordinate within the control of the left side of the

image. Defaults to zero.
Y Integer Y coordinate within the control of the top of the image.

Defaults to zero.
DestWidth Integer Width of Image within the control.
DestHeight Integer Height of Image within the control.
SourceX Integer X coordinate of the picture you copy from. Defaults to

zero.
SourceY Integer Y coordinate of the picture you copy from. Defaults to

zero.
SourceWidth Integer Width of the picture you wish to copy. Defaults to width of

the picture.
SourceHeight Integer Height of the picture you wish to copy. Defaults to height

of the picture.

If pic <>Nil then
g.DrawPicture pic,0,0

End if
434 REALbasic User’s Guide

Working With Text and Graphics
and then take the appropriate action. For example, this code in the KeyDown event
of the window scrolls the picture 8 pixels at a time:

The Paint event of the Canvas has the line of code that draws the picture:

Drawing
Standard
Dialog Icons

REAL Studio has a MsgBox function for displaying a standard message box with a
note icon and an OK button and a more versatile MessageDialog box.

If you need to use these icons in a message dialog box, you can get them via the
MessageDialog class. The MessageDialog class can create a dialog box with a main
text message, a subordinate explanation, an icon, and one to three buttons. The user
must respond to the dialog by clicking one of the buttons and your code can detect
the button the user clicked and take appropriate action.

You can set the icon to be displayed simply by setting the value of the
MessageDialog’s Icon property. The MessageDialog object positions the icon, text,
and buttons for you. For more information about the MessageDialog class, see the
section “Message Dialog Boxes” on page 108 and the entry for the MessageDialog
class in the Language Reference.

However, there may be times when you need to design your own dialog box. The
Graphics class has methods that draw any of the standard system icons and, unlike
the MessageDialog class, you can position the icon anywhere you want.

Function KeyDown (Key as String) as Boolean
Select Case Asc(Key)

Case 31 'up arrow
Yscroll=YScroll-8
Canvas1.Scroll 0,-8

Case 29 'Right arrow
Xscroll=XScroll-8
Canvas1.Scroll -8,0

Case 30 'Down arrow
Yscroll=Yscroll+8
Canvas1.Scroll 0,8

Case 28 'Left arrow
Xscroll=Xscroll+8
Canvas1.Scroll 8,0

End Select

g.DrawPicture myPicture, Xscroll,Yscroll
435REALbasic User’s Guide

Working With Text and Graphics
Figure 345. Mac OS X, Windows XP, Vista, and Linux Note, Caution, and Stop icons.

The Graphics class provides the DrawNoteIcon, DrawCautionIcon, and DrawStopIcon
methods that make it easy to display these icons in a Canvas control or a window back-
ground. These methods make system calls that draw the correct icon for the current
version of the operating system. Using these methods, you will display the appropriate
icon for the user’s platform. The following example draws the note icon in a Canvas
control in its Paint event:

Drawing
Pixels

You can get and set the color of individual pixels in a Graphics object using the
Pixel property. You use this property by passing it X and Y coordinates and then
setting the color of that pixel to a color object or getting its color.

This example draws pixels at randomly selected coordindates within a Graphics
object using randomly selected colors until the user presses Escape or x-Period
(Macintosh):

Sub Paint(g As Graphics)
g.DrawNoteIcon 0,0

Sub Paint(g As Graphics)
Dim c as Color
Do

c=Rgb(Rnd*255,Rnd*255,Rnd*255)
g.Pixel(Rnd*Me.Width,Rnd*Me.Height)=c

Loop until UserCancelled
436 REALbasic User’s Guide

Working With Text and Graphics
This example gets the color of the pixel the mouse is over in a Canvas control and
fills another Canvas control called PixelColor with that color:

Drawing Lines Lines are drawn using the DrawLine method of the Graphics class. The color of the
line is the color stored in the ForeColor property of the Graphics object the line is
being drawn in. To use the DrawLine method, you pass it starting coordinates and
ending coordinates of the line.

This example uses the DrawLine method to draw a grid inside a Canvas control or
window background. The size of each box in the grid is defined by the value of the
boxSize variable:

The thickness of the line is controlled by the PenHeight and PenWidth properties
of the Graphics object.

Drawing
Ovals

Ovals are drawn with the DrawOval and FillOval methods of the Graphics class.
Both require the same parameters: the X and Y coordinates where the oval starts
and the width and height of the oval. Both draw ovals using the ForeColor property
of the Graphics object. Both use the PenWidth and PenHeight properties of the
Graphics object to determine the line thickness. The difference between the two is
that DrawOval draws only the border of the oval, leaving the interior blank. Fill-
Oval draws an oval with the interior filled with the ForeColor.

This example draws an oval in a Canvas control or Window background:

Drawing
Rectangles

Rectangles are drawn using the DrawRect, FillRect, DrawRoundRect, and Fill-
RoundRect methods of the Graphics class. All of these methods use the ForeColor
property of the Graphics object and the PenWidth and PenHeight properties to

Sub MouseMove(X As Integer, Y As Integer)
Dim c as Color
c=Me.Graphics.Pixel(X,Y)
PixelColor.Graphics.ForeColor=c
PixelColor.Graphics.FillRect 0,0,PixelColor.Width,PixelColor.Height

Sub Paint(g as Graphics)
Dim i, boxSize as Integer
boxSize=10
For i=boxSize to Me.Width Step boxSize

g.DrawLine i,0,i,Me.Height
Next
For i=boxSize to Me.Height Step boxSize

g.DrawLine 0,i,Me.Width,i
Next

Sub Paint(g as Graphics)
g.DrawOval 0,0,50,75
437REALbasic User’s Guide

Working With Text and Graphics
determine the line thickness. All of these methods require the X and Y coordinates
of the upper-left corner of the rectangle, as well as the width and height of the rect-
angle. RoundRectangles are rectangles with rounded corners. Therefore,
DrawRoundRect and FillRoundRect require two additional parameters: the width
and height of the curve of the corners.

DrawRect and DrawRoundRect both draw empty rectangles. FillRect and
FillRoundRect draw solid rectangles.

This example draws a rectangle and fills it with the color red.

Drawing
Polygons

Polygons are drawn using the DrawPolygon and FillPolygon methods of the Graph-
ics class. Polygons are drawn by passing the DrawPolygon or FillPolygon method an
integer array that contains each point in the polygon. This is a 1-based array where
odd numbered array elements contain X values and even numbered array elements
contain Y coordinates. This means that element 1 contains the X coordinate of the
first point in the polygon and element 2 contains the Y coordinate of the first point
in the polygon. Consider the following array values:

When passed to the DrawPolygon or FillPolygon method, this array would draw a
polygon by drawing a line starting at 10,5 and ending at 40,40 then drawing
another line starting from 40,40 ending at 5,60 and finally a line from 5,60 back to
10,5 to complete the polygon. This polygon has only three sets of coordinates so it is
a triangle.

Sub Paint(g as Graphics)
g.DrawRect 0,0,150,100
g.ForeColor=&cFF0000
g.FillRect 0,0,Canvas1.Width,Canvas1.Height

Element # Value

1 10

2 5

3 40

4 40

5 5

6 60
438 REALbasic User’s Guide

Working With Text and Graphics
The code in the Paint event of a Canvas control or Window to draw this polygon,
looks like this:

FillPolygon draws the same polygon but with the interior filled with the ForeColor:

Another way of populating the array is with the Array function. The Array function
takes a list of values separated by commas and populates the array, beginning with
element zero. Since the first element that DrawPolygon uses is element 1, you can
use any value in element zero:

Drawing into
a Region in
the Graphics
Object

When you are drawing a complex image that involves many calls to Graphics
methods, you may want to create non-overlapping regions within the area. You then
draw into each “child” area, with the assurance that each drawing will not
inadvertently overlap another object.

You create a child region within the parent area with the Clip method of the
Graphics class. You pass it the top-left corner of the child region and its width and
height. It returns a new Graphics object that is the specified region inside the
parent area. You can then draw into the child area just as with any other Graphics
object. The only difference is that the drawing will be confined to the child area.
The coordinates of each call are with respect to the top-left corner of the child area.

Here is an example of how this works. This code is in the Paint event of a Canvas.
Two regions at the top of the Canvas are defined by calls to the Clip method.
Subsequent calls to the DrawRect method show where the clippings are. Calls to the
DrawOval method draw shapes within the clipped areas. Notice that the first call

Sub Paint(g As Graphics)
Dim points(6) as Integer
points(1)=10
points(2)=5
points(3)=40
points(4)=40
points(5)=5
points(6)=60
g.DrawPolygon points

Sub Paint(g As Graphics)
Dim points() as Integer
points=Array(0,10,5,40,40,5,60)
g.DrawPolygon points
439REALbasic User’s Guide

Working With Text and Graphics
attempts to draw outside the area. If you were drawing from the parent Graphics
object, the first oval would bump into the second.

Here is the Canvas that is produced from this code.

Figure 346. Two regions defined by the Clip method within a Canvas control.

Creating
Custom
Controls with
the Canvas
Control

Visible controls (controls that have a graphical interface the user can interact with
directly, like PushButtons) are pictures that have code that controls how they are
drawn. This means that a Canvas control can easily be used to create controls that
are not built-in to REAL Studio.

Suppose you wanted to create a simple custom control like a rectangle whose fill
color toggles from black to white when clicked. First you would drag a Canvas
control into a window. You want the rectangle to switch colors when the user clicks
the mouse, so this code goes in the MouseDown event handler of the Canvas control.
The code checks to see if the rectangle is black and, if it is, fill it in white; otherwise

Sub Paint (g as Graphics)
Dim myclip as Graphics = g.clip(0,0,150,15)
Dim myclip2 as Graphics=g.clip(150,0,150,15)

//draw the border of the Canvas in black
g.forecolor=&c000000
g.drawrect(0,0,g.width,g.height)

//draw into the first area in red
myclip.ForeColor=&cff0000
myclip.DrawRect(0,0,myclip.width,myclip.height) //draw the border of the area..
myclip.DrawOval(0,0,200,15) //try to draw outside its clip..

//draw into the second area in blue
myclip2.ForeColor=&c0000ff
myclip2.DrawRect(0,0,myclip2.width,myclip2.height) //draw the border
myclip2.DrawOval(0,0,150,15)
440 REALbasic User’s Guide

Working With Text and Graphics
fill it in black. You can check the color of any particular pixel using the Pixel
property of the graphics property of the Canvas control. You can determine if a pixel
is a particular color by comparing it to a color value returned by the Rgb function.
Passing 0 (zero) to each of the parameters of the Rgb function returns the color
black. Passing 255 to each parameter of the Rgb function returns the color white.
You will learn more about color later in this chapter. So, the code for the
MouseDown event handler looks like this:

This code checks to see if the pixel the user clicked on is black and, if it is, the Fore-
Color property of the graphics object of the Canvas control (generically represented
here using the Me function) is set to white, otherwise it’s set to black. Next, the Fill-
Rect method of the Graphics property of the Canvas control is called to fill the rect-
angle with the color stored in the ForeColor property.

There’s one more step before our custom control is complete. If the Canvas control
needs to be redrawn for some reason (such as when the window first opens or the
user moves another window in front of the one with the Canvas control), REAL
Studio calls the Canvas control’s Paint event handler to redraw the Canvas control.
If there is no code in the Paint event handler, REAL Studio won’t draw the
rectangle and, to the user it will seem to appear and disappear at different times,
which will be confusing. To solve this problem, you need to put a slightly altered
version of the code you have in the MouseDown event handler in the Paint event
handler:

Since the Paint event handler is passed a reference to the Graphics object of the
Canvas (the g parameter), you can make the code a bit more generic and use “g”
instead of “me.graphics”. Also, since the user isn’t clicking anywhere, you need to
choose a pixel whose color you check. In this example we chose the pixel at 0,0.

Function MouseDown(X As Integer, Y As Integer) As Boolean
If Me.Graphics.Pixel(X,Y)=Rgb(0,0,0) Then

Me.Graphics.ForeColor=Rgb(255,255,255)
Else

Me.Graphics.ForeColor=Rgb(0,0,0) //black
End If
Me.Graphics.FillRect Me.Left,Me.Top,Me.Width,Me.Height

Sub Paint(g As Graphics)
If g.Pixel(0,0)=Rgb(0,0,0) Then

g.ForeColor=Rgb(255,255,255)
Else

g.ForeColor=Rgb(0,0,0)
End If
g.FillRect Me.Left,Me.Top,Me.Width,Me.Height
441REALbasic User’s Guide

Working With Text and Graphics
This is an example of a very simple custom control. More complex and generic
controls can be created using classes. See “Creating Custom Interface Controls with
Classes” on page 583 for more information.

Working with Vector Graphics
The REAL Studio language includes a group of classes that enable you to create,
open, and save vector graphics. A vector graphic (as opposed to a bitmap graphic) is
composed entirely of primitive objects — lines, rectangles, text, circles and ovals,
and so forth — that retain their identity in the graphic. They don’t “decompose”
and become part of an indistinguishable bitmap. The Object2D class in the REAL
Studio language is the base class for all the classes that create primitive objects.
They are shown in Table 28:

Since each class in Table 28 is subclassed from Object2D, you can use the
Object2D’s properties to draw the object. They are shown in Table 29.

Table 28: Classes used to draw vector graphics.

Class Description

ArcShape Draws an arc of a circle.

CurveShape Draws straight lines or curves using one or more “control
points.”

FigureShape Draws polygons that can (optionally) have curved sides.

OvalShape Draws circles and ovals.

PixMapShape Imports a bitmap picture into the image.

RectShape Draws a square or rectangle.

RoundRectShape Draws a square or rectangle with rounded corners (subclassed
from RectShape).

StringShape Draws text strings in a specified font, font size, and style.

Table 29: Properties of the Object2D class.

Name Description

Border Opacity of the border, from 0 (transparent) to 100 (opaque). The
default is 0.

BorderColor Color of the border.

BorderWidth Width of the border, in points. The default is 1.

Fill Opacity of the interior, from 0 (transparent) to 100 (opaque). The
default is 100.

FillColor Color of the interior of the shape.

Rotation Clockwise rotation, in radians, around the X, Y point.

Scale Scaling factor relative to the object’s original size.

X Horizontal position of center or main anchor point.

Y Vertical position (down from top) position of center or anchor point.
442 REALbasic User’s Guide

Working With Text and Graphics
Each class in Table 28 has additional properties that pertain to the object’s
particular shape or characteristics. For example, the RectShape class has additional
properties for the rectangle’s height and width. The RoundRectShape class adds
properties for specifying the width and height of the rounded corners and the
number of straight line segments used to approximate the curved corners. Please
refer to the entries in the Language Reference for information on each property.

Drawing and
Displaying a
Vector Object

You draw a single vector object simply by instantiating it and specifying its
properties. For example, the following code draws a RoundRectShape:

The only problem with this is that the shape doesn’t appear anywhere. It’s just
“defined”— ready for your use. You need to add a command to draw the vector
object in another object such as a window or a control that can display graphics such
as a Canvas control.

The Paint event of a control or window is a good place to insert code that draws
vector objects. The Paint event passes a Graphics object to the event handler, so you
only need to call the DrawObject method of the Graphics class to draw the object.
Access to the Graphics class is provided by the passed parameter, g. The
DrawObject method takes three parameters, the object to be drawn and its X and Y
coordinates in the Graphics space.

The following code in the Paint event of a Window draws the finished vector object:

You can also create composite vector graphics objects that are made up of several
individual vector graphics objects. The composite object is a Group2D object—it’s

Dim r as New RoundRectShape
r.width=120
r.height=120
r.border=100
r.bordercolor=RGB(0,0,0) //black border
r.fillcolor=RGB(255,102,102)
r.cornerHeight=15
r.cornerWidth=15
r.borderwidth=2.5

Dim r as New RoundRectShape
r.width=120
r.height=120
r.border=100
r.bordercolor=RGB(0,0,0) //black border
r.fillcolor=RGB(255,102,102)
r.cornerHeight=15
r.cornerWidth=15
r.borderwidth=2.5
g.DrawObject r,100,100 //draw at 100,100
443REALbasic User’s Guide

Working With Text and Graphics
just a group of Object2D objects. Use the Append or Insert methods of the
Group2D class to add individual vector graphic objects to the Group2D object.
When you are finished, draw the object using one call to the DrawObject method.

The following code illustrates this. We’ve taken the code shown above and added a
second RoundRectShape object and moved it 20 pixels to the right and 20 pixels
down from the original RoundRectShape. The two Append statements create the
composite object. The code is in the Paint event of a window, so the parameter, g,
provides access to the Graphics class.

When you want to add vector graphics to an existing bitmap image, you create a
Group2D object and then add each object to the Group2D using its Append

Dim r as New RoundRectShape
Dim s as New RoundRectShape
Dim group as New Group2D

r.width=120
r.height=120
r.border=100
r.bordercolor=RGB(0,0,0) //black border
r.fillcolor=RGB(255,102,102)
r.cornerHeight=15
r.cornerWidth=15
r.borderwidth=2.5

s.width=120
s.height=120
s.border=100
s.bordercolor=RGB(0,0,0) //black border
s.fillcolor=RGB(255,102,102)
s.cornerHeight=15
s.cornerWidth=15
s.borderWidth=2.5

s.x=r.x+20 //shift s 20 pixels to right
s.y=r.y+20 //shift s 20 pixels down

group.append r
group.append s
g.drawObject group,100,100
444 REALbasic User’s Guide

Working With Text and Graphics
method. This example appends a StringShape to a PixmapShape. The graphic, h1,
has been dragged to the Project Editor.

Opening and
Saving Vector
Graphics

Two methods of the FolderItem class are relevant to vector graphics—
OpenAsVectorPicture and SaveAsPicture. The OpenAsVectorPicture method opens
a PICT file (Macintosh) or an .emf file (Windows) and attempts to convert the
objects in the PICT to editable REAL Studio Object2D objects. The original file
may contain certain elements that do not have a REAL Studio equivalent, but
OpenAsVectorPicture will do its best to map these objects.

The SaveAsPicture has an optional parameter that specifies the format to use when
doing the save. The GIF, TIFF, WindowsBMP, JPEG, and PNG formats are
supported on all platforms. On Windows, GDI+ must be installed. If GDI+ is not
installed, REAL Studio will try to use QuickTime. If neither are installed, only
WMF and EMF are supported natively on Windows.

Please refer to the FolderItem entry in the Language Reference for information on
the values of the optional parameter.

Working With Color
Color in REAL Studio is a data type. It consists of three values that define a color. A
color can be specified using either the RGB, HSV, or CMY models. You use the
three relevant Color properties to set the color. For example, to use the RGB model,
use the RGB function and set values for the Red, Green, and Blue properties. These
values range from 0 to 255. The RGB function returns a Color when passed values for
the amount of red, green, and blue. Several classes have Color properties. For exam-
ple, the ForeColor property of the Graphics class is a Color.

Dim px as PixmapShape
Dim s as StringShape
Dim d as New Group2D

px=New PixmapShape(h1) //h1 is a graphic in the Project Editor
d.append px

s=New StringShape
s.y=70
s.Text="This is what I call a REAL car!"
s.TextFont="Helvetica"
s.Bold=true
d.append s
graphics.drawobject d,100,100
445REALbasic User’s Guide

Working With Text and Graphics
If you need to store a Color, you can create a property or variable of type Color and
then use the RGB, HSV, or CMY function. In this example, a new variable of type
Color is created and the values for the white are assigned using the RGB function:

You can also assign a color value directly, without using the RGB, HSV, or CMY
functions. You use the RGB color model with the following syntax to specify a color:

where RR is the hexadecimal value for Red, GG is the hexadecimal value for Green,
and BB is the hexadecimal value for Blue. Each value goes from 00 to FF rather than
0 to 255. For example, the following is equivalent to the previous example:

“FF” is hexadecimal for 255. There is an easy way to obtain the hexadecimal values.
Using the Add Constant declaration area, you can define a constant of type color and
use the built-in Color Picker to choose a color visually. When you select a color,
REAL Studio figures out the hex values and inserts them in the Value area of the
dialog box. For an example, see the section “Adding a Constant to a Module” on
page 376.

In this example, the ForeColor property of a Graphics object is set to blue so the text
drawn will be in that color:

Determining
the RGB
Values For a
Color

If you need to assign a color at runtime but aren’t sure which RGB values to use to
get a particular color, you can use the Mac OS Color Picker. The following code dis-
plays the Color Picker:

Dim c as Color
c=Rgb(255,255,255)

&cRRGGBB

Dim c as Color
c=&cFFFFFF

Sub Paint(g as Graphics)
g.ForeColor=RGB(9,13,80)
g.DrawString "Hello World",50,50

Dim c as Color
Dim b as Boolean
b=SelectColor(c,"Choose a color")
if b then //user chose a color
// do something with selected color here
end if
446 REALbasic User’s Guide

Working With Text and Graphics
If the user cancelled out of the Color Picker dialog box, the boolean variable, b, is
False; otherwise, the selected color is returned in the color object, c, and is available
for assignment to a color property of an object.

You may have already used the Color Picker to assign a color to a control’s property.
If you haven’t, the Color Picker displays a color palette and allows you to click on
one to pick it (hence the name). Figure 347 on page 447 shows the Color Pickers on
Mac OS X, Windows, and Linux.

Figure 347. The Macintosh, Windows, and Linux Color Pickers.

In the Mac OS X color pickers, you click on a color and a sample of the color appears
in the patch area at the top of the screen. When you click OK, REAL Studio
translates your selection into RGB values.

The Windows version of the Color Picker uses only one format, shown in Figure
347. You can either select one of the predefined colors or click the Define Custom
Colors button to display the “advanced” color picker, which depicts colors on a
continuum and lets you specify the color using either the RGB or HSV models.

Figure 348. The Windows Custom Colors Picker.
447REALbasic User’s Guide

Working With Text and Graphics
Select a color by clicking on a point in the color spectrum or enter values in the
RGB or HSV areas. Click Add to Custom Colors to add the custom color to one of
the Custom Color samples on the left side of this dialog.

The Pixel
Property of
Graphics
Objects

The Pixel property of a Graphics object lets you get and set the color of the pixel
you specify. This property is an example of a property whose data type is Color. In
this example, the Paint event handler is setting a pixel to black if it is white and
white if it is black:

You can see that the code to check the color of a pixel and set the color of a pixel is
basically the same.

Printing Text and Graphics
REAL Studio provides a lot of flexibility when it comes to printing. You can display
the Page Setup dialog box and store the settings the user chooses.

Printing is almost exactly the same as drawing text and graphics into a Canvas con-
trol or the graphics property of a Window. When you call the OpenPrinter or
OpenPrinterDialog function, a Graphics object is returned. To print, you simply
draw your text and graphics into this Graphics object. To cause the page to print,
you call the NextPage method of the Graphics object. This method forces the
Graphics object to be printed, then clears it so you can use it again to draw the next
page.

Working with
the Page
Setup Dialog
Box

The PrinterSetup class lets you create an object that can be used to display the Page
Setup dialog box, get and set the individual Page Setup settings, as well as store and
restore these settings. To display the Page Setup dialog box, call the PageSetupDia-
log method of the PrinterSetup object you have instantiated. This method returns
True if the user clicks the OK button in the Page Setup dialog box and False if he
clicks the Cancel button. The PrinterSetup class has properties for accessing all of
the settings in the Page Setup dialog box (page orientation, scale, etc.). For a list of
PrinterSetup properties, the PrinterSetup class in the Language Reference. However,
in most cases you won’t have to deal with these properties because a composite ver-
sion of these settings is stored in the SetupString property. The SetupString prop-
erty is read/write and is used to get all of the PrinterSetup settings as a string so you
can store them and to restore that string later on. For example, in a document-based
application, a string property could be added to the document window that stores
the SetupString value. When the user chooses to display the Page Setup dialog box

Sub Paint(g As Graphics)
If g.Pixel(10,20)=Rgb(0,0,0) Then

g.Pixel(10,20)=Rgb(255,255,255)
Else

g.Pixel(10,20)=Rgb(0,0,0)
End if
448 REALbasic User’s Guide

Working With Text and Graphics
(in most applications by choosing Page Setup from the File menu), a PrinterSetup
object is created and its SetupString property is assigned the value in the window
property storing these settings. Then the Page Setup dialog box is displayed show-
ing these settings. In this example, the window property is called “Settings”:

If the user clicks OK in the Page Setup dialog box, the window’s Settings property
is assigned the value of the SetupString because settings in the Page Setup dialog
box may have been changed by the user.

PrinterSetup class objects can be optionally passed as a parameter to the
OpenPrinter and OpenPrinterDialog functions so that the Page Setup settings can
be used during printing.

If you wish to store the PrinterSetup’s SetupString property with the document
when the user saves the document (assuming you provide this capability), you will
probably need to store it in a string resource in the resource fork of the document.
See “Working With Macintosh Resources” on page 524 for more information on the
resource fork.

The Page Setup dialog box is not supported in REAL Studio for Linux. Calling the
PrinterSetup function will return False and no dialog will be presented to the user.

Printing With
The Print
Dialog Box

You use the OpenPrinterDialog function to display the Print dialog box and print.
If the user clicks the OK button in the Print dialog box, a Graphics class object is
returned. If the user clicks the Cancel button, the Graphics object returned will be
Nil. To create the first page to be printed, you utilize the Graphics object returned,
calling the various Graphics class methods such as DrawString, DrawLine,
DrawOval, DrawPicture, etc. Once you have created the page, you can send the page
to the printer by calling the NextPage method of the Graphics class. This method
will both send the page to the printer for printing and clear the Graphics object so
you can begin creating the next page.

Dim ps as PrinterSetup
ps=New PrinterSetup
ps.SetupString=Settings
If ps.PageSetupDialog Then

Settings=ps.SetupString
End if
449REALbasic User’s Guide

Working With Text and Graphics
This example displays the Print dialog box then prints “Hello” on the first page and
“World” on the second page:

If you enter a page range in the Print dialog box, it is ignored and the entire docu-
ment is printed.

If you are storing the SetupString property of the PrinterSetup class object, you can
optionally pass this string to the OpenPrinterDialog function if you want it to use
the settings stored in the SetupString. This example assumes that the SetupString is
stored in a window property called “Settings” and passes it to the OpenPrinterDia-
log function for consideration during printing:

For more information on the OpenPrinterDialog function, see the
OpenPrinterSetup function in the Language Reference.

Printing
Without The
Print Dialog
Box

To print without displaying the Print dialog box, call the OpenPrinter function.
This function is identical to the OpenPrintDialog function except that it doesn’t
display the Print dialog box before printing. For information on printing, see the
section “Printing With The Print Dialog Box” on page 449. For more information
on the OpenPrinter function, see the OpenPrinter function in the Language Reference.

Printing
Styled Text

Because TextAreas are capable of displaying styled text and multiple font sizes, you
will usually want to retain the styled text in your reports. The StyledTextPrinter
class supports this capability. It uses the DrawBlock method (rather than the Draw-

Dim page as Graphics
page=OpenPrinterDialog()
If page<> Nil Then

page.DrawString "Hello", 50, 50
page.NextPage
page.DrawString "World", 50, 50
page.NextPage

End if

Dim page as Graphics
Dim ps as PrinterSetup
ps=New PrinterSetup
If Settings <> "" Then

ps.SetupString=Settings
End If
page=OpenPrinterDialog(ps)
If page <> Nil Then

page.DrawString "Hello", 50, 50
page.NextPage
page.DrawString "World", 50, 50
page.NextPage

End If
450 REALbasic User’s Guide

Working With Text and Graphics
String method) to accomplish this. Here is a simple example that prints the con-
tents of a TextArea as styled text.

The parameters of DrawBlock are the top-left x, y coordinates on the page and the
height of the block. This example starts at the top-left corner. See the description of
the StyledTextPrinter class in the Language Reference for more information.

Transferring Text and Graphics with the Clipboard
The Clipboard is a class of object in REAL Studio with properties and methods. The
properties and methods let you determine what kind of data is available on the Clip-
board, get data from the Clipboard, and send data to the Clipboard. The Clipboard
class supports three kinds of data: text, picture, and binary. Binary data is repre-
sented in string form and is marked with a type you specify so you can tell what the
binary data represents.

NOTE: For TextFields and TextAreas, REAL Studio handles the Cut, Copy, and Paste oper-
ations of the Edit menu automatically. However, for other controls that contain data such as
Canvas and ListBox controls, this is not the case.

To access the Clipboard for any reason, you must first create a new object of type
Clipboard:

In the event handler that opened the Clipboard, you must call the Clipboard
object’s Close method or an error may occur.

Testing The
Clipboard For
Specific Data
Types

You can test the Clipboard using the following methods and properties all of which
return True or False: TextAvailable, PictureAvailable, and RawDataAvailable. Raw-
DataAvailable is used to determine if a specific kind of binary data (usually data put
there by your application) is available. To use the RawDataAvailable method, you
must pass it the MacType string that represents the type of data. This string was
passed when the binary data was passed when the data was put on the Clipboard.

dim stp as styledTextPrinter
dim g as graphics
g=openPrinterDialog()
if g <> Nil then

stp=TextArea1.StyledTextPrinter(g,72*7.5)
stp.drawBlock 0,0,72*9

end if

Dim c as Clipboard
c=New Clipboard
451REALbasic User’s Guide

Working With Text and Graphics
Getting Data
From The
Clipboard

Once you know what kind of data is available on the Clipboard, you can get the data
using the Text, Picture, and RawData properties. In this example, if text is avail-
able, the text is placed in a variable called “Cliptext.”

If a picture is available, the picture is placed in a variable called “ClipPict.”

In this example, rows from a ListBox that have been copied to the Clipboard are
added to a ListBox:

NOTE: Remember, you must call the Clipboard object’s Close method in the event handler that
opened the Clipboard or an error may occur.

Putting Data
On The
Clipboard

You can put text, picture, or binary data (in the form of a string) on the Clipboard.
To do this, you create a new Clipboard object then use the appropriate method or
property based on the type of data you wish to put on the Clipboard.

Dim c as Clipboard
Dim ClipText as String
c=New Clipboard
If c.TextAvailable Then

ClipText=c.Text
End If
C.Close

Dim c as Clipboard
Dim ClipPict as Picture
c=New Clipboard
If c.PictureAvailable Then

ClipPict=c.Picture
End If
C.Close

dim theRows as string
dim c as clipboard
c=New Clipboard
If c.RawDataAvailable("rows") Then

theRows=c.RawData("rows")
Do

ListBox1.AddRow Left(theRows,InStr(theRows,EndOfLine)-1)
 theRows=Mid(theRows,InStr(theRows,EndOfLine)+1)

Loop until theRows=""
End If
c.Close

Data Type Method or Property

Text SetText method

Picture Picture property
452 REALbasic User’s Guide

Working With Text and Graphics
In this example, text is added to the Clipboard:

In this example, a picture from Canvas1 is copied to the Clipboard:

In this example, rows from a ListBox are copied to the Clipboard. They are copied
using the AddRawData method so they don’t appear as text on the Clipboard:

Remember, you must call the Clipboard object’s Close method in the event handler
that opened the Clipboard or an error may occur.

Binary Data AddRawData method

Data Type Method or Property

Dim c as Clipboard
c=New Clipboard
c.SetText "Hello World"
c.Close

Dim c as Clipboard
c=New Clipboard
c.Picture=Canvas1.Backdrop
c.Close

Dim i as Integer
Dim c as Clipboard
Dim rows as String
c=New Clipboard
For i=0 to ListCount

If ListBox1.Selected(i) Then
rows=rows+ListBox1.List(i)+EndofLine

End If
Next
c.AddRawData rows,"rows"
c.Close
453REALbasic User’s Guide

Working With Text and Graphics
454 REALbasic User’s Guide

CHAPTER 8 Creating Reports

REAL Studio’s integrated Report Editor allows you to design and print reports
using a visual Report Layout Editor. You design report forms using the same famil-
iar tools that you use to design your application’s user interface.

The Report Layout Editor does not attempt to show a WYSWYG representation of
a report. Instead, it allows you to design the report symbolically. Items added to the
body of the report expand dynamically to show all the records in the selection. You
can preview the report on screen to see how the report will look or print the report
to a printer.
455REALbasic User’s Guide

Creating Reports
The Report Layout Editor
The Report Layout Editor resembles the Window and ContainerControl Layout
Editors, with special tools for creating dynamic reports.

Figure 349. The Report Layout Editor.

The left panel contains the list of controls that can be added to a report. The right
panel shows the properties for the selected object. The Report Editor has its own set
of controls; you do not use any of the controls that you use to create a window or a
container control.

Report Editor
Controls

The Report Editor uses the following controls:

n Field: Use the field control to display the contents of a field. A field can be from a
database field (for example, from a REAL SQL Server database) or from a text file.
See the section “Report Editor Examples” on page 464 for more information on how
to use data sources with reports.

n Label: Use the Label control to add static text to the report. Use it as you would a
StaticText control in a Window Layout Editor.

n Picture: Use the Picture control to display either a static picture or an image from a
data source. If it is a static image, it will display the picture assigned to the Image
property. If it is from a data source, then it will display the field assigned to the
DataField property. The Report Editor supports pictures stored as Binary fields in
456 REALbasic User’s Guide

Creating Reports
the REAL SQL Database. For an example, see the List of Products report in the
Database Example project and the section “A Picture Field Example” on page 463.

n Line: Use the Line control to add a line to a report. You can set its X and Y
coordinates, color, and style (Solid, Transparent, Dot, or Dash).

n Oval: Use the Oval control to add an Oval to a report. You can set its position and
size properties, the width and color of its border, and the fill color.

n Rectangle: Use the Rectangle control to add a rectangle to the report. You can set
its position and size properties, the width and color of its border, the fill color, and
the width and height of its corners.

n Round Rectangle: Use the Round Rectangle to add a round rectangle to the
report.

Report Editor
Toolbar

The Report Layout Editor Toolbar contains tools that are very similar to their
counterparts in the Window Layout editor. A key difference is that the editing area
is divided into sections that serve special purposes in a printed report. Different
sections are used for different purposes. You can set its position and size properties,
the width and color of its border, and the fill color. With the tools in the Report
Editor toolbar, you can:

n Add Group Section: A break group consists of a group header and footer sections
above and below the body section. The break section is controlled by a
GroupByField. The section header, footer, and body repeat for every value of the
GroupByField. For example, the Gas Report uses the Year field as the Group By
field. For more information, see “Using a Text File as a Data Source” on page 470.

n Add a Page section: Adds a new page header and footer section to the report.

n Move Section Up/Down: If you have more than one group section, you can select
a section and move it either up or down in the order in which the break sections
execute.

n Front and Back buttons: Adjust the layers on which overlapping objects are on:
The Front and Back buttons move object to the front or back layers. For example,
the Rectangle control in the Gas Report should be moved to the back so that the
fields and labels are visible.

Report Editor
Areas

By default, the Report Layout editor is divided into three areas:

n Page Header Area: This area contains items that print once per page, at the top of
the page.

n Body Area: This area prints rows of data from the data source. It represents the
body of the report. One instance of the Body area is printed for each row of data in
the data source.
457REALbasic User’s Guide

Creating Reports
n Page Footer Area: This area contains items that print once per page, at the bottom
of the page and below the Body area.

Using the Add Group Section button, you can add group header and footer sections
for a GroupBy field. Click the Add Group Section button to add the header and
footer sections, then add a GroupByField to the group header area. Optionally, you
can also add subtotal fields in the group footer section. Add additional Group
Sections for each GroupBy field.

The sections can be resized by dragging the dividers vertically. The Body area
should be designed so that it presents only one row of data. When the report runs,
REAL Studio will populate the report with all of the selected records. You should
adjust the dividers so that there is a suitable amount of white space above and below
the rows in the printed report.

Adding a
Report to a
Project

To add a Report, do this:

1 Choose Project . Add . Report or click the Add Report button in the Project
Editor Toolbar.

An instance of the Report class appears.

Figure 350. The Report Editor added to a Project.

2 Double-click the Report item in the Project Editor to display the Report
Layout Editor.
458 REALbasic User’s Guide

Creating Reports
Figure 351. The Report Layout Editor.

In its default state, the Editing area is divided into the header, body, and footer
areas. The content at the top of the page prints at the top of each printed page. The
content in the body contain the rows of data in the report. The content in the page
footer appears at the bottom of the printed page. In this configuration, all the
records are printed in one group, in the Body section.

The following finished Report prints a simple listing. The Body and Page Header
areas have been resized so that the report does not use excessive white space around
each record.

Figure 352. A finished simple listing report.
459REALbasic User’s Guide

Creating Reports
The heading “List of Orders” is in the Page Header area and prints only at the top of
the page. It is an instance of the Label control.

The Body area defines a row of data and the it has been resized to avoid excessive
white space between rows. The Total field uses the Format property to display it in
a Dollar format.

Figure 353. The Behavior properties of the Total field.

Each field contains a label that indicates which field is displayed. Each field has its
Text property set to the label text so that it is clear which field is which. In this case,
the data source is a REAL SQL Database. The data source is the company field in the
database.

Figure 354. The Behavior properties of the Company field.

Adding a
Grouping
Section

If you need to break up the report into sections, add a Group Section by clicking the
Add Group Section in the Report Editor toolbar. This enables you to divide up the
report according to the values of one variable. You will get one section of the report
per value of the grouping variable.

In the following report, a listing of prices is grouped by Company. Notice that the
Company field that appeared in the Body area in the List of Orders report has ben
moved into the Section header area. This section, together will all the records that
belong to that company, is repeated for every company in the dataset.

Field displayed in
the Field control
460 REALbasic User’s Guide

Creating Reports
Figure 355. The Section Header area for the Orders report.

If you click on the Section Break in the margin, you will see its properties in the
Properties pane. Notice that the Company field is the GroupByField for that Break
Section. Each Break Section must have a Group By field and you will get as many
groups as there are values of the GroupByField. When you click on the section
identifier in the margin, then the properties of the section are shown in the
Properties pane.

Figure 356. The GroupByField in the BreakingListOfOrders report.

With Grouping sections, you can use the Group Footer area to put summary
statistics for each group. This area will repeat, once per group.

If you need to group your data on more than one field, you add a second grouping
section. For example, if the records in the report are identified by both month and
year, you can have a level 1 section for year and level 2 by month.
461REALbasic User’s Guide

Creating Reports
The Section
Footer

When you add a Group Section, you also get a group footer section. In this case, the
group footer contains the subtotal for each company.

In this example, the version of the report with a break section organizes the listing
by company. This report design produces a separate listing for each company and a
separate subtotal for each company.

In this report, the section footer area has a new variable that computes the subtotal
on the Total field that is in the Body area.

Figure 357. The Section footer field in the Orders report.

The field in the footer area is a calculated field. In its Properties pane, the DataField
is set to the same field as in the Body field, but the Summary area specifies the SUM
summary function and the SummaryType is SubTotal.

Figure 358. The Summary area of a subtotal field.

Adding a
Section Break
to a Report

To add a Section break to a report, do this:

1 Click the Add Group Section button in the toolbar.

Group Header 1 and Group Footer 1 sections appear above and below the
Body section.
462 REALbasic User’s Guide

Creating Reports
2 Add fields, labels, and any other objects to the group header and footer
areas.

The section header area must have a GroupByField. The footer area does not
need to be populated or have a subtotal field. If you wish to add a subtotal
field, set up the field as shown in Figure 358.

Using a Pic-
ture Field

The Report Layout Editor includes built-in support for pictures that are stored in
the REAL SQL Database. The database stores images as Binary fields but the
reporting engine internally converts Binary fields to a form that can be viewed and
printed. You do not need to do anything special to use a Picture field in a report.

To display a picture in the database, use the ReportPicture field on the layout. Set
the DataField property to the Picture field in the database. You can also assign a
picture to the Image property. If there is no picture in the database for a particular
record, then the Image property is used instead.

In addition, there are two other properties that control the appearance of the picture
inside the ReportPicture control:

n Stretch: If you select Stretch, the picture will be stretched or scaled to fit the
dimensions of the ReportPicture field.

n Alignment: You can align the picture inside the ReportPicture. Your choices are:
Center, Top Left, Top Right, Bottom Left, and Bottom Right. If Stretch is selected,
then the image fills the area of the ReportPicture regardless of Alignment.

A Picture Field
Example

The Database Example includes a simple listing report of the contents of the Prod-
ucts table, including the product image. The layout is shown in Figure 359.

Figure 359. A report that includes a Picture field.
463REALbasic User’s Guide

Creating Reports
As noted, the Properties Pane for the of the ReportPicture field set the DataField to
“Image.” The Stretch property is checked so that each image fits into the
ReportPicture field. The ReportPicture’s properties are shown in Figure 360.

Figure 360. The ReportPicture’s properties.

This report is otherwise the same as a simple listing report and uses the same code.

Report Editor Examples
The REAL Studio standard install includes two example projects that illustrate all
the main aspects of the new reporting engine. One project uses a REAL SQL
Database as the data source and the other uses a comma-delimited text file.

Using a
Database as a
Data Source

The main purpose of the Database Example project is to illustrate how to create a
relational REAL SQL Server application with REAL Studio. It contains its own
notes that lead you through the design of a database project. It has been augmented
with three reports. Two reports illustrate the simple and breaking list reports. A
third report illustrates how to use a picture field in a report. It is also a simple
listing report.

The project includes a new menu item in which a report can be requested and
displayed. A new window has been added to the project for the display of the
outputs of the reports. Since the reporting engine returns its output as pictures, the
new window uses a Canvas control to display the output.

Showing the
Sample
Reports
Window

The File . Sample Reports... menu item shows the SampleReports window. Its
menu handler is in the Application object. It simply displays the new window.

The Sample Reports window is shown Figure 361 on page 465.

//FileSampleReports menu handler..
SampleReports.Show

Return True
464 REALbasic User’s Guide

Creating Reports
Figure 361. The Sample Reports window.

The Run Report button is enabled when the user chooses a report. Its Action event
performs several actions that are necessary to produce a report.

SQL SELECT The Action event handler begins with code that executes the SQL SELECT
statement that corresponds to the report that the user chose. After obtaining a
RecordSet, it needs to create a RecordSetQuery that will be passed to the reporting
465REALbasic User’s Guide

Creating Reports
engine. You must convert the RecordSet to a RecordSetQuery. This is the type of
object that is passed to the Report.Run method.

The next section of code creates a RecordSet using the SQL SELECT:

Dim ps As New PrinterSetup
Dim sql as string
Dim rpt As Report
 //execute the SQL SELECT that corresponds to the user’s selection
select case ListOfReportsPopup.RowTag(ListOfReportsPopup.ListIndex)

 case "ListofOrders"
 // Build the SQL statement that will be used to select the records
 sql = "SELECT O.OrderNumber, C.ID, C.Company, C.LastName,"+_

"O.DateOrdered, O.Total"+ _
 " FROM Orders O, Customers C WHERE O.CustomerID = C.ID"
 rpt = New ListofOrders

 case "BreakingListofOrders"
 // Build the SQL statement that will be used to select the records
 sql = "SELECT O.OrderNumber, C.ID, C.Company, C.LastName,"+_

" O.DateOrdered, O.Total"+ _
 " FROM Orders O, Customers C WHERE O.CustomerID = C.ID order by"+_

" c.company, o.ordernumber"
 rpt = New BreakingListofOrders

case "ListOfProducts" //listing of Product images
//build the -SQL Statement that will be used to select the records

sql= "SELECT * from Products"
rpt = New ListOfProducts

 end select

dim rs as recordSet
rs = app.ordersDB.sqlSelect(sql)
466 REALbasic User’s Guide

Creating Reports
The next section a RecordSetQuery from the RecordSet. This puts the data in the
form that the reporting engine requires:

The SetDocument method has been added to the ReportViewer ContainerControl.
It assigns the Reports.Document object to the mDocument property of the
ContainerControl. The Document object contains the report.The variable “doc” is
the Reports.Document object that is created by running the report.

The large area in the window is a ContainerControl, ReportViewer, that has the
design shown in Figure 362.

If rs = nil then
beep
MsgBox "No records found to print."

 else
//Create the RecordSetQuery for the reporting engine

 dim rsq as new Reports.RecordSetQuery(rs)
// Now we select the records from the database
// pass the RecordSetQuery to the reporting engine

If rpt.Run(rsq, ps) Then
//copy the report to the ReportViewer for preview

if rpt.Document <> Nil Then ReportViewer1.SetDocument(rpt.Document)
End If

End if

//SetDocument(doc as Reports.Document)
mDocument = doc
mCurrentPage = 1
If doc.PageCount > 0 Then SetCurrentPage(mCurrentPage)
467REALbasic User’s Guide

Creating Reports
Figure 362. The ReportViewer ContainerControl.

The large area in the ContainerControl is the Canvas. The reporting engine works
by printing each page as a picture. The report can consist of multiple pages. Each
picture can be referenced by the Page property of the Reports.Document object. The
Canvas is the object that images a page. The Next and Previous buttons allow you
to image successive (or prior) pages.

Navigation The next and previous buttons increment or decrement the current page by calls to
SetCurrentPage.

and

Printing The code behind the Print button is similar to the code for running the report. The
major difference is that the Document.Print method is called just following the call
to RecordSetQuery.

//Next button
//PushButton2.Action()
If mCurrentPage < mDocument.PageCount Then SetCurrentPage_

(mCurrentPage + 1)

//Previous button
//PushButton1.Action()
If mCurrentPage > 1 Then SetCurrentPage(mCurrentPage - 1)
468 REALbasic User’s Guide

Creating Reports
The code begins by declaring the objects that it needs:

The next block of code issues the correct SQL statement depending on which report
the user chose in the window:

It then executes the correct SQL SELECT statement:

Dim ps As New PrinterSetup
Dim sql as String
Dim rpt As Report

Select Case mCurrentReportType
Case "ListofOrders"

 // Build the SQL statement that will be used to select the records
sql = "SELECT O.OrderNumber, C.ID, C.Company, C.LastName,"+_

" O.DateOrdered, O.Total"+ _
 " FROM Orders O, Customers C WHERE O.CustomerID = C.ID"

//set the report project item we are going to use to print the report
rpt = New ListofOrders

Case "BreakingListofOrders"

 // Build the SQL statement that will be used to select the records
sql = "SELECT O.OrderNumber, C.ID, C.Company, C.LastName,"+_

"O.DateOrdered, O.Total"+ _
 " FROM Orders O, Customers C WHERE O.CustomerID = C.ID order by"+_

"c.company, o.ordernumber"
//set the report project item we are going to use to print the report

rpt = New BreakingListofOrders

Case "ListOfProducts"
sql="SELECT * from Products"
//set the report project item we are going to use to print the report

rpt = New ListOfOrders

End select

// Now we select the records from the database and add them to the list.
dim rs as RecordSet
rs = app.ordersDB.sqlSelect(sql) 'select the records using the sqlquery

//Next, it sets the resolution of the printer after verifying that it has a
//RecordSet object to print.
ps.MaxHorizontalResolution=300
ps.MaxVerticalResolution=300
If ps.PageSetupDialog Then

dim g as graphics
g = OpenPrinterDialog(ps, nil)
469REALbasic User’s Guide

Creating Reports
It then declares a RecordSetQuery. This is the form the reporting engine is
expecting (rather than a RecordSet).

It’s the RecordSetQuery object that is passed to the Document.Run command.

Using a Text
File as a Data
Source

The Gas Report project contains a report that differs from the Example Database
only in that the data source is a text file instead of a database. The report is similar
to the break level report from the Example Database but lays out a row of data in a
different manner. Each row represents a year of gas prices, labelled by month. The
Year field is the GroupByField. In the report, the Section Header and Body repeat
for every value of the GroupByField.

Figure 363. The Gas Report Layout editor.

The project organizes the data for the report into a folder. The text file is included
and the GasDataSet class provides the interface between the text file and the report
engine.

The Data folder in the Project Editor contains the data source for the report in the
form of a comma-delimited text file and a class that serves as the interface for the
data.

//Put the records found into a Reports.DataSet
Dim rsq as New Reports.RecordSetQuery(rs)

If rpt.Run(rsq, ps) Then //if the report runs successfully
rpt.Document.Print(g //print the report)

End If
470 REALbasic User’s Guide

Creating Reports
Figure 364. The Gas Report project.

The first field in each row of the text file is the year and the subsequent fields are the
months of the year.

Figure 365. The Gas Report data.

The GasDataSet class is implements Reports.DataSet. Reports.Dataset is a class
interface. This interface allows you to use any data as the data source for the
reporting engine. It has the following methods:
471REALbasic User’s Guide

Creating Reports
n Run: This is the first method that executes when the report is run. It obtains the
data from the text file:

That is, it splits the data into rows. The property mData is declared as a String array
and mCurrentRecord is an Integer.

n Field: Field is overloaded. The one that is passed as String is implemented. Field
obtains the fields in each row of mData:

n NextRecord: NextRecord increments the mCurrentRecord property that was
initialized by the Run method:

n EOF: EOF returns True when you’ve reached the end of the file.

// Part of the Reports.DataSet interface.
//Run()
mData = SplitB(Price_of_Gasoline, ChrB(13))
mCurrentRecord = 0

// Part of the Reports.DataSet interface.
//Field(name as String) as Variant
Static months() As String = Array("Jan", "Feb", "Mar", "Apr", "May",_

"Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec")

Dim data() As String = SplitB(mData(mCurrentRecord), ",")

If name = "Year" Then //first field
Return data(0)

Else //month fields
Dim idx As Integer = months.IndexOf(name)
If idx <> -1 Then Return data(idx + 1)

End If

Return Nil

// Part of the Reports.DataSet interface.
//NextRecord() as Boolean

mCurrentRecord = mCurrentRecord + 1

// Part of the Reports.DataSet interface.
 //EOF as Boolean
If mCurrentRecord > mData.Ubound Then Return True

Return False
472 REALbasic User’s Guide

Creating Reports
n Type: Type returns the columntype for all the columns in the text file. The types
are the SQL field types that are listed in the Database class entry in the Language
Reference.

Declaring the columntype helps the reporting engine determine whether a column
is numeric and a format can be applied. In this case, the year column should be
interpreted as text but the gas prices in the body of the table are doubles.

The Report
Layout

The Gas Report, shown in Figure 363 on page 470, is a listing report with one
break level. The Body area uses a Rectangle control to enclose the pairs of labels and
fields. You use the Front and Back buttons in the Report Editor toolbar to adjust
the levels of the objects. In order for the labels and fields to be visible, the rectangle
should be sent to the back using the Back button. One group section is used to label
the data by year and there is no group footer (aka, subtotal) section.

The main window for the project, Window1, contains the ContainerControl,
ReportViwer, and the PushButton that triggers the report. The ContainerControl is
seen in Figure 366.

//Part of the Reports.DataSet interface
Function Type(fieldname as String) as Integer
if fieldname = "Year"

Return 5 //Text
Else

Return 7 //Double
End if
473REALbasic User’s Guide

Creating Reports
Figure 366. The main project window.

The ContainerControl includes a large Canvas that is used to image the pages of the
report and Next, Previous, and Print buttons. The Next and Previous buttons
enable the user to navigate from page to page and Print displays a standard Print
dialog for printing.
474 REALbasic User’s Guide

Creating Reports
Figure 367. The ReportViewer ContainerControl.

The report runs when the application is launched. The code is in the Open event of
Window1. It is

If the call to rpt.Run is succesful, it returns the document in rpt.Document.

The call to SetDocument (above) sets Reports.Document to the mDocument
property of the Report and calls SetCurrentPage. SetDocument is shown below.

Dim ds As New GasDataSet
Dim ps As New PrinterSetup
Dim rpt As New GasPricesReport //This is the Report editor object

If rpt.Run(ds, ps) Then
//copy the report to the ReportViewer for preview
If rpt.Document <> Nil Then ReportViewer1.SetDocument(rpt.Document)

End If

//SetDocument method
mDocument = doc
mCurrentPage = 1
If doc.PageCount > 0 Then SetCurrentPage(mCurrentPage)
475REALbasic User’s Guide

Creating Reports
The SetCurrentPage method defines the current picture, mCurrentPicture, which
will be imaged by the Canvas.

The Canvas’s Paint event uses a call to DrawPicture to image the current page:

The next and previous buttons increment or decrement the current page by calls to
SetCurrentPage.

and

In the ContainerControl, the Print PushButton calls Document.Print method to
image each page of the report using the Graphics object returned by

//SetCurrentPage(pageNum as Integer)
mCurrentPage = pageNum
mCurrentPicture = mDocument.Page(mCurrentPage)
ScrollBar1.Maximum = mCurrentPicture.Height - Canvas1.Height
ScrollBar1.Value = 0
Canvas1.Refresh(False)

//Canvas1.Paint(g as Graphics)
If mCurrentPicture <> Nil Then

g.DrawPicture(mCurrentPicture, 0, 0, Me.Width, Me.Height, 0,_
Scrollbar1.Value, Me.Width, Me.Height)

Else
g.DrawRect(0, 0, Me.Width, Me.Height)

End If

//Next button
//PushButton2.Action()
If mCurrentPage < mDocument.PageCount Then SetCurrentPage_

(mCurrentPage + 1)

//Previous button
//PushButton1.Action()
If mCurrentPage > 1 Then SetCurrentPage(mCurrentPage - 1)
476 REALbasic User’s Guide

Creating Reports
OpenPrinterDialog. The end user will see the Printer dialog for the selected printer
followed by a progress dialog that shows the status of the print job.

Dim ds as New GasDataSet //the Report.DataSet object
Dim ps as New PrinterSetup
Dim rpt as New GasPricesReport //the Reports object
Dim g as Graphics

//set up the printer resolution to 300 dpi
ps.MaxHorizontalResolution=300
ps.MaxVerticalResolution=300

if ps.PageSetupDialog then
g = OpenPrinterDialog(ps,nil)
If g <> Nil then

if rpt.Run(ds,ps) then //if the report ran successfully, print it
rpt.Document.Print(g)

end if
end if

end if
477REALbasic User’s Guide

Creating Reports
478 REALbasic User’s Guide

CHAPTER 9 Working With Files

Many applications read from and/or write to files. Some create files that have their
own special formats. Often this process starts with the user’s selecting a file with the
Open File dialog box or saving a file with the Save As dialog box. REAL Studio
makes it easy to use the Open and Save dialog boxes, as well as to read from and
write to many different types of files.

Contents

n Understanding File Types

n Understanding FolderItems

n Accessing files

n Working with text and binary Files

n Working with picture, sound, and video files

n Reading and writing to the resource fork

n Handling files double-clicked at the Desktop
479REALbasic User’s Guide

Working With Files
Understanding File Types
There are many different file types. The type of a file defines a unique type of data
stored in that file. For example, a text file stores text while a PICT file stores pic-
tures. Files have a file extension (or suffix) that defines the file type. For example, a
Text file has the extension “.txt”. A file named “myNotes.txt” is recognized as a
Text file.

The file type makes it easy for an application to know if it is prepared to deal with a
particular file. For example, any application that can open text files expects the file
type of any text file it shall open is “TEXT”. This file type tells the application that
this is a standard text file. PICT files are so named because “PICT” is the file type of
a PICT file. Applications are also files but all applications have a file type of “APPL”
that tells the Mac OS that this file is executable and not just data.

Rather than writing code that deals directly with all of these file types, creator codes,
and file suffixes, REAL Studio abstracts you and your code from them with file types.
A file type in REAL Studio is an item stored with your project that represents a
specific file type, creator, and one or more extensions. Each file type has a name that
is used in your code when opening and creating files. This allows you to work with
names you can choose and easily remember instead of cryptic codes. It also abstracts
your code from the operating system, making it easier for you to create versions of
your application for other operating systems.

REAL Studio file types can be created in the IDE with the File Type Sets Editor or
via the language, via the FileType class. The File Type Sets Editor is described in
the following section and the FileType class is described in the Language Reference.
The attributes that you give to file types in the editor map directly to properties of
FileType class objects.

Using The File
Types Editor

You use the File Type Sets Editor to create the items that will represent the differ-
ent kinds of files you want your application to be able to open or create. To add file
types to your project, you first add a File Type set to the IDE to hold your file types.
The screen is called a File Type Set and it appears as an item in your Project Editor.

To add a File Types Set to your project, choose Project . Add . File Type Set.
REAL Studio adds a blank File Types Set to the project.
480 REALbasic User’s Guide

Working With Files
Figure 368. A File Type Set added to the Project Editor.

Double-click the FileTypes item to add file types to the File Types Set. The File
Types Editor appears.

Figure 369. The File Type Set Editor.

The File Type Set toolbar has two items: Add File Type and Add Common File
Type. Normally you will use the Add Common File Type button. It enables you to
chose a file type from a drop-down list. Most file types are listed.
481REALbasic User’s Guide

Working With Files
In contrast, the Add File Type Set button creates a blank file type entry in the editor
and enables you to define the file type yourself. This is best suited for defining
custom file types that are unique to your application.

The body of the editor contains columns for the following file type attributes:

n Display Name: The name shown to the users in open-file dialog boxes. You can use
either a string literal or a constant for the Display Name.

When using dynamic constants, the names are automatically localized on Mac OS
X. On other platforms, using FileTypeSet.MyFileType.Name will return the dynamic
constant value, which allows you to register/update your file type with the system
using the localized name. For more information on using constants to localize the
application, see the section “Using Constants to Localize your Application” on
page 378.

n Object Name: The name used in your REAL Studio code to identify the file type.
This is the string that you can pass to a method to tell the method to use that file
type.

n MacType and MacCreator: The Macintosh Type and Creator codes used by the
original Macintosh operating system to identify files. If you are going to assign
custom icons to the file type, be sure that the Creator code matches the Creator code
that you give your application.

n Extensions: The file extensions used on Mac OS X, Windows, and Linux to
identify file types. You can specify more than one extension per file type. Separate
multiple extensions with semicolons.

n Icon: The document icon for that file type. When the user double-clicks such an
icon, the standalone REAL Studio application will start and open the file.

In the language, a File Type set has the string property “All” that returns all of the
file types in the set. You can use All in your code when you want to refer to all of the
file types in the set. Suppose you create a File Type Set called ImageTypes in which
you specify all of the valid image types that your application can open. You can
specify the entire list of image types with a line such as:

If you need to add or remove image file types, your can simply modify the File Type
Set and this line of code will automatically refer to the new members of the set.

Adding a
Common File
Type

To add a common file type, do this:

1 Double-click a File Types Set item in the Project Editor.
A File Types Set Editor appears (Figure 369).

2 Click on the Add Common File Type button.

f=GetOpenFolderItem(ImageTypes.All)
482 REALbasic User’s Guide

Working With Files
A drop-down list of common file types appears.

Figure 370. The Common File Types list.

3 Choose a file type or, if you don‘t see your choice, choose the “More...”
item from the drop-down list.
If you chose a file type, a new row is added to the File Type Set list editor, populated
with values for the file type your chose. An example is shown in Figure 371.

Figure 371. The prebuilt file type for “image/jpeg.”

The row is editable. If you wish to change any of its values, click twice in the cell to
change it to editable. The value will be selected. Delete or edit the text as you wish.
483REALbasic User’s Guide

Working With Files
A new row is added to the File Types table. Click twice in a cell to get an insertion
point and press the Tab key to move from field to field.

4 If you clicked “More...”, a secondary drop-down list appears at the bottom
of the File Type Set editor.

Figure 372. The “More...” secondary drop-down list.

5 Display the drop-down menu at the bottom of the screen and choose a file
type.
The file type you selected is added to the File Type Sets editor.

Adding a
Custom File
Type

If you are defining a file type of your own or do not see the desired file type in the
Common File Types list, you can manually add a file type.

To add a custom file type, do this:

1 Double-click a File Types Set item in the Project Editor.
A File Types Set Editor appears (Figure 369).

2 Click on the Add File Type button.
A new blank row is added to the File Type Sets editor.

3 Enter the Display and Object names for the file type, the Mac Type and
Creator codes, and the extensions.
To enter more than one extension, separate them by semicolons. If you used a con-
stant for the Display Name, you precede its name with a number sign.

You can type a Display Name or use a constant as the Display Name. Figure 373
shows a constant defined for a Display Name in a module and its use in the File
Types Sets editor.

Choose a file type from
this drop-down list.
484 REALbasic User’s Guide

Working With Files
Figure 373. Using a constant to specify a Display Name.

4 If desired, repeat the process to add additional File Types to the set.

5 When you are finished with the File Types Set, click another tab or use the
toolbar to move to another area of your project.

Adding a
Document Icon

You can define a custom document icon for the each file type that the application
can open and save. REAL Studio does not include an icon editor; you must design
your icons in an icon editor program or image creation application and import or
paste them into the Edit Icon dialog in REAL Studio.

You need to provide at least the following items:

n For Mac OSX, a 128 x 128 image, and for other platforms smaller sized icon
images. Even for Mac OS X it is best to provide smaller sized image files at 32 x 32
and 16 x 16.

n A mask that defines the icon’s edges so that the operating systems can determine
which regions in the square image are clickable.

In a module, the
dynamic constant
‘myJPEGType’ is
defined.

In a File Types Set,
the constant is
referred to as
“#myJPEGType”.
485REALbasic User’s Guide

Working With Files
The document icons will be used when the application saves documents in that file
type and double-clicking the document icon will start the application.

To copy and paste a document icon for the file type, do this:

1 Place the icon you wish to paste into the Icon editor on the Clipboard.

2 Click the blank document icon in the Icon column for the file type.
A Document icon dialog box appears, with variations for all sizes of document icons.

Figure 374. The Edit Icon dialog box.

The Edit Icon dialog can be enlarged and the Preview area will grow as the dialog is
resized.

3 In the Icon Variations list, select the icon size that matches the icon on the
Clipboard and select the “Image” ImageWell.

4 Paste the icon on the Clipboard into the Image area.

5 Repeat this process for the icon’s mask and, if needed, repeat the process
for other icon sizes.
For Mac OS X you need to specify the 128 x 128 size icon and the OS will scale it as
required.

To import a document icon for the file type, do this:

1 Click the blank document icon in the Icon column for the file type.
A Document icon dialog box appears, with entries for all sizes of document icons.
486 REALbasic User’s Guide

Working With Files
Figure 375. The Edit Icon dialog box.

2 In the Icon Variations list, select the icon size that you want to use and
select the “Image” ImageWell.

3 Right+click (Ctrl+click on Macintosh) on the Image area to display its
contextual menu and choose Add...

Figure 376. The Add contextual menu.

An open-file dialog box appears.

4 Choose the file that matches the selected icon size and click Open.
On Windows, you can choose either a document in a picture format (e.g., bmp, jpg,
gif) or a .ico file.

5 Repeat this process for the icon’s mask and, if needed, repeat the process
for other icon sizes.
487REALbasic User’s Guide

Working With Files
For Mac OS X you need to specify at least the 128 x 128 size icon and the OS will
scale it as required. Mac OS X 10.5 (and above) and Windows Vista (and above) can
use the 256 x 256 size icon and scale it as needed.

Editing a File
Type

Making changes to file types is easy.

To edit a file type, do this:

1 In the Project Editor, click the File Type Set you want to edit or click on its
tab if it is already open.

2 Click on the file type in the File Type Set Editor you wish to edit to select it.

3 Click click twice in a cell in the row to get an insertion point.

4 Make any changes you wish and use the Tab key to move the insertion
point to the next cell or click twice in another cell.

5 When you are finished, click another tab or use the toolbar to move to
another area of your project.

If you change the name of the file type, make sure you update any code that
references the name of the file type. You can replace any occurrences of the old file
type name with the new one easily using the Find/Change dialog box.

Deleting a File
Type

Deleting a file type is simple.

To delete a file type, do this:

1 In the Project Editor, click a File Type Set tab.

2 Click on the File Type you wish to edit to select it to select the whole row.

3 Press the Delete button on your keyboard.

4 When you are finished, click another tab or use the toolbar to move to
another area of your project.

If you delete a file type, make sure you update any code that uses this file type.

Using File
Types

You pass one or more file types to commands to indicate that only the passed file
types are appropriate. For example, the following statement in a control’s Open
event handler specifies that it can accept TEXT files that have been dragged from
the Desktop:

The statement

displays an open-file dialog box that allows the user to view and open only
QuickTime movies.

me.AcceptFileDrop("text")

f=GetOpenFolderItem("video/quicktime")
488 REALbasic User’s Guide

Working With Files
The FileType class has a built-in string conversion operator. This enables you to
refer to the file type by its Object Name and it will return the appropriate string.
For example:

would refer to the file type with the ObjectName of “JPEG” in the “ImageTypes”
File Type Set.

You can concatenate two file type using the “+” operator to specify two file types.
For example:

refers to both the “JPEG” and “MacPICT” file types in the ImageTypes set.

The easiest way to specify several file types is to put all the file types that you want
to refer to in one File Type Set and then use the All method of the File Type Set
class. It automatically returns concatenates all the file types. For example, the
following returns all the file types in the ImageTypes File Type Set.

You can also specify more than one acceptable file type using their Object Names
only. Separate the file type names by semicolons. For example, the following line
allows the user to see and open PICT, GIF, and JPEG files:

Consult the Language Reference for additional methods that take file types as
arguments.

Creating
Custom File
Types for
Your
Application

Most applications create files and assign custom icons to them. These icons usually
look similar to the application’s custom icon. This makes it easier for the user to
recognize that the file goes with the application that produced it. Any custom icons
you add will appear only if you have assigned a Creator code to your project and
built a stand-alone application.

The Personal version of REAL Studio enables you to build standalone applications
for the platform on which REAL Studio is running and demo versions of
applications for all other platforms that REAL Studio supports. The Professional
and Studio versions of REAL Studio enable you to build fully-functional
applications on all platforms.

f=GetOpenFolderItem(ImageTypes.JPEG)

f=GetOpenFolderItem(ImageTypes.JPEG + ImageTypes.MacPICT)

f=GetOpenFolderItem(ImageTypes.All)

f=GetOpenFolderItem("image/x-pict;image/jpeg;image/gif")
489REALbasic User’s Guide

Working With Files
To add custom icons to any of the file types for your project, first assign a unique
Creator code to your application. You set the creator code in the Mac Settings group
in the App class’s Properties pane. It is shown in Figure 377.

Figure 377. The Mac Settings group in the App class’s Properties pane.

Enter your Creator code into the Mac Creator area. Creator codes are case sensitive
and must be unique. You can register a unique creator code for your application
with Apple, Inc. at their web site.

You assign an application icon via the Icon property in the Appearance group. You
need to design your icons in an external image or icon editing program. Click the
“...” icon to display the Edit Icon dialog box and add your icons using the procedure
described in the section “Adding a Document Icon” on page 485.

Set the four
character Mac
Creator code right
here
490 REALbasic User’s Guide

Working With Files
Figure 378. The Edit Icon dialog box.

Understanding FolderItems
To REAL Studio, volumes, folders, applications, and documents are all considered
to be FolderItems. A FolderItem is anything that can appear on the desktop. This
doesn’t mean that only items on the desktop are FolderItems. It means that if the
item could be placed on the desktop, it’s a FolderItem. For example, the Recycle
Bin is a FolderItem because it appears on the desktop. See the section “Getting The
Selected File From An Open File Dialog Box” on page 501 for more information on
getting FolderItems for items that are created by the operating system.

The FolderItem class is your first point of contact with any item on a disk you want
to read from or write to. To read from a file, for example, you get a FolderItem that
represents the file, then use various methods to read from the file via the
FolderItem. There are many different ways to get a FolderItem object that
represents a particular volume, folder, application, or document. You can present
the user with an Open File or Save As dialog box, you can get the FolderItem at a
specific path, or you can even get a FolderItem from another FolderItem.

FolderItems have properties that store the path to the item, the name of the item,
the size of the item, its type, etc. FolderItems also have methods you can use to
create files, open files, delete files, copy files, etc.

For detailed information on the properties and methods of the FolderItem class, see
the FolderItem class in the Language Reference.

How Are Shortcuts and Aliases Handled?
Shortcuts (aliases in Macintosh terminology) are files that actually represent a vol-
ume, application, folder, or file stored in another location and possibly under
another name. REAL Studio contains commands that allow you to either resolve the
491REALbasic User’s Guide

Working With Files
shortcut and work with the actual object or work with the object directly. The Get-
FolderItem function automatically resolves an shortcut when it encounters it, while
the GetTrueFolderItem function works with the shortcut itself.

Getting a File at a Specific Location
If you know the full path to a file and you wish to access the file, you can do so by
specifying the path to the file.

For example, suppose you have a document called “Schedule” stored in the same
folder as the REAL Studio application. The relative path starts with the directory
REAL Studio (or the REAL Studio application) is in. If the file is in the same
directory as REAL Studio, then the relative path consists only of the filename itself.

The following code creates a FolderItem object in the local variable “f” that
represents the document mentioned above:

The GetFolderItem function should be used to either specify a file or directory in
the same directory as the application or the empty string (""). If you specify the
latter, GetFolderItem will return the FolderItem for the directory in which your
application is located.

The full path (sometimes called the absolute path) to a volume, directory, applica-
tion, or document starts with the volume name followed by the path delimiter char-
acter (a backslash on Windows, a colon on the Macintosh, and a forward slash on
Linux), the names of any folders in the path (each separated by the path delimiter)
and ending with the name of the item.

To create an absolute path to a file or folder, you should use the Volume global
function to build a full path to the item, starting with the hard disk it is on. You
then use the Child method of the FolderItem class to navigate to the item. Volume
returns a FolderItem for one of your mounted volumes. You specify the volume by
passing an integer, indicating the volume. Volume 0 is the volume that contains the
operating system — the “boot” volume.

Parent returns the FolderItem for the next item up in the absolute path for the
current FolderItem. It does not work if you try to get the parent of a volume. The
Child method lets you access any items one level below the current FolderItem.

Dim f as FolderItem
f=GetFolderItem("Schedule")

Dim f as FolderItem
f=GetFolderItem("") //returns the directory containing your application

Dim f as FolderItem
f=Volume(0) //returns a folderitem for the boot volume
492 REALbasic User’s Guide

Working With Files
You can build a full path starting from a volume with the Child method. For
example, if you want to get a FolderItem for the file “Schedule” in the directory
“Stuff” on the boot volume, the statement would be:

The following example works with a relative path. It uses the Parent property to get
the FolderItem for the directory that contains the directory in which the application
is located. Passing the empty string to GetFolderItem gets the current directory, so
the parent of that directory is one level up in the hierarchy.

Once you have a FolderItem, you can (depending on what type of item it is) copy it,
delete it, rename it, read from it or write to it, etc. You will learn how to read and
write to files using FolderItems later in this chapter.

The GetFolderItem has an optional parameter that allows you to pass an absolute
path, a shell path, or a URL path. It uses the following class constants from the
Folderitem class: PathTypeShell, PathTypeURL, and PathTypeAbsolute. The
default is an absolute path.

You specify the type of path by passing one of the class constants as the second
parameter in a call to GetFolderItem. For example, the following uses a shell path
on Linux. It returns a FolderItem for the “Documents” folder in the home directory
for the user “Joe.”

Dim f as FolderItem
f=Volume(0).Child("Stuff").Child("Schedule")

Dim f as Folderitem
f=GetFolderItem("").Parent

Dim f as FolderItem
f=GetFolderItem("/home/Joe/Documents",_
 FolderItem.PathTypeShell)

If f.exists then
TextField1.text=f.AbsolutePath
else
MsgBox "The folderitem does not exist."
End if
493REALbasic User’s Guide

Working With Files
A URL path must begin with “file:///” The following example uses the URL path to
the user’s “Documents” folder on Windows:

The FolderItem class’s properties AbsolutePath, URLPath, and ShellPath contain
the types of paths.

Accessing
Specific
System
Folders

REAL Studio provides a module that returns FolderItems representing various fold-
ers that are part of the System software or the desktop. When you need to access one
of these folders, you should use the SpecialFolder object to obtain the FolderItem.
These functions will still work properly even if the directory’s name changes. They
are designed to return the proper FolderItem on all platforms. They are also lan-
guage independent.

You obtain the desired FolderItem using the syntax:

where result is the FolderItem you want to obtain and FolderName is the name of the
SpecialFolder function that returns that FolderItem. For example, the following gets
a FolderItem for the Application Support folder on Mac OS X and the Application
Data directory on Windows.

The entry for SpecialFolder in the Language Reference has the complete list of
supported functions and the FolderItems that they return on Mac OS X, Windows,
and Linux. Not all functions return FolderItems on all platforms. If a FolderItem is
not defined on all platforms, you should use an alternative function that returns a
FolderItem on every platform. Check that the result is not Nil before using the
FolderItem. For example, SpecialFolder.Documents returns the current user’s

Dim f as FolderItem
f=GetFolderItem("file:///C:/Documents%20and%20Settings/" _

+"Joe%20User/My%20Documents/",FolderItem.PathTypeURL)

If f.exists then
MsgBox f.AbsolutePath
Else
MsgBox "The folderitem does not exist."
End if

result=SpecialFolder.FolderName

Dim f as FolderItem
f=SpecialFolder.ApplicationSupport
494 REALbasic User’s Guide

Working With Files
Documents folder on Macintosh and Windows but returns Nil on Linux. On Linux,
you should call SpecialFolder.Home instead. For example:

Verifying that
you have
accessed the
Item

When you try to get a FolderItem, either of two things can go wrong. First, the
path may be invalid. An invalid path contains a volume reference and/or a directory
name that doesn’t even exist. For example, if you specify Volume (1) when the user
has only one volume, the Volume function returns a Nil value in the FolderItem
instance, f. If you try to use any of the FolderItem class’s properties or methods on a
Nil FolderItem, a NilObjectException error will occur. If the exception is not han-
dled in some way, the application will shut down.

Second, the path may be valid, but the file you are trying to access may not exist. The
following shell code checks for these two situations:

If the path is valid, the code checks the Exists property of the FolderItem to be sure
that the file already exists; if the file doesn’t exist or the path is invalid, a warning
message is displayed.

You can also handle an invalid path using an Exception Block. They are discussed in
the section “Runtime Exception Errors” on page 652.

Dim f as FolderItem
#If Not TargetLinux
f=SpecialFolder.Documents

#Else
f=SpecialFolder.Home

#EndIf
If f <> Nil then
If f.exists then
//use the folderitem

End if
Else

MsgBox "FolderItem is Nil!"
End if

Dim f as FolderItem
f=SpecialFolder.Documents.Child("Schedule")
If f <> Nil then

If f.Exists then
MsgBox f.AbsolutePath

Else
MsgBox "The document does not exist!"

End if
Else

MsgBox "You supplied an invalid path!"
End if
495REALbasic User’s Guide

Working With Files
Creating a
New
FolderItem

You can create a FolderItem for an existing item by passing it the pathname. When
you create a FolderItem with the New command, you can pass the path to the new
FolderItem as an optional parameter. For example:

specifies the name of the new FolderItem and it is located in the same folder as the
REAL Studio application (if you’re running in the IDE) or the same folder as the
built application.

If you pass a FolderItem instead of a path, the New method will create a copy of the
passed FolderItem. In this example, the FolderItem “f2” refers to a copy of the
original FolderItem, not a reference to it.

Getting
Information
About a
FolderItem

If GetFolderItem returns a valid FolderItem to an existing item, you can get
information about the FolderItem using the local variable “f”. For example, you can
get the modification date of the FolderItem. This example displays the modification
date of the FolderItem above:

Deleting a
FolderItem

Once you have a FolderItem that represents an item that can be deleted, you can call
the FolderItem’s Delete method. The following example deletes the file represented
by the FolderItem returned:

Dim f as FolderItem
f=New FolderItem("myDoc.txt")

Dim f, f2 as FolderItem
f=SpecialFolder.Documents.Child("Schedule")
if f <> Nil then
f2 = New FolderItem(f)

End If

Dim f as FolderItem
f=SpecialFolder.Documents.Child("Schedule")
if f <> Nil then

if f.Exists then
MsgBox f.ModificationDate.ShortDate

End if
End if

Dim f as FolderItem
f=SpecialFolder.Documents.Child("Schedule")
If f <> Nil Then

if f.Exists then
f.Delete

End if
End if
496 REALbasic User’s Guide

Working With Files
If the FolderItem is locked, an error will occur. You can check to see if the
FolderItem is locked by checking the FolderItem’s Locked property.

Deleting a FolderItem does not simply move the FolderItem to the trash. The FolderItem is
deleted permanently from the volume.

Getting and
Setting
Ownership

On Unix-based operating systems, permissions to read, write to, and run a file (or
view the contents of a directory) are regulated by a system of permissions. Central to
permissions system is file/directory ownership. Each file or directory has an Owner
and the Owner is in a Group.

The FolderItem’s Owner and Group properties let you read and set this information.
For example, if we use the previous example, we can get the name of the Owner of
the document in the following way:

To get the name of the owning Group, read the value of f.Group instead of f.Owner.
You can assign a new owner or group simply with assignment statements, such as:

Getting and
Setting
Permissions

Unix-based operating systems (Mac OS X and Linux), use a system of permissions to
regulate access to files and directories. Permissions is granted to the Owner of the
item, members of the owning Group of users, and all other users not in the owning
Group.

Three levels of permissions may be granted:

n Read: A user may only read the file or view the name of a directory.

n Write: A user may change the file or directory.

n Execute: A user may run the file (application) or view the contents of a directory
and examine the files.

Under Unix, permissions is indicated in a rather cryptic way. It uses a three-digit
octal number in which each digit indicates the permissions for the Owner, Group,
and Others, in that order from left to right.

Dim f as FolderItem
f=SpecialFolder.Documents.Child("Schedule")
if f <> Nil then

if f.Exists then
MsgBox "Schedule owner is "+f.Owner

End if
End if

f.Owner="Matt"
f.Group="Marketing"
497REALbasic User’s Guide

Working With Files
The code for each digit is computed using the following values:

For each digit, the permissions are expressed by adding up the values. Each digit can
take on eight possible values. Since each digit can only take on one of 8 values, its an
octal system, or Base 8.

For example, a permissions of 664 means that the Owner and Group (who each have
a value of 6 in this example) have Read and Write permissions, but Others have
only Read permissions.

The FolderItem’s Permissions property lets you get and set permissions by via this
octal value. You can read the value or just set it to a new value by assigning this
property the three-digit octal value that sets the desired permissions.

You can also get or set permissions for a FolderItem via the Permissions class. This
class lets you avoid having to deal with octal numbers and their meaning and,
instead indicates permissions by a group of Boolean properties. Each property is
True if the user has the specified permissions.

The Boolean properties are as follows.

Table 30: Values for Read, Write, and Execute Permissions

Value Permission Type Description

4 Read permissions User or group can open and read the FolderItem.

2 Write permissions User or group can open and write to the FolderItem.

1 Execute permissions User or group can execute the file or read the
directory.

Table 31: All possible values for a permissions integer.

Value Description

0 No permissions

1 Execute permissions

2 Write permissions

3 Write and Execute permissions

4 Read permissions

5 Read and Execute permissions

6 Read and Write permissions

7 Read, Write, and Execute permissions

Table 32: The Permissions class’s properties for setting access permissions.

Name Description

OwnerExecute If True, the owner of the FolderItem can execute the FolderItem.

OwnerRead If True, the owner of the FolderItem can read the FolderItem.

OwnerWrite If True, the owner of the FolderItem can write to the FolderItem.
498 REALbasic User’s Guide

Working With Files
In addition, the Permissions class gives you access to the Set User Bit and Set Group
Bit. These Boolean flags grant the current user the permissions of the Owner and
Group, respectively, without actually changing the FolderItem’s permissions. These
properties are shown in Table 33.

You can also use the Permissions class to get or set the so-called “Sticky” bit of a
FolderItem. If the Sticky bit is set, the operating system will not allow someone to
remove or rename the file or files in the directory that he does not own, even he has
Read/Write permissions. This can be used for directories in which different users
need to be able to create files but should not touch others’ files.

GroupExecute If True, a member of the Group that owns the FolderItem can
execute the FolderItem.

GroupRead If True, a member of the Group that owns the FolderItem can read
the FolderItem.

GroupWrite If True, a member of the Group that owns the FolderItem can
write to the FolderItem.

OtherExecute If True, a user outside the Group that owns the FolderItem can
execute the FolderItem.

OtherRead If True, a user outside the Group that owns the FolderItem can
read the FolderItem.

OtherWrite If True, a user outside the Group that owns the FolderItem can
write to the FolderItem.

Table 33: The Set User Bit and Set Group Bit properties.

Name Description

GIDBit Set Group ID bit. If True, the current user has the permissions of the
owning Group without altering the Read/Write/Execute permissions
for the FolderItem.

UIDBit Set User ID bit. If True, the current user has the permissions of the
owner without altering the Read/Write/Execute permissions for the
FolderItem.

Table 32: The Permissions class’s properties for setting access permissions.

Name Description
499REALbasic User’s Guide

Working With Files
To use the Permissions class, you create an instance of the class by passing it the
value of the Permissions property of the FolderItem. For example,

Getting The
Path To Your
Application’s
Folder

Passing a null string (two quotes with no characters in between them) to the Get-
FolderItem function returns a FolderItem representing the folder your application
or project is in. You can then use the FolderItem’s Item method to access all the
items in the folder your application is in. The Item method returns an array of
FolderItems in the directory. The array is one-based. You get a FolderItem for an
item by passing the Item method the index of the item.

For example, the following method gets a FolderItem for the directory and
populates a ListBox with the absolute paths to each item in the directory. It uses the
Count property to get the number of items and the Item method to get a
FolderItem for each item.

Getting
Specific Items
In the
Application’s
Folder

If the first item in the path is not a volume, the GetFolderItem function assumes
that the first item in the path is in the same folder as the application. If you are run-
ning your project in REAL Studio, GetFolderItem looks for the item in the folder
your project is in. If you haven’t saved your project yet, GetFolderItem will look in
the folder that REAL Studio is in.

The following example returns a FolderItem that represents a file called “My
Template” in a folder called “Templates” that is located in the same folder as the
application:

Dim f as FolderItem
f=GetOpenFolderItem("")
if f <> Nil then

if f.Exists then
Dim perms as New Permissions(f.Permissions)
//get or set permissions class bits here...
//with the properties in Table 32 and Table 33

End if
End if

Dim f as FolderItem
Dim i as integer
f=GetFolderItem("")
For i=1 to f.Count

ListBox1.AddRow Str(i)
ListBox1.Cell(ListBox1.LastIndex,1)=f.Item(i).AbsolutePath

Next

Dim f as FolderItem
f=GetFolderItem("Templates").Child("My Template")
500 REALbasic User’s Guide

Working With Files
If the file is in the same folder as the application, then you can just pass
GetFolderItem the name of the file. The following works:

Getting The
Selected File
From An Open
File Dialog
Box

The Open File dialog box lets the user navigate to a particular location on any
mounted volume and select a file to open. If the user is running Mac OS X 10.3 or
above, the following dialog box appears:

Figure 379. The Mac OS X file browser (10.3 and above).

The Windows open file dialog box is shown in Figure 380 on page 501.

Figure 380. The Windows Open FolderItem dialog box.

A Linux version of the dialog box is shown below.

Dim f as FolderItem
f=GetFolderItem("My Template")
501REALbasic User’s Guide

Working With Files
Figure 381. The Linux Open FolderItem dialog box.

To present the user with an Open File dialog box, you can call either the
GetOpenFolderItem function or use the OpenDialog class. The former is a standard
function that presents a standard open-file dialog box. The latter allows you to
create a customizable open-file dialog box in which you can specify the following
aspects of the dialog:

n Position (Left and Top properties)

n Default directory (Initial Directory property)

n Valid file types to show (Filter property)

n Text of Validate and Cancel buttons (ActionButtonCaption and
CancelButtonCaption properties)

n Text that appears above the file browser (Title property)

n Text that appears below the file browser (PromptText property)

The GetOpenFolderItem function displays the Open File dialog box and returns a
FolderItem object that represents the file the user selected. One or more file types
(that have been defined in the File Type Sets Editor or with the FileType class via
the language.) must be passed to the GetOpenFolderItem function. It presents only
those file types to the user in its browser. In this way, the user can only open files of
the appropriate type. To pass more than one file type, separate them with
semicolons.

The following example displays the Open File dialog box, allowing the user to
select only jpeg files, and then displays the selected file’s modification date:

Dim f as FolderItem
f=GetOpenFolderItem(FileTypes1.jpeg)
MsgBox f.ModificationDate.ShortDate
502 REALbasic User’s Guide

Working With Files
If the user clicks the Cancel button rather than the Open button in the Open File
dialog box, GetOpenFolderItem returns Nil. You will need to make sure the value
returned is not Nil before using it. If you don’t, a NilObjectException error will be
generated. The following example shows how the code from the previous example
should be written to check for a Nil object:

When you use the OpenDialog class, you create a new object based on this class and
assign values to its properties to customize its appearance. The following example
uses a custom prompt and displays only one file type:

Customized open-file dialog boxes are shown in Figure 382.

Dim f as FolderItem
f=GetOpenFolderItem(FileTypes1.jpeg)
If f <> Nil Then
MsgBox f.ModificationDate.ShortDate
End if

Dim dlg as OpenDialog
Dim f as FolderItem
dlg= New OpenDialog
dlg.InitialDirectory= SpecialFolder.Documents
dlg.Title="Select a MIF file"
dlg.Filter=FileTypes1.pdf
f=dlg.ShowModal()
If f <> Nil then
 //proceed normally
Else
 //User Cancelled
End if
503REALbasic User’s Guide

Working With Files
Figure 382. OpenDialog boxes on Windows Vista, Mac OS X, and Linux.

For more information, see the GetOpenFolderItem class and the OpenDialog class
in the Language Reference.

For more information on file types, See “Understanding File Types” on page 480.

Getting The Selected Folder From An Open Folder Dialog Box
The Open File dialog box doesn’t allow the user to select a folder. Fortunately,
REAL Studio’s SelectFolder function displays an Open Folder dialog box that lets
the user choose a folder rather than a file. The SelectFolderDialog class performs the
same function, but allows you to customize the appearance of the dialog.

On Windows and Linux, the SelectFolder function displays the following dialog
box:
504 REALbasic User’s Guide

Working With Files
Figure 383. The Windows and Linux SelectFolder dialog boxes.

If the user is running Mac OS X (10.3 or above), the browser shown in Figure 384
appears.

Figure 384. The Mac OS X (10.3 or above) Select Folder dialog.

The SelectFolder function returns a FolderItem that represents the folder the user
selects when he clicks the Open button at the bottom of the dialog box (or the
Choose button in the Navigation Services Open Folder dialog box). If the user clicks
the Cancel button rather than the Select/Choose button, SelectFolder returns Nil.
You need to check for it before using the returned value.

The following example displays the number of items in the folder selected by the
user:

Dim f as FolderItem
f=SelectFolder
If f <> Nil Then
MsgBox Str(f.Count)
End if
505REALbasic User’s Guide

Working With Files
When you use the SelectFolderDialog class, you create an object based on this class
and assign values to its properties to customize its appearance. You can customize
the following properties:

n Position (Left and Top properties)

n Default directory (Initial Directory property)

n Valid file types to show (Filter property)

n Text of Validate and Cancel buttons (ActionButtonCaption and
CancelButtonCaption properties).

n Text that appears above the file browser (Title property)

n Text that appears below the file browser (PromptText property)

The following example opens a select folder dialog box and presents the contents of
the Applications folder on the user’s startup volume in the browser:

SelectFolder dialog boxes created with the SelectFolderDialog class are shown in
Figure 385.

Dim dlg as SelectFolderDialog
Dim f as FolderItem
dlg=New SelectFolderDialog
dlg.PromptText="Select a folder"
dlg.ActionButtonCaption="Select"
dlg.InitialDirectory=SpecialFolder.Applications
f=dlg.ShowModal()
if f <> Nil then
//use the folderitem here
else
//user cancelled
end if
506 REALbasic User’s Guide

Working With Files
Figure 385. Select folder dialogs on Windows, Mac OS X, and Linux.

For more information, see the SelectFolder and SelectFolderDialog classes in the
Language Reference.

Using the Save As Dialog Box
The Save As dialog box is used to let the user choose a location in which to save a file
and give the file to be saved a name.

The Windows, Linux, and Mac OS X versions of this dialog box are shown in Figure
386.
507REALbasic User’s Guide

Working With Files
Figure 386. The Windows, Linux, and Mac OS X Save As dialog boxes.

REAL Studio’s GetSaveFolderItem function presents the Save As dialog box. The
SaveAsDialog class allows you to create a customized version of this dialog. Both
objects return a FolderItem that represents the file the user wishes to save. This is an
important distinction because the file doesn’t exist yet. You must provide additional
code that will create the file and write the data to the file. You will learn about
creating files and writing data later in this chapter.

When you call the GetSaveFolderItem function, you define the type of file and the
default name for the file (that will appear in the Name field in the Save As dialog box).
The file type (which is the first parameter of the function) is the name of any file type
defined for the project in the File Types dialog box.

Like the other functions that return FolderItems, you should make sure the FolderItem
returned by GetSaveFolderItem is not Nil before using it (The FolderItem will be Nil if
the user clicked Cancel).

The following example presents the Save As dialog box. The dialog presents a
default file name of “Untitled”. It also returns a FolderItem whose Type and Creator
match the “jpeg” file type as defined for the project in the File Types dialog box, in
508 REALbasic User’s Guide

Working With Files
a File Types Set called “FileTypes1”. If the user clicks the Save button, the name the
user chose for the file is displayed:

NOTE: If you are going to create a text file with the FolderItem returned, you can pass an empty
string as the first parameter of the GetSaveFolderItem function. The method that creates a text
file (CreateTextFile) will assign the file type and creator automatically.

When you use the SaveAsDialog class, you create a new object based on this class
and customize the dialog by assigning values to its properties. You can customize
the following aspects of the dialog:

n Position (Left and Top properties)

n Default directory (Initial Directory property)

n Valid file types to show (Filter property)

n Default filename (SuggestedFileName property)

n Text of the Validate and Cancel buttons (ActionButtonCaption and
CancelButtonCaption properties)

n Text that appears above the file browser (Title property)

n Text that appears below the file browser (PromptText property)

The following example opens a customized save-file dialog box and displays the
contents of the Documents directory in the browser area.

Customized save-as dialog boxes created using the SaveAsDialog class are shown in
Figure 387.

Dim f as FolderItem
f=GetSaveFolderItem(FileTypes1.jpeg,"Untitled")
If f <> Nil and f.Exists Then

MsgBox f.name
End if

Dim dlg as OpenDialog
Dim f as FolderItem
dlg= New OpenDialog
dlg.InitialDirectory= SpecialFolder.Documents
dlg.Title="Select a pdf file"
dlg.Filter=FileTypes1.Pdf
f=dlg.ShowModal()
If f <> Nil then

//proceed normally
Else

//User Cancelled
End if
509REALbasic User’s Guide

Working With Files
Figure 387. Save as dialogs on Windows, Mac OS X, and Linux.

For more information on file types, See “Understanding File Types” on page 480.

For more information, see the GetSaveFolderItem function and the SaveAsDialog
class in the Language Reference.

Working With Text Files
Text files can be read by text editors (like SimpleText, NotePad, gedit, and BBEdit)
and word processors (like Microsoft Word and Pages). Text files can easily be
created, read from, or written to with REAL Studio. Text files are convenient since
they can be read by many other applications.

Whether you are going to read from a text file or write to a text file, you must first
have a FolderItem that represents the file you are going to read from or write to.

Reading From
a Text File

Once you have a FolderItem that represents an existing text file you wish to open,
you open the file using the Open shared method of the TextInputStream class. This
method is a function that returns a “stream” that carries the text from the text file to
your application. The stream is called a TextInputStream. This is a special class of
object designed specifically for reading text from text files. You then use ReadAll or
ReadLine methods of the TextInputStream to get the text from the text file. The
TextInputStream keeps track of the last position in the file you read from.
510 REALbasic User’s Guide

Working With Files
The ReadAll method returns all the text from the file (via the TextInputStream) as a
string. The ReadLine method returns the next line of text (the text after the last
character read but before the next end of line character). As you read text, you can
determine if you have reached the end of the file by checking the TextInputStream’s
EOF (end of file) property. This property will be True when the end of the file has
been reached. When you are finished reading text from the file, call the
TextInputStream’s Close method to close the stream to the file, making the file
available to be opened again.

This example lets the user choose a text file using the Open-file dialog box and
displays the text in a TextArea. It assumes that the valid text file types have been
defined in a File Type Set called TextTypes:

NOTE: Because ReadAll reads all of the text in the file, the resulting string will be as large
as the file. Keep this in mind because reading a large file could require more memory than the
user has available for the application.

This example reads the lines of text from a file stored in the Preferences folder in the
System folder into a ListBox.

Specifying an
Encoding

If you are reading and writing text files with only your REAL Studio application,
this code will work. However, if the files are coming from other applications or
platforms, in other languages or a mixture of languages, then you may need to
specify the encoding of the text. This is because the character codes above ACSII
127 may differ from what your application expects. When you read text, you can set
the Encoding property of the TextInputStream to the encoding of the text file.

Dim f as FolderItem
Dim stream as TextInputStream
f=GetOpenFolderItem(TextTypes.All) //all the file types in this set
If f<> Nil Then

stream=TextInputStream.Open(f)
TextArea1.text=stream.ReadAll()
stream.Close

End if

Dim f as FolderItem
Dim stream as TextInputStream
f = SpecialFolder.Preferences.child("My Apps Prefs")
If f <> Nil and f.Exists then

stream = TextInputStream.Open(f)
While Not stream.EOF

ListBox1.addrow stream.ReadLine
Wend
stream.Close

End if
511REALbasic User’s Guide

Working With Files
Here is the first example, amended to specify the text encoding of the incoming text
stream. The code assumes that there is a File Type Set in the application named
TextTypes.

The Encodings object provides access to all encodings. Use it whenever you need to
specify an encoding. You can also specify the text encoding by passing the encoding
as an optional parameter to Read or ReadAll.

For more information about text encodings, see the section “Working with Text
Encodings” on page 416.

Writing to a
Text File

Once you have a FolderItem that represents the text file you wish to open and write
to, you open the file using the Append shared method of the TextOutputStream
class. If you are creating a new text file or overwriting an existing text file, use the
Create shared method of the TextOutputStream class. These methods are functions
that return a “stream” that carries the text from your application to the text file. The
stream is called a TextOutputStream. This is a special class of object designed
specifically for writing text to text files. You then use the WriteLine method of the
TextOutputStream class to write the text to the text file.

The WriteLine method, by default, adds a carriage return to the end of each line.
This is controlled by the TextOutputstream’s Delimiter property which can be
changed to any other character.

When you are finished writing text to the file, call the TextOutputStream’s Close
method to close the stream to the file making the file available to be opened again.

This example displays the Save As dialog box then writes the contents of three
TextFields to the text file and closes the stream. It assumes that there is a file type

Dim f as FolderItem
Dim stream as TextInputStream
f=GetOpenFolderItem(TextTypes.All)
If f<> Nil Then

stream=TextInputStream.Open(f)
Stream.Encoding=Encodings.Windows.ANSI //specify the ANSI encoding
TextArea1.text=stream.ReadAll()
stream.Close

End if
512 REALbasic User’s Guide

Working With Files
called “Text” in the TextTypes File Type Set This is one of the common file types
that are built into the File Type sets Editor.

If you want to create a new text file, then call TextOutputStream.Create instead.
This example passes a default filename for the new text file:

Specifying an
Encoding

As is the case with reading text files, you may need to specify an encoding when you
write out a text file. If the application that will read the file is expecting that the
text is in a specific encoding, you should convert the text to that encoding before
exporting it.

Before writing out a line or the entire block of text (with the Write method) use the
ConvertEncoding function to convert the encoding of the text. Here is a revised
example. It converts the text to the MacRoman encoding.

Dim f As FolderItem
Dim fileStream As TextOutputStream
file=GetOpenFolderItem(TextTypes.Text)
if f <> Nil then
fileStream=TextOutputStream.Append(f)
fileStream.WriteLine namefield.Text
fileStream.WriteLine addressfield.Text
fileStream.WriteLine phonefield.Text
fileStream.Close

End if

Dim t as TextOutputStream
Dim f as FolderItem

f=GetSaveFolderItem(FileTypes1.Text,"CreateExample.txt")

if f <> Nil then
t=TextOutputStream.Create(f)
t.WriteLine namefield.text
t.WriteLine addressfield.text
t.WriteLine phonefield.text
t..Close

End if

Dim file As FolderItem
Dim fileStream As TextOutputStream
file=GetSaveFolderItem(TextTypes.Text,"My Info")
fileStream=TextOutputStream.Create(file)
fileStream.Write ConvertEncoding(namefield.Text,Encodings.MacRoman)
fileStream.Close
513REALbasic User’s Guide

Working With Files
Limitations of
Text Files

Text files can only be accessed sequentially. This means that to read some text that
is in the middle of the file, you must read all of the text that comes before it. It also
means that to write some text to the middle of a text file, you have to write all of the
text that comes before the text you wish to insert, then write the text you wish to
insert, then the text that follows the text you wish to insert. You can not read text
from a text file and write to the same text file at the same time. If these limitations
are going to be a problem for your project, consider using a binary file instead. For
more information on binary files, See “Working With Binary Files” on page 521.

Working With Styled Text Files
REAL Studio makes it easy to read from and write to text files that support styled
text. TextEdit is an example of an application that supports styled text.

Loading
Styled Text
Into a
TextArea

Once you have a FolderItem that represents the styled text file you wish to read text
from, you can read the styled text using the Open method of the TextArea class. To
use this method, pass it the FolderItem whose text you wish to display. This Tex-
tArea must have its Styled property set to True. This is the default.

This example displays an Open File dialog box. It then reads the styled text from
the file chosen and displays it in a TextArea. It assumes that all the text file types
that you want to read are defined in a File Type Set called “TextTypes”.

If the Open method returns True, then the open succeeded; if it failed, it returns
False. This is handled by placing the call in the If statement.

Writing Styled
Text From a
TextArea to a
File

Once you have a TextArea that contains the styled text that you wish to save, you
can write the styled text using the Save method of the TextArea class. To use this
method, pass it the FolderItem will hold the styled text. This TextArea must have
its Styled and MultiLine properties set to True. This is the default.

Dim f as FolderItem
f=GetOpenFolderItem(TextTypes.All)
If f <> Nil Then
If Not TextArea1.Open(f) then

MsgBox "Open Failed"
End if

End if
514 REALbasic User’s Guide

Working With Files
This example displays the Save As dialog box. It then writes the styled text from
TextArea1 to the new file. It uses the Text file type as defined in the File Type Set
“TextTypes”.

If the Save was successful, then the Save method returns True.

Working with
StyledText
Objects

The other way to save and load styled text is to use the StyledText class. It enables
you to work with styled text that is not connected to a TextArea. You can
manipulate the styles and paragraph alignments within the StyledText object and
save it to disk for later use.

You work with StyledText as a series of concatenated StyleRun objects. The
StyleRun entry in the Language Reference shows how to save a StyledText object to
disk using a BinaryStream. The approach is to save the sequence of StyleRuns into a
MemoryBlock object and then write the MemoryBlock to disk by calling the Write
method of the BinaryStream class. See the entry for StyleRun for the sample code
that does this.

The RTFData property of the StyledText class stores the styled text in RTF format.
With it, you can parse RTF generated elsewhere. The parser supports only the
styled text features supported by the StyledText class itself. It also enables you to
save your styled text to disk so that it can be read by any other application that
understands RTF on any platform.

The following code saves the styled text in a TextArea to disk in RTF format. It
assumes that the File Type Set, “TextTypes” has one item, ApplicationRTF, that
defines the RTF file type. This file type can be added to a FileType set by clicking
the Common File Type button then selecting the “application/RTF” type from the
pop-up menu at the bottom of the File Type Set editor.

Dim f as FolderItem
f=GetSaveFolderItem(TextTypes.Text,"Untitled")
If Not TextArea1.Save(f,True) then

MsgBox "Save Failed"
End if

End if

Dim s as TextOutputStream
Dim f as Folderitem
f=GetSaveFolderItem(TextTypes.ApplicationRtf,"TestSaveRTF")
s=TextOutputStream.Create(f)
s.Write TextArea1.StyledText.RTFData
s.Close
515REALbasic User’s Guide

Working With Files
Working With Picture Files
REAL Studio has built-in support for opening and saving both bitmap and vector pic-
ture files. On Macintosh, it supports vector and raster PICT files and on Windows, it
supports the .bmp (bitmap) and .emf (Extended Metafile Format) formats.

Beyond that, it utilizes QuickTime and/or GDI+ to support other file formats if
they are available on the end-user’s computer.

Before opening or saving a picture file, you must have a FolderItem that represents
the picture file you wish to work with. From there, you can open picture files with
the FolderItem’s OpenAsPicture method and save a picture to the file with the
SaveAsPicture or SaveAsJPEG methods. If you are working with a vector graphics
file, you can use the FolderItem’s OpenAsVectorPicture method. REAL Studio will
try to convert the objects in the file to editable Object2D objects for you.

Saving
Pictures

To save a picture to a file, you need a FolderItem that represents a new picture file or
an existing file. Next you call the FolderItem’s SaveAsPicture method, passing it
the picture you wish to save. This example saves the backdrop of a Canvas control to
a jpg file, the name of which is specified by the user in a Save As dialog box. The jpg
file type is defined in the File Type Set named “ImageTypes”.

The SaveAsPicture method has an optional second parameter that enables you to
specify the format that you want to use for the saved file. This is how you can specify
either a vector or bitmap format. For example, you can specify a meta-format that
maps to various concrete formats based on the target, the data being saved, or other
criteria. The BMP, PNG, and JPEG formats are supported on all platforms.

The following table gives the codes for meta-formats.

Dim f as FolderItem
f=GetSaveFolderItem(ImageTypes.jpg,"Untitled")
If f <> Nil Then

f.SaveAsPicture Canvas1.backdrop
End If

Table 34: Codes, class constants, and descriptions of meta-formats used by
the SaveAsPicture method.

Value Class Constant Description

0 SaveAsMostCompatible Most widely-used format for the platform
Mac = PICT
Win32 = BMP)

1 SaveAsMostComplete Format most likely to retain all vector info
Mac = PICT
Win32 = EMF)
516 REALbasic User’s Guide

Working With Files
Macintosh-only
Formats

Windows Formats

2 SaveAsDefault DefaultVector or DefaultRaster, depending on
picture data Mac = PICT
Win32 vector=EMF
Win32 raster= BMP

3 SaveAsDefaultVector Platform's standard vector format
Mac = PICT
Win32 = EMF)

4 SaveAsDefaultRaster Platform's standard raster format
Mac = Raster PICT
Win32 = BMP)

Table 34: Codes, class constants, and descriptions of meta-formats used by
the SaveAsPicture method. (Continued)

Value Class Constant Description

Value Class Constant Description

100 SaveAsMacintoshPICT Macintosh PICTs are “type 2” PICTs that are
saved with the full resolution of the image.
Includes simple vector data.

250 SaveAsMacintoshRasterPICT Flattens all vector data to pixels.

Value Class Constant Description

150 SaveAsPNG Portable Network Graphics. Supported on Windows
only if GDI+ is installed.

151 SaveAsJPEG Joint Photographics Expert Group. Supported on
Windows only if GDI+ is installed.

300 SaveAsWindowsWMF Windows Metafile format (old vector format).

301 SaveAsWindowsEMF Extended Metafile format (newer vector format).

350 SaveAsWindowsBMP Windows bitmap format.

402 SaveAsGIF Graphics Interchange Format. Supported on
Windows only if GDI+ is installed.

403 SaveAsTIFF Tag Image File Format. Supported on Windows only
if GDI+ is installed.
517REALbasic User’s Guide

Working With Files
In your code, you can use a class constant as the second parameter of SaveAsPicture.
For example:

Saving the image drawn into the graphics property of a Canvas control (perhaps by
its Paint event handler) is a bit trickier. That’s because the graphics property isn’t a
picture. The way to solve this is to add a picture property to the window. Any
drawing you do in the Canvas control’s graphics property should also be drawn into
the picture property. The picture can then be saved using the SaveAsPicture
method. The picture property you add to the window must be filled with a reference
to a new picture before you attempt to write to it. This is accomplished using the
NewPicture function in the window’s Open event handler. In this example, the
picture property (called “p”) is set to a new picture:

In this example, the MouseDown event handler of the Canvas1 control draws a
black pixel when the user clicks on the Canvas1 control. The drawing is also done to
the window’s p (picture) property:

Finally, the picture property “p” can be saved to a picture file:

Opening
Pictures

To open a picture, you need a FolderItem that represents the image file you wish to
open. If you are working in a cross-platform situation, consider using BMP files
because REAL Studio can read this format without QuickTime being installed on
the user’s computer.

Dim f as FolderItem
f=GetSaveFolderItem(ImageTypes.ImagesJPEG,"Untitled")
If f <> Nil Then

f.SaveAsPicture(DSC_0001,FolderItem.SaveAsJPEG)

If f.LastErrorCode > 0 then
MsgBox Str(f.LastErrorCode)

Else
MsgBox "Picture saved!"

End if
End if

p=newpicture(Canvas1.width,Canvas1.height,32)

Me.Graphics.Pixel(x,y)=Rgb(0,0,0)
p.Graphics.Pixel(x,y)=Rgb(0,0,0)

Dim f as FolderItem
f=GetSaveFolderItem(FileTypes1.jpg,"Untitled")
If f <> Nil Then

f.SaveAsPicture p
End If
518 REALbasic User’s Guide

Working With Files
To open the picture, call the FolderItem’s OpenAsPicture method which returns the
picture. If QuickTime is installed, OpenAsPicture will open any kind of graphics
file QuickTime will open (JPEG, GIF, etc.). QuickTime is not required for opening
JPEG, GIF, and BMP files on Windows. OpenAsPicture does not open JPEG
images on Linux.

This example displays the Open File dialog box and lets the user choose a JPEG file
that is then assigned to the Backdrop property of a Canvas control.

If the file consists of vector graphics, you can call OpenAsVectorPicture instead of
OpenAsPicture to ask REAL Studio to try to map the objects in the file into REAL
Studio vector graphic objects. This option is available for vector PICT files on
Macintosh and emf files on Windows.

The original file may have objects for which there is no equivalent in REAL Studio.
REAL Studio will do its best to map these objects, but there may be some loss of infor-
mation, depending on the characteristics of the original file. PICTs support unrotated
Rectangles, Lines, Ellipses, RoundRects, Polygons, Text, Pixmaps, and Arcs.

Extended Metafile files (.emf) support unrotated Rectangles, Lines, Ellipses,
RoundRects, Polygons, Text, Pixmaps, and Arcs.

Files of type .emf are displayed as actual size. For the most part this is huge; you
probably will want to scale them down before viewing (pic1.objects.scale =
scalingFactor). We find that a scale factor of 0.045 is a good value.

Working With Sound Files
REAL Studio supports opening Macintosh and WAV sound files but not saving
them. Specifically, Macintosh sound files are those files whose “Kind” field in the
file’s Get Info dialog box is listed as “Sound.” On Linux, xine is used to play sounds.
If it is not installed libsndfile is used. It supports only WAV and AIFF.

To open a sound file, you must first have a FolderItem that represents the sound file
you wish to open. Next, you can open the sound file and place its contents into a

Dim f as FolderItem
Dim p as Picture
f=GetOpenFolderItem(FileTypes1.Jpeg)

if f <> Nil then

If f.exists then
p=f.OpenAsPicture
Canvas1.Backdrop=p

End if
End if
519REALbasic User’s Guide

Working With Files
Sound object with the FolderItem’s OpenAsSound method. This example opens a
sound file and plays it:

You can also get sounds stored in a snd resource inside your application. For more
information, See “Supported Resource Types” on page 526.

Working With Movie Files
To open a movie file, you must first have a FolderItem that represents the file you
wish to open. REAL Studio supports the QuickTime player on Macintosh and Win-
dows Media Player on Windows. On Linux, REAL Studio uses GStreamer by
default (it requires version 0,10+) and uses Xine if GStreamer is not available.

Next, you can open the file and place its contents into a Movie object with the
FolderItem’s OpenAsMovie method. This example opens a QuickTime file, assigns
its movie to the Movie property of a MoviePlayer control, and plays the movie:

NOTE: If your application needs a specific movie, you can drag it into the Project Editor rather
than use GetOpenFolderItem or GetFolderItem.

If you want to edit the movie within REAL Studio, you need to open it as an
EditableMovie. You would then display the movie in a MoviePlayer by assigning it
to the Movie property of a MoviePlayer control.

Dim f as FolderItem
Dim s as Sound
f=GetFolderItem("Doh!")
If f<> Nil Then

s=f.OpenAsSound
s.Play

End if

Dim f as FolderItem
Dim m as Movie
f=GetOpenFolderItem(VideoTypes.QuickTime)
If f<> Nil Then

m=f.OpenAsMovie
moviePlayer1.Movie=m
moviePlayer1.Play

End if
520 REALbasic User’s Guide

Working With Files
The following example opens an existing movie as an EditableMovie and displays it
in a MoviePlayer control named ThePlayer.

The EditableMovie class includes methods that allow you to:

n Create a new QuickTime video track,

n Define a segment in the EditableMovie,

n Cut or copy the segment to the Clipboard,

n Paste a segment into the current movie,

n Append another movie segment to the current movie,

n Insert a segment into the current EditableMovie at a specified position,

n Create new sound and/or video tracks,

n Scale the video track.

A QuickTime video track has properties and methods that allow you to:

n Set the frame rate for the movie, either in frames per second or, more accurately, as a
timescale and frame duration,

n Set the codec used for compression,

n Set the compression quality,

n Set the bit depth.

You can save your changes to the EditableMovie automatically when you are fin-
ished or at any time by calling the CommitChanges method. Please see the Edit-
ableMovie and the QTVideoTrack entries in the Language Reference for more
information on the methods used to work with QuickTime movies.

Working With Binary Files
Binary files are simply files that store values in their binary format rather than as
text. For example, the number 30000 stored as text requires 5 characters of text (or
bytes) to store in a text file. In a binary file, this number can be written as a short
integer (or just “short”). A short requires only 2 bytes.

Dim f As FolderItem
Dim theEMovie as EditableMovie
f=GetOpenFolderItem(VideoTypes.QuickTime)
If f<>Nil and f.exists then
theEMovie=f.OpenEditableMovie
If theEMovie<>Nil then
ThePlayer.movie=theEMovie
End if
End if
521REALbasic User’s Guide

Working With Files
Binary files also have the added benefit that you can read and write to a file without
having to close the file in-between. For example, you can open a binary file, read
some data, then write some data, and close it. You can also read and write anywhere
in the file without having to read through all the data preceding the data you want.

Most applications store data in a binary format. The format is simply the
arrangement of data within the file. In order to read a binary file, you must know
how the data is arranged. If your own application created the file, you will know
this, but if the file was created by an application you didn’t write, you may not
know it. Some formats are made public. For example, the PICT format is public.
Other formats are not. Many software vendors do not publish the binary formats
that their applications use to create documents.

BinaryStreams Data read from or written to a binary file travels through a BinaryStream. A BinaryS-
tream is a class of object in REAL Studio that represents the flow of information
between the FolderItem and the file it represents. Unlike the TextInputStream class
(which can only be used to read from a text file) and the TextOutputStream class
(which can only be used to write data to a text file), BinaryStreams can be used for
both reading data and writing data. You can even indicate to the BinaryStream that
you will only be reading data from the file so that the file can continue to be avail-
able to other applications for writing.

BinaryStreams can read and write specific types of data, such as strings, short
integers, long integers, currency, and single bytes. They can also be used to read and
write raw unformatted binary data.

Reading From
a Binary File

Once you have a FolderItem that represents the file you wish to open, you open the
file using the Open method of the BinaryStream class. It returns a BinaryStream.
You then use the methods of the BinarySream class to read data from the stream. The
BinaryStream class includes separate methods for reading each data type that REAL
Studio supports.

The BinaryStream keeps track of the last position in the file you read from in its
Position property. However, you can change this property’s value to move the
position to any location in the file.

This example presents the Open File dialog box, reads a file made up of strings, and
displays those strings in a TextArea. Notice that since the code is only reading data
and not writing, False is passed to the Open method to indicate the file should be
opened in “read-only” mode. Also, reading continues in a loop until the stream’s
522 REALbasic User’s Guide

Working With Files
EOF (end of file) property is True. REAL Studio will set the EOF property to True
automatically once the end of the file is reached.

When you read a BinaryStream, you may need to take the encoding of the characters
into account. To do so, you can pass an optional parameter to the Read and
ReadPString methods that specifies the encoding. Use the Encodings object to get
any encoding and pass it to Read or ReadPString. For example, the following line
specifies the ANSI encoding:

For more information, see the section “Working with Text Encodings” on page 416.

Writing to a
Binary File

Once you have a FolderItem that represents the file you wish to open and write to,
you can open the file using the Open method of the BinaryStream class. If you are
creating a new file, use the Create method of the BinaryStream class. This method
returns a BinaryStream. You then use the appropriate method for writing data to
the stream. The BinaryStream class includes separate methods for each data type
that REAL Studio supports.

The BinaryStream keeps track of the last position in the file you wrote to in its
Position property. However, you can change this property’s value to move the
position to any location in the file.

When you are finished writing data to the file, call the BinaryStream’s Close
method to close the stream to the file making the file available to be opened again.

Dim f as FolderItem
Dim stream as BinaryStream
f=GetOpenFolderItem(FileTypes1.Text)
If f<> Nil Then

stream=BinaryStream.open(f,False)
Do

TextArea1.AppendText stream.Read(255)
Loop Until stream.EOF
stream.Close

End if

TextArea1.AppendText stream.Read(255,Encodings.WindowsANSI)
523REALbasic User’s Guide

Working With Files
This example displays the Save As dialog box and writes the contents of the
TextArea1 to a text file.

Working With Macintosh Resources
All Macintosh files (including applications, which are really just files) can have two
sections called “forks.” The “data” fork holds data that is in whatever format the
application that created the file chose to put it in. The resource fork can contain for-
matted information such as icons, sounds, menu bars, pictures, string lists, etc.

REAL Studio provides support for reading from and writing to the resource fork of a
file. This is done using a FolderItem object that represents the file whose resource
fork you wish to access or create.

REAL Studio supports operations on the resource fork only on the Macintosh
platform. The discussion and examples in this section assume that the application is
running on a Macintosh. If your application manages resources, you can use the
TargetMacOS constant to verify that the application is running on Macintosh before
doing any resource fork operations. There is one exception to this: it is possible to
install custom cursors in your application using the ‘CURS’ resource and access
them from a built Windows application. This is described in the section “Custom
Cursors in Windows Applications” on page 527.

Opening a
File’s
Resource Fork

Once you have a FolderItem, you can open the resource fork for the file the
FolderItem represents. This is done using the OpenResourceFork method of the
FolderItem. This method returns a ResourceFork class object which can then be
used to access the resource fork of the file. If the file has no resource fork, the Open-
ResourceFork method returns Nil.

Dim f as FolderItem
Dim stream as BinaryStream
f=GetSaveFolderItem(FileTypes1.Text,"Untitled.txt")
If f<> Nil Then

stream=BinaryStream.Create(f,True)
stream.Write(TextArea1.text)
stream.Close

End if
524 REALbasic User’s Guide

Working With Files
This example displays the Open File dialog box, allowing the user to choose a file. It
then reports if the file has no resource fork or tells the user how many different types
of resources are in the file’s resource fork:

NOTE: The “any” file type passed to GetOpenFolderItem was defined in the File Type Sets
Editor or with the FileType class via the language and uses the string “????” as both Type
and Creator. The “?” is a wildcard character, matching any type or creator code.

Adding a
Resource Fork
to a File

Before you can write to the resource fork of a file, it must have one first. You can use
the FolderItem’s OpenResourceFork method to determine if the file has a resource
fork. If it doesn’t, you can use the FolderItem’s CreateResourceFork method to add a
resource fork to the FolderItem. Once the file has a resource fork, you can begin
writing to it.

This example displays an Open File dialog box and adds a resource fork to the file (if
the file doesn’t already have one). This example assumes that a file type for any
application has been added to the File Type set “FileTypes1.”

Adding a
Resource Fork
to a Project

You can add a resource fork to a REAL Studio project by dragging a resource file
into the Project Editor. REAL Studio recognizes the file type of “rsrc” as a resources
file. You can have as many resource files in your project as you wish. The resources
from all your resource files will be copied into the built Macintosh application. In
the case of a conflict, later resource files overwrite earlier ones, where the files are
written in the order in which they appear in the Project Editor.

Dim f as FolderItem
Dim rf as ResourceFork
f=GetOpenFolderItem("any")
If f <> Nil Then

rf=f.OpenResourceFork
If rf=Nil Then

Beep
MsgBox "This file has no resource fork."

Else
MsgBox "This file has "+Str(rf.TypeCount)+" resource types."

End if
End if

Dim f as FolderItem
Dim rf as ResourceFork
f=GetOpenFolderItem(FileTypes1.ApplicationAny)
If f <> Nil Then

rf=f.OpenResourceFork
If rf=Nil Then

rf=f.CreateResourceFork("any")
End if

End if
525REALbasic User’s Guide

Working With Files
The following example opens the application’s resource fork:

Supported
Resource
Types

REAL Studio provides high level support for PICT, CICN, CURS, and snd
resources. You can use the AddPicture method to add PICT resources to the
resource fork and use GetPicture or GetNamedPicture to get PICT resources from
the resource fork. You can use GetCicn to get a cicn (color icon) resource. Sounds
can be read from snd resources using the GetSound method of the ResourceFork
class. However, you can access any type of resource. REAL Studio provides method
for getting and setting raw data from any type of resource in a resource fork. How-
ever, you must know the format of the resource data to be able to successfully read
from it or write to it.

Reading
Resources

The ResourceFork class has methods for reading data from four different types of
resources. You can read PICT resources using the GetPicture and GetNamedPicture
methods of the ResourceFork class. You can get a color icon as a picture by calling
the GetCicn method. You can get a large (32 x 32) icon using the GetIcl method
and a small (16 x 16) icon with the GetIcs method. For example, the following line
of code displays a picture resource in an ImageWell:

Use GetCicn, GetIcl, and GetIcs in the same way.
You can load sounds from ‘snd ’ resources using the GetSound method of the
ResourceFork class.

Reading
Custom
Cursors

REAL Studio lets you add a custom cursor as a resource. There are separate Mouse-
Cursor properties at the application, window, and control levels. You can assign a
custom cursor using these proper i es.

MouseCursor
Constructor

The most convenient way of creating a custom cursor, however, is to create it using
the MouseCursor class’s constructor. You need only to pass it the picture of the
custom cursor and the x,y coordinates of the hotspot. The hotspot is the point in the
cursor that the operating system uses as the position of the cursor. Here is a
template for the constructor:

The custom cursor image was created outside of REAL Studio and added to the
Project Editor.

Dim rf as ResourceFork
rf=App.ResourceFork

Me.Image=App.ResourceFork.GetPicture(128)

Dim pic as New Picture(32,32,32) //height,width, and depth
pic=pointerImage //pointerimage was added to the Project Editor
Me.MouseCursor(pic,10,10) //picture, x-hotspot, y-hotspot
526 REALbasic User’s Guide

Working With Files
This is the most direct way to create a custom cursor. The MouseCursor constructor
is supported on Windows and Linux and will be supported for Macintosh Cocoa.
Macintosh Carbon builds are currently not supported.

Cursor
Resources

Use GetCursor to assign a custom cursor to the MouseCursor property of the
application, a window, or a control. For example, the following line in a window’s
MouseEnter event handler assigns a custom cursor to the MouseCursor property of
the window.

This line causes REAL Studio to display the custom cursor whenever the mouse
enters the window’s region. If you want to change the cursor when the mouse is over
a control in the window, you can use a line such as this in the control’s MouseEnter
event handler:

and then restore the window’s custom cursor with the following line in the control’s
MouseExit event handler:

Notice that these lines do not assign a cursor to the control’s own MouseCursor
property; they only change the assignment to the control’s parent window.

Assign a custom cursor to a control’s MouseCursor property only when you don’t
use either the Window’s or the App class’s MouseCursor properties. If either the
parent window or the application has a custom MouseCursor property, then the
control’s MouseCursor property is ignored.

To assign a custom cursor to the application as a whole, create a new class called
“App” and make its Super Class “Application.” Then add a line such as this to the
App class’s Open event handler.

This causes the REAL Studio application to display this custom cursor all the time.
That is, the MouseCursor properties of any of the application’s windows or controls
will be ignored.

Custom
Cursors in
Windows
Applications

You can use CURS resources to assign custom cursors in built Windows applica-
tions. This, at present, is the only case in which resources are supported on Win-
dows builds. The relationships among the MouseCursor properties of the
Application, Window, and Control are the same as for Macintosh applications, but
you must create the resource files in a special way. This technique is also recom-
mended for Macintosh builds.

self.MouseCursor=App.ResourceFork.GetCursor(128)

self.MouseCursor=App.ResourceFork.GetCursor(129)

self.MouseCursor=App.ResourceFork.GetCursor(128)

MouseCursor=App.ResourceFork.GetCursor(128)
527REALbasic User’s Guide

Working With Files
The key is that you must create a separate resource file for each custom cursor that
you add to the project. Each resource file must have only a CURS resource that
contains one cursor. Typically, you will assign the custom cursor to ID 128.

You then drag all of these resource files to your project. These special resource files
will appear in the Project Editor with a cursor icon.

You can then access the custom cursors by referencing their names. For example, the
following statement in a control’s MouseEnter event handler changes the pointer to
the Sponge cursor when the mouse enters the region of the control:

(You would then restore the cursor with a statement in the control’s MouseExit
event handler.)

Reading Other
Resources

To read data from other resources, you must know the format of the resource. For
example, to read the STR# resource, you can use the GetResource method of a
ResourceFork class. This will return the bytes that make up the resource ID you
specify. To then do anything useful with the data, you will need to know that the
first two bytes are the number of strings in the resource, followed by the strings
themselves. The strings are Pascal strings so their first byte is the length of the
string.

When you build your application, you can enter version information about the
application in the App class’s Properties pane. That information is stored in a ‘vers’
resource that becomes part of your application. An application can access the ‘vers’
resource using the GetResource method of the ResourceFork class. The information
written to the ‘vers’ resource is described in the section “Version Information” on
page 702.

Writing To
Resources

REAL Studio provides methods via the ResourceFork class that can be used to write
to resources. You can use the AddPicture method to write REAL Studio pictures
into a PICT resource. For all other types of resources, you can use the AddResource
method to create new resources and the RemoveResource method to delete specific
resources. To modify a resource other than PICT resources, you read the data of the
resource using the GetResource method, then write the data back by deleting the
resource with the RemoveResource method and then recreating the resource using
the AddResource method.

More
Information
on the
ResourceFork

For more information, see the ResourceFork class in the Language Reference.

Self.MouseCursor=Sponge
528 REALbasic User’s Guide

Working With Files
Files Opened From the Desktop
If your application is designed to read from and/or write to files, you may need to
consider how your application will react when the user accesses files stored on
his/her computer.

Files Opened
by Double-
Clicking

If the user double-clicks on a file whose creator code matches your stand-alone
application’s creator code, the user will be expecting your application to open the
file automatically. If your application is prepared to open a file and take some
action, then you should also support the user’s double-clicking on the file. This is
done by using the App class that was added to your project by default. This class
represents your application as a whole and will receive information when the user
double-clicks on a document whose creator code matches your application’s creator
code. It has an OpenDocument event handler that is executed when the user double-
clicks on a file. This event handler is passed a FolderItem as a parameter. This
FolderItem represents the file the user double-clicked on.

To take action when the user double-clicks on a file from the desktop, do this:

1 Double-click the App object in the Project Editor.
A project created from the Desktop Application project template has an App class
based on the Application class. If you don’t have an App class, create a new class and
set its Super Class to Application in its Properties pane.

2 Expand the Events list in the Code Editor browser.

3 Click on the OpenDocument event to select it.

4 Enter the code that should execute when the user double-clicks on a file.
You can access the file using the Item parameter passed to the
OpenDocument event handler.

Files Dropped
On Your
Application’s
Icon

REAL Studio treats a file dropped on your application’s icon at the desktop the same
way it treats the user’s double-clicking on a file from the desktop. For more infor-
mation, See “Files Opened by Double-Clicking” on page 529.

Creating New
Files

When the user launches your application without opening a file, REAL Studio
assumes that the user will probably want to create a document (assuming you appli-
cation is document/file based). If you have created a class based on the Application
class, that class’s NewDocument event handler will execute. On Macintosh, this
event handler also executes when your application receives an Open Application
AppleEvent (oapp) or when a user uses AppleScript to tell the Finder to open your
application.

You can call the NewDocument event handler by entering NewDocument in your
code. This allows you to have a single location to put the code for your application
529REALbasic User’s Guide

Working With Files
that creates new documents. Using this event handler, your application will respond
to all the appropriate calls to create a new document.
530 REALbasic User’s Guide

CHAPTER 10 Creating Reusable
Objects with Classes

Classes act as templates for objects much in the same way that the windows listed in
the Project Editor act as templates for the windows you open in your application.
This chapter will introduce you to the benefits of classes, explain how to create and
modify them, and how you can create custom interface controls using classes.

Contents

n The benefits of classes

n Understanding subclasses

n Modifying classes

n Managing menus within classes

n Using classes in your projects

n The Application class

n Creating custom controls with classes

n Virtual methods

n Class Interfaces

n Interface inheritance
531REALbasic User’s Guide

Creating Reusable Objects with Classes
The Benefits of Classes
Classes offer lots of benefits. They are:

Reusable
Code

When you add code to a PushButton control to customize its behavior, you can only
use that code with that PushButton. If you want to use the same code with another
PushButton, you need to copy the code and then make changes to the code in case it
refers to the original PushButton (since the new PushButton will have a different
name than the original).

Classes store the code once and refer to the object (like the PushButton) generically
so that the same code can be reused any number of times without modification. If
you create a class based on the PushButton control and then add your code to that
class, any instances of that custom class will have that code.

Smaller
Projects and
Applications

Because classes allow you to store code once and use it over and over in a project,
your project and the resulting application is smaller in size and may require less
memory.

Easier Code
Maintenance

Less code means less maintenance. If you have basically the same code in several
places in your application, you have to keep that in mind when you make changes or
fix bugs. By storing one copy of the code, you will spend less time tracking down all
those places in your project where you are using the same code. Making a change to
the code in a class automatically updates any places where the class is used.

Easier
Debugging

The less code you have, the less code there is to debug.

More Control Classes give you more control than you can get by adding code to the event handlers
of a control in a window. In fact, some classes can even manage menus. You can also
use classes to create custom controls. And with classes, you have the option to create
versions that don’t allow access to the source code of the class, allowing you to create
classes you can share or sell to other REAL Studio users.

As you can see, there are many benefits to creating classes. Overall, classes make
your programming effort more efficient.
532 REALbasic User’s Guide

Creating Reusable Objects with Classes
Understanding Instances
REAL Studio has many classes built-in to it. The PushButton, StaticText, Text-
Field, and ListBox are examples of some of the built-in control classes. Control
classes are templates for objects that you use in your application’s interface. As tem-
plates, the classes are abstract in the sense that you do not use any of the templates
themselves in applications. Instead, each template serves as an inexhaustible supply
of instances of classes. You use these instances.

For example, when you drag a TextArea from the Controls list to a window, you create
a usable instance of that class. The new instance has all the properties and methods that
were built into the TextArea template. You get all that for free—styled text, multiple
lines, scroll bars, and all the rest of it. You customize the particular instance of the
TextArea by modifying the values of the instance’s properties.

Understanding Subclasses
You may find situations where you would like to have an object that is a slightly
altered version of one of the built-in classes. For example, you might want a version
of the TextArea control that disables the Cut and Copy items on the Edit menu,
preventing the user from putting sensitive data on the Clipboard. You might want
to create a ListBox that, by default, has the months of the year in it. You can create
your own versions of these built-in classes by creating subclasses that you add to your
Project Editor.

There’s an important difference between adding an instance of TextField to a
window versus adding a subclass based on TextField to your project. In the latter
case, you can customize the subclass based on TextField itself and use instances of
the customized subclass in several places in the application. You can also save the
customized subclass so that you can reuse it in other projects.

What is a
Subclass?

A subclass is simply a class that has a super class. A super class is a class the subclass is
based on. The super class is also sometimes called the “parent” class. Subclasses inherit
all of their super’s properties, methods, constants, and events1. The subclass can then
modify them. In fact, a subclass is identical to its super class until you start modifying
it. After that, it’s different from its super class only in the ways you make it different
by adding properties, modifying events, and adding or modifying methods.

Examples of
Subclasses

For example, to create a TextArea that prevents the user from copying data to the
Clipboard (Let’s call it a SecureTextArea), you create a new class and choose Tex-
tArea as its super class. The new subclass is shown in Figure 388.

1. There is an exception to this rule. If you set the Scope of a method, property, or constant
to Private and then use this class as a super class, its subclasses will not inherit the Private
methods, properties, or constants.
533REALbasic User’s Guide

Creating Reusable Objects with Classes
Figure 388. SecureTextArea based on the TextArea class.

REAL Studio automatically enables the Cut and Copy menu items on the Edit menu
when characters are selected in a TextArea. Since SecureTextArea is based on
TextArea, it inherits these features. Because TextAreas can get the focus, any subclass
of the TextArea control has an EnableMenuItems event handler. This allows
SecureTextArea to control the menus when it has the focus. To prevent the user from
using the Cut and Copy menu items, you set the Enabled property of these menu
items to False in your SecureTextArea’s EnableMenuItems event handler.

In Figure 389, the user has opened the Code Editor for the SecureTextArea class and
added code to disable the Cut and Copy menu items.
534 REALbasic User’s Guide

Creating Reusable Objects with Classes
Figure 389. Disabling the Copy and Cut menu items in SecureTextArea.

To use an instance of SecureTextArea, switch to the Window Editor and use the
drop-down menu above the Controls list to display the Project controls. This is the
list of custom controls that have been added to the Project Editor.

Figure 390. The Project Controls list.

Add the SecureTextArea item to the window, just as you would a built-in control. It
behaves exactly like a ‘regular’ TextArea, except that the Cut and Copy menu items
are disabled when the user has selected text.

Project Controls is
selected from the
drop-down list.
535REALbasic User’s Guide

Creating Reusable Objects with Classes
Figure 391. Selected text cannot be copied from an instance of SecureTextArea.

Since SecureTextArea is in your Project Editor, you can create instances of it
anywhere you like and maintain its code in one central place. You can export it and
import it into other projects.

Here is another example. Suppose you want to create a ListBox that, by default,
displays the names of the months of the year, with the current month selected.

You create a new class and choose ListBox as its super class.

Figure 392. The Months class added to the Project Editor.

Open the Code Editor for the Months class. In the Open event handler of your new
subclass add the month names, the heading, and code that selects the appropriate
month in the list.
536 REALbasic User’s Guide

Creating Reusable Objects with Classes
In this case, the Open event handler is:

To add an instance of the Months class to a window, switch to the window’s
Window Editor and then use the drop-down list above the Controls list to switch to
Project Controls. The Months class will be listed there. Drag it to the window.
When you run the application, the Open event handler will run and populate the
Listbox with the months of the year. The last two lines of the Open event handler
will highlight the current month.

You might want to create a TextField that only allows the user to enter numbers.
Let’s call it “NumbersOnlyTextField.” To do this, you create a subclass of the Text-
Field control and put code in the KeyDown event handler that allows only numbers
and rejects all other characters. Once created, you can use your new subclass in many
different places in your project, but the code exists only in one place.

Once created, custom control classes can be exported as self-contained objects that
can be used in other projects. Just right+click (Control-click on Macintosh) on the
custom control class in the Project Editor and choose Export... from the contextual
menu.

Subclasses are classes. They are called subclasses to differentiate them from built-in
classes and emphasize the point that they inherit the properties, events, and
methods of their parent class. Because subclasses are classes, they can be the super
class to other subclasses. For example, suppose you had already created the
NumbersOnlyTextField subclass mentioned earlier. Now, you need a TextField that
allows only numbers within a certain range. You could duplicate the
NumbersOnlyTextField subclass and then modify its code. However, this would
make your project larger and more difficult to maintain. If you found a bug in the
code of the NumbersOnlyTextField, you would have to remember that you used

Me.HasHeading=True
Me.InitialValue="Months"

Me.AddRow "January"
Me.AddRow "February"
Me.Addrow "March"
Me.Addrow "April"
Me.Addrow "May"
Me.Addrow "June"
Me.Addrow "July"
Me.Addrow "August"
Me.Addrow "September"
Me.Addrow "October"
Me.Addrow "November"
Me.Addrow "December"

Dim d as New Date
Me.Selected(d.Month-1)=True
537REALbasic User’s Guide

Creating Reusable Objects with Classes
that code in other places as well, track them down, and fix them. A more efficient
way is to create a new subclass and choose the NumbersOnlyTextField as its super
class. The new subclass (let’s call it “NumberRangeTextField”) would utilize all of
the properties, events, and methods of its super class. However, you can add code to
the TextChanged event handler that allows only numbers within a specific range.

Referring to a Class’s Properties and Methods From Within the Class
When you add control such as a PushButton to a window and then add code to that
control, you are adding code to one instance of the PushButton class. REAL Studio
gives the instance the default name of “PushButton1”. The code in the Action event
of PushButton1 is actually a method of Window1 and has access to the public,
protected, and private items of Window1 as any other method of that class.

Suppose you add a PushButton named “PushButton1” to a window that should be
disabled after the user clicks it. The code in the PushButton’s Action event handler
could be:

However, it is preferable to refer to the PushButton using the “Me” keyword rather
than the PushButton’s name. The code would be:

Me refers to the control that fired the event. It is a reference to the control that owns
the event handler. In this case, it is PushButton1. The advantage of using Me
instead of the control’s name is that you can copy and paste the code to another
control and it will work without any modification. If you used the control’s name,
you would need to update the code each time you copied and pasted it into another
control’s Action event.

A more flexible approach is to create a custom PushButton class that has the desired
event handlers built in. With this approach, you add a custom class to the Project
Editor and set its Super Class to PushButton. You then add the Action Event
handler to the custom class.

This creates a customized PushButton that you can use in many places in your
application. All of the code that you add to the custom class will automatically
become part of all instances of that custom class. Consequently, you don’t include
object references to the custom class in its own code. The code would be:

When you create a custom class based on a control, the custom control appears in
the Window Layout editor in the Project Controls list. In the Window Layout
Editor, switch from the Built-in controls to the Project controls list. Then add it to
the window in the normal way.

PushButton1.Enabled=False

Me.Enabled=False

Enabled=False
538 REALbasic User’s Guide

Creating Reusable Objects with Classes
Figure 393. A Custom PushButton in the Window Layout Editor.

When you add an instance of that custom PushButton to a window, the code added
to the custom class will automatically be operating on the instance of the class. In
this example, the customized PushButton is the same as a “regular” PushButton
except that it has its own Action event handler. The code you added to the class
becomes the Action event handler for all instances of the custom PushButton class.

Creating Classes
Adding a class to a project is easy. If you want to subclass the class from an existing
class in the project, use the steps in the section “Creating a Subclass from an
Existing Class” on page 540.

To add a new class, do this:

1 If it is not already visible, click on the Project tab to display the Project
Editor.

2 Click the Add Class button in the Project Editor toolbar or choose
Project . Add . Class.
A new class, named Class1, is added to the Project Editor. When the new class is
selected, the Properties pane changes to indicate the new class’s properties.

By default, the new class is not subclassed from any other class. Often you want the
new class to inherit the properties of an existing class.

3 Use the Properties pane to give the new class a meaningful name and, if
desired, use the Super pop-up menu to subclass it from an existing class.
If the Super class is one of the built-in controls, the new subclass gets the icon
belonging to that control in the Project Editor.
539REALbasic User’s Guide

Creating Reusable Objects with Classes
For example, in Figure 394 on page 540 a subclass of Canvas has been added to the
project called Gridlock. It will be used to create a rectangular grid in a window.

Figure 394. The Gridlock class is based on the Canvas control.

The small icon for Gridlock is the same as the icon for its Super class. With the new
class selected in the Project Editor, you can double-click it to open the Code Editor
for the new class.

Creating a
Subclass from
an Existing
Class

When you want to create a subclass of an existing class that you’ve already added to
the Project Editor, you can do so using these two shortcuts.

To create a subclass of an existing class in the Project Editor, do this:

1 Right+click (Control-click on Macintosh) on the class from which you want
to create a subclass.

2 Choose New Subclass from the contextual menu.
A new class is added to the project. In the Properties pane, the existing class is used
as the Super class of the new class. The new class is named CustomClassName, where
ClassName is the name of the parent class.
540 REALbasic User’s Guide

Creating Reusable Objects with Classes
Figure 395. Using the Project Editor contextual menu to create a new class.

3 Use the Properties pane to rename the new subclass.

You can also create a subclass of an existing class by repeating the procedure for cre-
ating a new class and then manually choosing the parent class from the Super pop-
up menu in the Properties pane.

Creating a
Superclass
from an
Existing Class

You can also create a super class from an existing class that does not have a Super
class. When you do so, you can specify which properties and methods should be
assigned to the super class and which should remain with the subclass.

To create a super class of an existing class in the Project Editor, do this:

1 Right+click (Control-click on Macintosh) on a class that does not have a
Super class.

2 Choose Extract Superclass from the contextual menu.
The Extract Superclass dialog appears.
541REALbasic User’s Guide

Creating Reusable Objects with Classes
Figure 396. The Extract Superclass dialog for the class “CharacterSource”.

It suggests the name of the superclass, which is the name of the existing class pre-
ceded by “General”. It also lists the properties and methods of the existing class.

3 In the Methods and Properties lists, check the items that you want to
include in the superclass.

4 If desired, rename the superclass.

5 When you are finished, click OK.
REAL Studio then creates the superclass, makes the current class a subclass of this
class, and moves the methods and properties that you checked to the superclass.

Saving Classes
Since classes are reusable, you will want to develop a library of classes that you can
easily import into other projects. Choose File . Export and save the class under a
suitable name.To add the class to another project, simply drag it from the desktop
into the Project Editor for the new project or choose File . Import and use the
open-file dialog box to choose the class to be imported. For more information, see
“Exporting Classes For Use In Other Projects” on page 599.

External
Project Items

If you want to use the class in more than one project, you can export it as an external
project item. An external project item is stored on disk and is referenced by each
project that uses it. If a change to the class is made from one project, those changes
are made available to all the other projects that reference the external item. Changes
to the external project item are saved to disk when you save the project.

To save a class in your project as an external project item, Right+click (Windows
and Linux) or Control-click (Macintosh) on the class in the Project panel and choose
the Make External contextual menu item. An Export File dialog box appears in
which you can save the class to disk. When you complete the save, the item will be
displayed in the Project Editor with an alias badge and the name of the class is in
italics. This indicates that it is now referenced as an external item.
542 REALbasic User’s Guide

Creating Reusable Objects with Classes
Figure 397. The Months class as an external project item.

To add an external project item to another project, hold down the Ctrl+Shift (on
Windows and Linux) or the x and Option keys (on Macintosh) while you drag the
item from the desktop to the Project Editor. In the Project Editor, the external
project item’s name will be shown in italics.

For more information, see the section, “External Project Items” on page 80.

Modifying Classes
One of the big advantages of classes is the ability to modify existing classes. You do
this by adding constants, properties, adding or changing events, and adding or
changing methods.

Scope of a
Class’s
Methods,
Properties,
and Constants

When you add a method, property, or constant to a class, you need to set its Scope
attribute. The Scope of a method, property, or constant determines which other
items in the project can access it. There are three possible values:

n Public: Accessible from Anywhere: A Public method, property, or constant is
available to code throughout the application. Public methods represent the class’s
interface to the rest of the application. When you need to access a Public item, you
use the “dot” notation. For example, if you declare a Public property,
myPublicProperty, in Class1, you call it by referring to “Class1.myPublicProperty”
outside Class1. Within a method or event handler belonging to Class1, it is in
scope, so you can access it by referring to “myPublicProperty”.

n Protected: Accessible from the Current Class and its Subclasses: A Protected
method, property, or constant is available only to other code within the class and
subclasses based on this class. It is “invisible” to the rest of the application. When
other code in the class needs to access a Protected method, property, or constant,
you simply reference it by name. If you try to access a Protected method, property,

After you import the class as
an external project item, it
appears as an alias.
543REALbasic User’s Guide

Creating Reusable Objects with Classes
or constant outside of the class, REAL Studio will display an informative error
message indicating that the item is out of scope.

n Private: Accessible from the Current Class only: A Private method, property, or
constant is like a Protected item except it is not accessible to classes subclassed from
the current class. Public and Protected classes are accessible to classes subclassed
from the current class.

Adding
Properties

You can add properties to a class to store values that its super class doesn’t store. For
example, you might want to create a subclass of the TextField control that stores the
last value the user entered. This would allow you to selectively reject the current
entry and restore the last entry. You add properties to a class the same way you add
properties to a window.

To add a property to a class, do this:

1 If the class’s Code Editor is not already open, double-click on the class in
the Project Editor to open it.
The Code Editor for the class appears.

2 Click the Add Property button or choose Project . Add . Property.
The Property declaration area appears above the Code Editor area. A “placeholder”
property declaration is entered by default.

Figure 398. The Property Declaration area.

The Property Declaration area has three fields. They are for the name of the
property, its data type, and its default value. The first two are required. If you do
not provide a default value, the new property will be assigned the default value for
the data type that you choose. Strings have a default value of an empty string,
numbers have a default value of zero, booleans have a default value of False, colors
have a default value of black, and objects have a default value of Nil.

You can also create classes that belong to modules. A module is a stand-alone item
that serves as a container for classes, class interfaces, methods, properties, constants,
544 REALbasic User’s Guide

Creating Reusable Objects with Classes
and other modules. For more information about module classes, see the section
“Adding Classes to Modules” on page 384.

If you want to use a module class as the data type in the property declaration, you
need to use the “dot” syntax to refer to it, i.e., moduleName.className. This refers to
the class className in moduleName.

3 Fill in the Name and Data Type fields and, if desired, provide a default
value.
The property can be an array. For example, if you want to declare a four-element
String array of first and last names, addresses, and phone numbers called aNames,
you would write:

in the Declaration area. You can declare an array with no elements by using empty
parentheses. You code can modify the number of elements. For example,

4 Choose a Scope for the property by clicking one of the three Scope
buttons.
Your choices, from left to right, are Public, Protected, and Private.

Figure 399. The Scope buttons.

For information about Scope, see the section, “Scope of a Class’s Methods, Proper-
ties, and Constants” on page 543.

5 (Optional) In the Code Editor area, add notes and comments about the
property.
The text entered into the Code Editor for a property is automatically non-execut-
able, even if you write valid REAL Studio code. Add any comments you wish,
including code samples. For an example, see the section “Documenting Properties”
on page 247.

Customizing
the Properties
List

You can customize the appearance and content of the Properties list for a class. You
get a Properties list for a class in the Properties pane when you add an instance of
the class to a window.

aNames(3) as String

aNames() as String
545REALbasic User’s Guide

Creating Reusable Objects with Classes
Figure 400. The Properties List for the Gridlock class.

Figure 400 shows the Properties list for a custom class, Gridlock. Gridlock is based
on the Canvas control and is selected in the Window Editor.

When you create a custom class based on a control you can also customize the
appearance of its Properties list. You can:

n Add group headings,

n Edit the existing group headings,

n Change the order of the properties, including moving them to different groups,

n Set or modify default values,

n Change whether a property is shown or hidden,

n Add enumerations.

All of these options can be set in the Property List Behavior dialog box.

To customize the Property List, do this:

1 Right+click (Control-click on Macintosh) the name of any class in the Project
Editor and choose Property List Behavior.
The Property List Editor dialog box appears. The Editor lists all the properties for
the class. They are grouped as the would be in the Properties list and their default
values are shown.
546 REALbasic User’s Guide

Creating Reusable Objects with Classes
Figure 401. The Property List Editor dialog box.

The checkmarks on the left indicate whether the property will be displayed in the
Properties list. When a property appears in the Properties list, it can be assigned a
value in the IDE rather than only with code. To display a property, select its
checkbox; to hide it, deselect it.

2 To add or edit default values for a property, click twice in the Default Value
field for that property to get an insertion point.
The current default value will be selected (if there is one), and the border of field
will be highlighted.

3 Type in the new value.

You can reorder the properties by dragging them vertically. As you drag, a bar
indicates where the property will be dropped if you release the mouse button.

Modifying
Group
Headings

You can edit the names of the group headings. Click twice on a header name to get
an insertion point. The current text will be selected. Delete or add text as needed.

You can also add a new group heading. First select the row below which you want to
add the new heading. Right+click on that row to display the contextual menu and
choose Add Heading (On Macintosh you can click the plus sign below the list of
properties). A new heading is added with the default text “Heading.” Edit the name
and press Enter (Return on Macintosh) to save the value. To move the new heading
to a different position, click on the row outside the Declaration field and then drag
it vertically and drop it onto its new location.

Using
Enumerations

In some cases, you would like the user to set the value of a property in the IDE by
choosing the value from a pop-up menu. For example, you may have an integer
property that has a limited number of acceptable values and each value has a specific
meaning. For example, the Frame property of a window is an integer that can accept
547REALbasic User’s Guide

Creating Reusable Objects with Classes
the values of 0 to 10. Each value designates the type of the window. A good inter-
face design is to present the labels for each frame type in the form of a pop-up menu
instead of forcing the user enter the integers themselves.

The BevelButton control has several integer properties like this. For example, the
CaptionAlign property accepts the following four values:

You use enumerations in the Property List behavior dialog to map the actual values
of a property to their labels. Figure 402 shows the enumerations for the
BevelButton’s CaptionAlign property.

Figure 402. The Property List Behavior dialog for the BevelButton’s CaptionAlign
property.

Note that the CaptionAlign property is highlighted in the list of properties on the
left, the Custom type of enumeration is selected in the drop-down list, and the
values and labels for this property are entered in the Enumerations list. You follow
this model when adding enumerations to properties that you create.

To add an enumeration to a property, do this:

1 Right+click (Control-click on Macintosh) on the property in the Code Editor
browser and choose Property List Behavior from the contextual menu.

2 Highlight the property to which you want to add enumerations.

Table 35. Values and labels for the CaptionAlign Property.

Value Label

0 Flush Left

1 Flush Right

2 Sys Direction

3 Center
548 REALbasic User’s Guide

Creating Reusable Objects with Classes
3 Choose Custom... from the Enumerations drop-down list.
The plus sign at the top of the Enumerations list becomes enabled.

4 Click on the plus sign to add the first value/label pair.
The Value field in the row becomes enterable.

5 Type in the first value and press Tab to select the Label field.

6 Enter the label for this value.

7 Repeat this process until you have entered all the values.

8 When you are finished with the Property List Behavior dialog, click OK to
save your work.

Adding
Computed
Properties

A computed property is actually made up of a pair of methods called Get and Set. It
does not store a value in the property; it does the calculations that you program.
This blurs the distinction between properties and methods. The Set method sets the
value of a property (writes) and Get reads a value. You can implement either or
both, making the computed property Read Only, Write Only, or Read/Write.

Computed properties are also referred to as getter and setter methods.

Computed properties can be declared as shared computed properties. See the
following section, “Adding Shared Properties” on page 552 for information on
shared properties.

To create a computed property, do this:

1 Click the Add Computed Property button in the Code Editor toolbar or
choose Project . Add . Computed Property.
REAL Studio adds an untitled property to the window and displays a Property Dec-
laration area above the Code Editor.
549REALbasic User’s Guide

Creating Reusable Objects with Classes
Figure 403. The Declaration Area for a Computed Property.

2 Enter the Name and Data Type for the computed property and set its
scope.
Notice that the browser area shows that you can expand the computed property.

3 Click the plus sign (Windows) or the disclosure triangle (Macintosh and
Linux) to reveal the Get and Set methods that belong to the computed
property.
The Get method returns a value of the declared data type. The Set method is passed
the value of the property. You do not have to implement both methods. You can
make the computed property Read Only, Write Only, or Read/Write.

4 Write either the Get or the Set method or implement both methods.
550 REALbasic User’s Guide

Creating Reusable Objects with Classes
Converting a
Property to a
Computed
Property

You can have REAL Studio convert an existing “regular” property to a computed
property. It will rename the existing property and create getter and setter methods
that return the property’s value and set its value to the passed value.

You cannot convert an array property to a computed property and you can’t create
an array computed property.o convert an existing property to a computed property,
do this:

1 In the Code Editor browser area, expand the Properties item (if needed)
and right+click (Control-click on Macintosh) on the property that you want
to convert.

2 Choose Convert to Computed Property from the contextual menu.
REAL Studio creates the getter and setter methods for the property and enters the
code for them.

Suppose the name of the property was myProperty, It renames it “mmyProperty”.
The computed property is called “myProperty” and its Get method is:

Its Set method has one parameter, value as DataType, where DataType is the
declared data type of mmyProperty. The code is:

In other words, the computed property is all set up for the original “regular”
property. It holds the value that the getter and setter methods manage.

An Example
Computed
Property

Here is a simple example of a computed property in a custom control class. It imple-
ments an annoying PushButton control that disables itself whenever the mouse
pointer enters its region and enables itself when the mouse pointer exits its region.
This makes it impossible to click, but it appears to be enabled until you try to use
it.

First, add a class to the Project Editor and set its Super class to PushButton.
Double-click it to open its Code Editor. Add a property to the class called
mDoesTheCrazies and give it a data type of Boolean. Then select it and right+click
(Control-click on Macintosh) to create a computed property.

Its getter method will be:

It gets the current value in the ‘regular’ property, mmDoesTheCrazies.

The setter method passes the current value in as the parameter, Value. It is:

Return mmyProperty

mmyProperty = value

Return mmDoesTheCrazies

mmDoesTheCrazies = Value
551REALbasic User’s Guide

Creating Reusable Objects with Classes
In the MouseEnter event for the custom PushButton class, add the code:

In the MouseExit event, enter the line:

Switch to the Window Editor for the default window and add an instance of the
custom pushbutton class to the window. To initiate the process, add the following
line to the Open event of the instance of the custom pushbutton in a window:

In other words, the “regular” property, mmDoesTheCrazies, stores the boolean value
that is set by the computed property. The Get method gets the current value of
mmDoesTheCrazies. The MouseEnter and MouseExit methods control the Enabled
property of the custom PushButton depending on the computed property.

Adding
Shared
Properties

A shared property is like a “regular” property, except it belongs to the class, not an
instance of the class. A shared property can be read or set from any instance of the
class or from the class itself.

In contrast, “regular” properties are considered instance properties. This means that
they belong to a particular instance of the class.

The key advantage of shared properties is that you can share them among all the
instances of the class. For example, if you are using an instance of a class to keep
track of items (e.g., persons, merchandise, sales transactions, and so forth) you can
use a shared property as a counter. Each time you create or destroy an instance of the
class, you can increment the value of the shared property in its constructor and
decrement it in its destructor. (For information about constructors and destructors,
see the section “Constructors and Destructors” on page 569.) When you access it, it
will give you the current number of instances of the class.

For example, consider the example in the section “Using Classes in Your Projects”
on page 577. The local variable “person” stores a reference to the instance of the
custom class “Programmer”.

Suppose the Programmer class contains a shared integer property, Total, that gets
incremented each time a Programmer instance is created. For example, give the
Programmer class a Constructor of:

If mmDoesTheCrazies then me.Enabled=False

If mmDoesTheCrazies then me.Enabled=True

me.mmDoesTheCrazies=True

Dim person as Programmer
person=New Programmer
person.name="Jason"

Programmer.Total=Programmer.Total+1
552 REALbasic User’s Guide

Creating Reusable Objects with Classes
The Destructor is:

Each time a Programmer instance is created or destroyed, the value of the Total
shared property is changed to reflect the current count. The value of Total can be
accessed from any Programmer instance or from the Programmer class itself.

To create a shared property, do this:

1 Choose Project . Add . Shared Property or, if it is available, click the Add
Shared Property button in the Code Editor toolbar.
REAL Studio displays the declaration area for a shared property. If the Shared Prop-
erties item does not already exist, it is added to the Code Editor browser area.
(The Add Shared Property button can be added to the Code Editor toolbar by choos-
ing Customize from its contextual menu.)

2 Declare the property and set its scope the normal way. If desired, set a
default value.
Figure 404 illustrates a shared property in the Code Editor.

Figure 404. A Shared property in the Code Editor.

Adding
Constants

You can add constants to classes to store fixed values that the class or the application
needs to use. A constant acts like a property but it holds a fixed value for its entire
“life.” When you create a constant, you give it its value. You can read the constant’s
value in your code, but you cannot use an assignment statement to change the value
of a constant.

Constants that you add to classes have the choices for Scope described in “Scope of a
Class’s Methods, Properties, and Constants” on page 543.

Programmer.Total=Programmer.Total-1
553REALbasic User’s Guide

Creating Reusable Objects with Classes
To add a constant to a class, do this:

1 If the Code Editor for the class is not already open, double-click the class’s
name in the Project Editor or click its tab.
The Code Editor for the class appears.

2 Click the Add Constant button or choose Project . Add . Constant.
The Add Constant declaration area appears above the Code Editor area (Figure 405).

Figure 405. The Add Constant declaration area.

3 Enter the name of the constant, its value and data type.
When you enter a value, REAL Studio guesses the data type and sets the Type drop-
down list accordingly. Any number sets the data type to Number, a string other
than “True” or “False” sets it to String, and a hex value that starts with “&c” sets it
to “Color.” Entering “True” or “False” sets the data type to Boolean.

If its guess is incorrect, set its data type by selecting a data type from the Type drop-
down list, Number, String, Boolean, or Color. The data type of the constant will be
indicated by the small icon to the left of the constant’s name in the browser area.

If you chose Color, a color patch appears to the right of the Type drop-down list
with the default color of black. Click it to display the Color Picker to choose the
color constant. When you choose a color, its value in hexadecimal is added to the
Default Value area.

If you chose string, a “Dynamic” checkbox appears to the right of the Type drop-
down list. Dynamic constants are used to facilitate localization. For more
information about Dynamic constants, see the section “Dynamic Constants” on
page 379.

4 Enter the value of the constant in the Default Value area.

5 Set the Scope of the constant by clicking one of the three Scope buttons.
Your choices, from left to right, are Public, Protected, and Private.
554 REALbasic User’s Guide

Creating Reusable Objects with Classes
Figure 406. The Scope buttons.

For information about Scope, see the section, “Scope of a Class’s Methods, Proper-
ties, and Constants” on page 543.

6 (Optional) Use the Localization table at the bottom of the dialog to define
different values for the constant for different platforms and language
combinations.
See the section “Using Constants to Localize your Application” on page 378 for
details on the Localization table.

When you are finished, the browser area of the Code Editor shows the new
constant’s name and value, with an icon that indicates its data type.

Adding
Methods

You can add methods to classes to provide functionality that the class previously
didn’t have. For example, in the Gridlock example, the DefineGrid method draws a
row by column grid based on the number of rows and columns that is passed to it.
The number of rows and columns are the parameters that are passed to the method
when it is called. The parameters contain values that the method needs to do its job.

A method may also return a value. If it does, you must declare the data type of the
return value when you declare the method.

For detailed information about the options available when you create methods, see
the section, “Adding Methods to Windows” on page 329.

To add a method to a class, do this:

1 If the class’s Code Editor is not already open, double-click on it in the
Project Editor to open it or click on its tab.
The Code Editor for the class appears.

2 Click the Add Method button or choose Project . Add . Method.
The Method declaration area appears above the Code Editor area.
555REALbasic User’s Guide

Creating Reusable Objects with Classes
Figure 407. The Method declaration area.

3 Enter a name for the method.

4 Enter the parameters if any, separating multiple parameters with commas,
as shown in Figure 408.
A method does not need to have parameters.

Figure 408. A completed Method Declaration.
556 REALbasic User’s Guide

Creating Reusable Objects with Classes
If a parameter’s data type is a class that was created in a module, you need to use the
syntax ModuleName.ClassName to refer to the class. For more information on module
classes, see the section “Adding Classes to Modules” on page 384.

There are several advanced features available when you declare the parameters of the
method. For more information, see the sections “Passing a Parameter by Value or
Reference” on page 336, “Setting Default Values for a Parameter” on page 338,
“Setter Methods” on page 340, and “Constructors and Destructors” on page 341.

5 (Optional) If the method will be a function, enter the data type of the value
to be returned.
If the value to be returned by the function is an array, place empty parentheses after
the data type of the array. For example, to indicate that you will return an array of
integers, enter “Integer ()” in the Return Type field.

6 Choose a Scope for the method or function by clicking a Scope icon.
Your choices, from left to right, are Public, Protected, and Private.

Figure 409. The Scope buttons.

For more information on Scope, see the section “Scope of a Class’s Methods, Proper-
ties, and Constants” on page 543.

When you are finished, the new method is listed in the browser area in the Methods
group. If the Scope of the method is Protected or Private a badge appears in the
browser and the word “Protected” or “Private” is added to the Sub or Function
statement in the declaration area.

Adding
Shared
Methods

Just as properties can be declared as either instance or shared properties, a method
can be declared as either an instance method or a shared method. As is the case for
shared properties, a shared method belongs to the class, not an instance of the class.
A shared method can be called without instantiating an instance of the class and is
also accessible from all instances of the class.

The Self keyword is not available in a shared method or shared computed property
and you cannot access instance methods or instance properties inside a shared
method unless you are doing so via an instance.

To create a shared method, do this:

1 Choose Project . Add . Shared Method or, if it is available, click the Add
Shared Method button in the class’s Code Editor toolbar.
(The Add Shared Method button can be added to the Code Editor toolbar by choos-
ing Customize from its contextual menu.)
REAL Studio displays the declaration area for the shared method. If the Shared
Method category does not already exist, it is added to the Code Editor browser area.

2 Declare the shared method and set its scope the normal way.
557REALbasic User’s Guide

Creating Reusable Objects with Classes
3 Write the shared method in the Code Editor.

Here is an example that illustrates the difference between instance and shared
methods. Create a class, myClass, in the Project Window and create the following
simple method of myClass:

If you create WelcomeMe as an instance method, you can only call it from an
instance of myClass, e.g.

If you create WelcomeMe as a shared method, you can call WelcomeMe with the
line:

Figure 404 illustrates a this shared method in the Code Editor.

Figure 410. A Shared method in the Code Editor.

Adding Event
Definitions

When you add code to an event handler of a class, you cannot, by default, add more
code to that event handler for an instance of the class. Consider this example. You
create a class based on the ListBox class and you put some code in its Open event
handler. Any instances of that class that appear in a window will not have their own
Open event handler. The assumption is that since the event handler of the class has
code for the Open event, it is handling that event.

Sub WelcomeMe(a As String)
MsgBox a

Dim greetMe as myClass
greetMe = New myClass
greetMe.WelcomeMe "Hello World"

myClass.WelcomeMe "Hello World"
558 REALbasic User’s Guide

Creating Reusable Objects with Classes
There may be times, however, when you want the class to have code in an event
handler but you also want to be able to put code in that event handler for an
instance of the class. You want the code in the class instance to override the class’s
event handler.

An example of this is when you set up default values. In the Open event handler,
you might set the default values of the class. For example, in a class that displays the
names of the months in a ListBox, you might want to select the current month
name by default. However, when you use this class in a window, you might want to
be able to override the default action and choose a different month instead. The
instance of the month’s ListBox won’t have an Open event handler because its class
is handling the Open event.

Adding new event definitions solves this problem. You add a new Open event
definition to the class and then call it from the class’s Open event handler, as if it
were a method. New event definitions are available only to the instances of the class.
When you add a new Open event definition to the class, you are adding that event
to any instance of the class. When will this new Open event occur? Since you are
calling it in the class’s Open event handler, it will occur when the window opens —
just like a regular Open event handler.

Here is a simple example. In the ListBox example that displays the Months
(Figure 392 on page 536), modify the Open event handler of the Months class to
this:

An instance of this class will have an event handler for all event definitions that have
been added to the class. In this case, it will have an Open event. This Open event
can set the highlighted month — or anything else, for that matter. The main point
is that each instance of this class can do something different after the ListBox has

Me.HasHeading=True
Me.InitialValue="Months"

Me.AddRow "January"
Me.AddRow "February"
Me.Addrow "March"
Me.Addrow "April"
Me.Addrow "May"
Me.Addrow "June"
Me.Addrow "July"
Me.Addrow "August"
Me.Addrow "September"
Me.Addrow "October"
Me.Addrow "November"
Me.Addrow "December"

//call the event handler for the instance..
open
559REALbasic User’s Guide

Creating Reusable Objects with Classes
been populated with the list of months. You can see how this works by placing a
breakpoint in the code at the point where the Open event handler of the instance is
called and stepping into the code (For more information on breakpoints, see the
section “The Debugger” on page 636).

Let’s look at another example in which you would want to add new events. Suppose
you are creating a custom class that will display a grid. The grid allows the user to
click on individual cells to turn them on and off. You might want to add an event
that occurs when the user clicks on a cell in the grid. Let’s call this event
“CellClicked.” You also want the event to be passed the row and column numbers
where the click occurred. In any particular instance of the class, you could then use
the CellClicked event as a place to take action when the user clicks in a cell.

So how do you go about adding the CellClicked event? First, add a new Event Definition
called CellClicked to the class. You want to pass the row and column numbers to this
event, so include them as parameters for the event. Figure 411 shows what the New
Event declaration area might look like when you are adding the CellClicked event.

Figure 411. The Event Definition declaration area.

The next step is to determine when this event will occur. Since the user clicks the
mouse to select a cell, it makes sense that this event is triggered when he clicks the
mouse. In each instance of the GridLock class, the CellClicked event is available and
is listed in the control’s events.

For the Canvas control (the class the grid class would be based on), this means calling
this event in the MouseDown and MouseDrag event handlers of the class. To do this,
call the CellClicked event as if it were a method. You do the necessary calculations to
determine the row and column numbers and pass these to the CellClicked event.
560 REALbasic User’s Guide

Creating Reusable Objects with Classes
When the user clicks on a cell, the MouseDown event handler of the class is exe-
cuted. Since CellClicked would be called in this event, this causes the CellClicked
event to be called and passed the row and column numbers. This causes the Cell-
Clicked event to occur for the instance of the class the user clicked on in the win-
dow. The class is basically calling a subroutine of the instance of the class. And,
because the CellClicked event could be designed to return a value, the instance of
the class can return data back to the super class. This could be beneficial in this par-
ticular example if you wanted to filter the click. You could code the class to only
continue with handling the click should the CellClicked event return False (use
False since this is the default value returned by a function). This would allow any
instance of the class to determine which cells are valid for clicking and which cells
are not.

In the GridLock project, CellClicked is set up to prohibit clicking in cell 1,1. This
is done in the event handler for the instance of the GridLock class in a window:

When CellClicked is called in the MouseDown event of the GridLock class, it
changes the color of the cell only if CellClicked returns False. See the “Gridlock”
project in the Graphics folder in your Examples folder for an example of this kind of
event definition. CellClicked is called as a method in the TrackClick method in the
Gridlock class.

The REAL Studio language also has a command that you can use to unambiguously
call an event when the event has the same name as a method. Use the keyword
“RaiseEvent”, followed by the name of the event and any parameters it requires.

Adding
Structures

A Structure is a compound value type. It consists of a series of fields that are grouped
together as a single block. You can control the size and order of the fields so you can
declare a structure in REAL Studio to match a structure defined by an external
library or as part of a binary file format or communications protocol. A structure can
provide a convenient alternative to the MemoryBlock.

You might also use a Structure when porting a Visual Basic application to REAL
Studio; it is very similar in concept and syntax to Visual Basic’s “User-Defined
Type” feature, also known as a “UDT”. In Visual Basic .NET this is called a
structure.

A Structure is a data type, like an integer or a color. It is not a reference type like an
object or an array. When you assign an object value to an object variable, you copy a
reference to the object data; when you assign a structure value to a structure
variable, you copy the entire contents of the structure. When you pass a structure as
a parameter ByVal, the whole contents of the structure is copied; when you pass a
structure ByRef, the callee ends up modifying the caller’s original structure instead.

If row=1 and column=1 then //don't allow selection
Beep
Return True
end if
561REALbasic User’s Guide

Creating Reusable Objects with Classes
The New operator does not apply to structures. When you create an array of
structures, each element is an actual value (not a reference, like it would be with an
array of objects). You can use the same dot syntax to access structure fields as you
would use to access object properties, but when you use dot syntax with a structure,
you are manipulating the structure variable itself, not a reference to data somewhere
else.

Creating a
Structure

Structures can be created in classes or in modules. A Structure in a class can be given
Public, Protected, or Private scope. A structure contains a list of fields and/or arrays.
You must declare the data type of each field or array.

Structure fields can be defined as arrays, using the usual array syntax:
fieldName(UBound) As DataType

Arrays in structure fields can’t be manipulated in the same ways as normal arrays;
they represent a fixed chunk of storage inside the structure, not a dynamic object
that can be resized and manipulated. Structure field arrays cannot be resized, cannot
be assigned, and do not support any of the array methods.

Strings also have a special syntax and behavior inside a structure:

fieldName As String * size

A string in a structure is a simple array of bytes. Unlike String variables, a string
field has a fixed size and does not store text encoding information. If a string value
contains fewer bytes than the declared size, unassigned bytes are assigned null bytes.
If you use the Len function to get the length of the field, it will return the declared
length.

Just as you convert text to a specific encoding when writing it to a file or a socket,
and assign the correct encoding to it when reading it back in, you must convert
strings to a specific encoding when you assign them to a structure and define them
to the correct encoding when reading them back out.

Structure fields can contain any of the simple value types, but cannot contain
objects. The Structure Editor in the IDE will show you the size and location of each
field, so that you can match your structure up exactly with an external data format.

To create a Structure, do this:

1 Open the Code Editor for a class and choose Project . Add . Structure.
If you have added the Add Structure button to the Code Editor toolbar, you can
click that button instead. A structure has a name and a list of fields, and can be
global or private.

2 In the structure declaration area, give the structure a name and assign its
Scope.

3 Click the plus button in the field list to create a new field, then type in the
declaration.
562 REALbasic User’s Guide

Creating Reusable Objects with Classes
The field declaration syntax is the same as for a Dim statement or a property
declaration: fieldName As DataType.

Like a property or local variable, fieldnames must be simple identifiers and must be
unique within the field.

A completed structure definition is shown in Figure 412 on page 563.

Figure 412. A Structure declaration.

Using
Structures

Once you’ve defined a structure, you can use it in almost any context in which you
would use any other data type. Use the dot syntax to access the fields. You can
define an object or module property as a structure; you can declare a method
parameter as a structure; you can even embed one structure as a field in another.
Variants, however, cannot contain structures. Store the StringValue instead.

In addition to the fields you define, structures contain three built-in items:

Name Parameters Description

Size This constant returns the total size of the
structure in bytes.

StringValue littleEndian as
Boolean

Gets the StringValue of the structure. You must
pass the desired endianness, which should
match the LittleEndian property on the
MemoryBlock on BinaryStream. StringValue
will convert the structure’s fields to or from the
appropriate endianness as necessary.

StringValue littleEndian as
Boolean

Sets the StringValue of the structure. You must
pass the desired endianness, which should
match the LittleEndian property on the
MemoryBlock on BinaryStream. StringValue
will convert the structure’s fields to or from the
appropriate endianness as necessary.
563REALbasic User’s Guide

Creating Reusable Objects with Classes
The StringValue getter and setter methods let you treat the structure as a string.
This is useful for copying structures into and out of MemoryBlocks, for reading and
writing structures to files, and for transmitting structures through sockets.

To work with the structure, you can declare a variable or property as a structure and
get and set the fields that you declared.

To work with the structure, you can declare a variable or property as a structure and
get and set the fields that you declared. For example, suppose the class “myClass”
has the structure “Employee,” you can declare an instance and assign values like
this:

Then you can get any of the values in the structure, i.e.,

Structure
Alignment

Structure alignment refers to aligning the data at a memory offset equal to some
multiple of the word size. Alignment can increase the computer’s performance.

Structures can be aligned via the Attributes system. You add the attribute
“StructureAlignment” and use one of the legal values: 1, 2, 4, 8, 16, 32, 64, and
128.

To specify a structure alignment, right+click the structure name in the class’s Code
Editor and choose Attributes... from the contextual menu. The Attributes list
appears. Add an attribute to the list and specify “SructureAlignment” in the Name
field and enter the desired value.

Adding
Enumerations

An enum or enumeration is a set of constants. It’s a group of constants that are
assigned values. You can assign a value to each constant or accept the default values.
By default, the constants are numbered consecutively, starting with zero.

When you create an enumeration, you create a new data type. Enumerations accept
only integer constants. When you want to get an enumeration, you need to cast it to
an integer data type.

An Enum can be created in a class or in a module

To create an Enum in a class, do this:

1 Open a class and choose Project . Add . Enum.
If you have added the Add Enum button to the Code Editor toolbar, you can click
that button instead. An Enum has a declaration area in which you name the Enum
and set its Scope.

Dim Employee1 as myClass.Employee
Employee1.EmpNumber=5
Employee1.EmpOffice="Tyler Hall"
Employee1.EmpPhone="555-1212"

MsgBox Employee1.EmpOffice
564 REALbasic User’s Guide

Creating Reusable Objects with Classes
Figure 413. The Enum Declaration area.

2 In the declaration area, give the Enum a name and click one of the Scope
buttons to set its scope.

3 Click the plus button in the list to enter the name of the first constant.

4 If desired, assign a value to the constant by typing an equals sign, followed
by the value.
For example, if the first constant is named “Windows” and you want its value to be
13, you’d write:

If you only enter the constant name, its value is its sequence number in the list, with
the first item being zero.

Here is an example of a finished Enum. It defines the Enum named “SecurityLevel”
and gives it four constants: Unauthorized, Minimal, Maximum, and Forced. Their
values range from 0 to 3 since no values are included in the definition.

Windows = 13
565REALbasic User’s Guide

Creating Reusable Objects with Classes
Figure 414. A global Enum defined for ‘Security Level’.

You use the dot notation to get the values of the items. For example, the expression

accesses the value of 2 because Maximum is the third constant in the Enum
definition. To return the integer 2, you need to explicitly cast the enum using the
desired integer data type. There is no implicit conversion from the enum data type
to an integer data type. For example, the following code in a window returns the
integer value 2 associated with this item.

You can also declare a variable of the data type of the enum and get its values that
way:

Adding
Delegates

A Delegate data type is an object representing a specific method. Delegates
decouple interface from implementation in a similar way to events or interfaces.
This decoupling allows you to treat a method implementation as a variable, that is
changeable based on run-time conditions. They represent methods that are callable
without knowledge of the target object. You can change the function the delegate
points to on the fly.

In effect, a delegate is a class with a single method, named “Invoke,” whose
parameters and return value match the delegate’s parameters and return type. The

myClass.SecurityLevel.Maximum

Dim i as Integer
i=Int32(myClass.SecurityLevel.Maximum)

Dim MaxSec as myClass.SecurityLevel
Dim i as integer
MaxSec=myClass.SecurityLevel.Maximum
i=int32(MaxSec)
566 REALbasic User’s Guide

Creating Reusable Objects with Classes
Invoke method calls the method the delegate instance represents. While delegates
are objects, you cannot create a subclass of a delegate type.

Delegates can be created in classes and modules. You use the
Project . Add . Delegate menu command or the optional Add Delegate button in
the class’s Code Editor toolbar to create a Delegate.

To create a class delegate, do this:

1 Open the class to which you want to add the delegate.
Its Code Editor appears.

2 Choose Project . Add . Delegate.
REAL Studio adds a Delegates folder in the class’s browser area and creates a new,
untitled delegate.

Figure 415. A new delegate.

3 Declare the delegate by specifying its parameters and, optionally, its return
type.
This declaration creates a new object type: in effect, a class with a single method,
named “Invoke.” Its parameters and return value match the delegate’s parameters
and return type. The Invoke method calls the method the delegate instance repre-
sents. Although delegates are objects, you cannot create a subclass of a delegate
type.

Delegate values come from the AddressOf operator. The AddressOf operator returns
a delegate representing the target method. Invoking the delegate invokes the
method on the same object instance the delegate originally came from.

Delegate types are considered to be compatible if their parameter lists and return
types match. Casting, assignment, and the IsA operator work by comparing the
delegate type signatures, not by comparing actual types as with classes.

The delegate type has an implicit conversion to Ptr, so you can continue to use the
AddressOf function to obtain function pointers for use as external callbacks. In
567REALbasic User’s Guide

Creating Reusable Objects with Classes
addition, you can create a new instance of a delegate using the New operator; its
constructor expects a Ptr to an external function which the delegate will represent.

Virtual Methods
Virtual methods provide a way for a subclass to have its own version of a method
that its super class has. Ordinarily, a subclass inherits the methods belonging to its
parent. Virtual methods also deals with the concept of a subclass having a different
version of a behavior that is defined in the super class.

When a subclass has a method that has the same name as its parent, the subclass’s
version is called unless you use the syntax:

To create a virtual method, do this:

1 Create a class.

2 Add a method to the class.

3 Create a subclass of the first class.

4 Add a method to the subclass with the same name as the method you
added in step 2.

When the subclass calls the method, it will call its own version and not its parent
class’s version.

Extending Classes
You can also add methods to existing REAL Studio classes. You do this by adding a
class extension method to a module. Once added, the new method can be called as if it
were built into REAL Studio. Class extension methods are added only to modules,
but they are called from classes.

To define a method as a class extension method, use the “Extends” keyword prior to
the first parameter in the parameter declaration. The data type of the first parameter
is the object type from which the method will be called. In other words, the use of
the “Extends” keyword indicates that the parameter is to be used on the left side of
the dot (“.”) operator in a calling statement. When you use the Extends keyword, you
do not have to pass an object of that type to the method. You can add “normal”
parameters to the parameter declaration that follow the Extends parameter.

Writing a
Class
Extension
Method

For example, you can add a method that can be called from a TextArea object.
Suppose you want a method that saves the text in a TextArea to a text file. You
name it “SaveText”. Create a module in the project if it doesn’t already have one and
add the SaveText method to the module.

parentclassname.methodname
568 REALbasic User’s Guide

Creating Reusable Objects with Classes
Since the SaveText method doesn’t take any “normal” parameters, the parameter
declaration uses only the parameter that takes the Extends keyword. This is shown
in Figure 416.

Figure 416. Declaring a class extension method of the TextField class.

The Parameters area shows the declaration:

The Extends keyword indicates that the method can be called from any TextField
object that is in the project. Note also that the Scope for the class extension method
is Global.

Calling a Class
Extension
Method

You can call this method from anywhere in the project. You can simply use the line:

This assumes that there’s a TextField in the window named TextField1.

To use the class extension method in another project, all you need to do is copy the
module that contains the definition of the class extension method to the other
project.

Constructors and Destructors
When you create a new object, you will sometimes want to perform some sort of ini-
tialization on the object. The constructor is a mechanism for doing this. An object’s

Extends e As TextField

TextField1.SaveText
569REALbasic User’s Guide

Creating Reusable Objects with Classes
constructor is the method that will be executed automatically when an instance of
the class is created.

Constructors You add a constructor to a class by adding a method to the class called
“Constructor”. It will be called automatically when an instance is created via the
New operator. If your constructor accepts parameters, you must pass the required
number of parameters and they must be of the correct data type.

Whenever you create a constructor for a subclass, REAL Studio automatically adds a
call to the super class’s constructor for you in the Code Editor and adds comments
that explains what it is doing. This is shown in the example in Figure 417 on
page 570. This is because the constructor that you are writing overrides its Super
class’s constructor, but the new object may not be initialized correctly unless its
Super class’s constructor executes. This is how you call a method of a Super class
that is being overridden by a method of the subclass.

Here is a simple example of a constructor. Suppose you are managing a service that
sells monthly subscriptions. You want a custom version of the Date class the
automatically takes the value of the expiration date when an instance is instantiated.

First, add a new class to the project and set its Super class to Date and rename it
“ExpDate”. Double-click it to open its Code Editor and create a new method called
Constructor. The constructor takes one integer parameter, NumMonths, the
number of months the customer has signed up for. The constructor has only one line
of code:

Figure 417. The constructor for the expiration date class.

self.Month=self.month+NumMonths
570 REALbasic User’s Guide

Creating Reusable Objects with Classes
When an instance of a ‘regular’ Date object is created, it is initialized to the current
date, so this line increments the current month number by the number of months
that is passed in as a parameter.

When you need to get the expiration date for a customer who signs up for 6 months,
you can get it like this:

The number months is passed in as a parameter and the new instance holds the
expiration date instead of the current date.

Old Syntax In early versions of REAL Studio, you could also create a constructor by using the
name of the class as the name of the constructor (instead of “Constructor”). If you
open an old project that contains such a constructor, REAL Studio lets you rename
the old-style constructor just before it displays the IDE window. If the old project
has such an item, you will see a dialog box such as this.

Figure 418. A Rename old-style Constructor dialog box.

Highlight each old-style constructor and click Resolve. REAL Studio will rename
the item using the supported syntax.

Initializing an
instance of a
control class

If you need to initialize an instance of a control class, don’t use a constructor.
Instead, put the code that does the initialization in the Open event of the control.
The section “Examples of Subclasses” on page 533 has an example in which a
custom ListBox is initialized to display the months of the year and select the current
month. This is the functionality of a constructor, but the code instead goes in the
control’s Open event.

Destructors You can also create a destructor. The destructor is called automatically when an
instance of the parent class is deleted or goes out of scope — for example, when the

Dim ex as New ExpDate(6)
TextField1.text=ex.ShortDate
571REALbasic User’s Guide

Creating Reusable Objects with Classes
user closes the window. Name the new method “Destructor”. Destructors take no
parameters and do not return a value.

Destructors are called when the last reference to an object is removed, even if
execution is in a destructor for another object. Note that this means you can cause a
stack overflow if your destructor triggers other destructors in a deep recursion.
However, such overflow will not happen as long as properties of the object are being
cleaned up automatically. So, it is generally preferable to not set properties to Nil in
your destructor, but instead let REAL Studio clean them up for you.

Overloading
REAL Studio supports what is known as overloading of methods. A language that
supports overloading allows you to have two or more methods with the same name
but have a different number of parameters or parameters with different data types.
When that method name is called, REAL Studio will figure out which method you
‘mean’ to call from its parameters.

A good example of a built-in overloaded function is the ‘+’ operator. If its
arguments are numbers, it computes the sum; if the arguments are strings, it
concatenates the strings.

Overloading
Custom
Classes

Using the language, you can overload these operators so that you can perform
arithmetic and comparison operations on your custom classes. For example, if you
want to add two objects that store lists, you need to write a function that defines the
“+” operator for that custom class. Your function overloads the built-in “+”
operator. REAL Studio has a set of built in keywords that you use for this purpose.

The Operator_keyword represents a set of reserved words that enable you to
implement the standard arithmetic and comparison operators in your custom
classes. The supported operators and keywords are shown below:

Operator Keyword

+ Operator_Add
Operator_AddRight

- Operator_Subtract
Operator_SubtractRight

* Operator_Multiply
Operator_MultiplyRight

/ Operator_Divide
Operator_DivideRight

\ Operator_IntegerDivide
Operator_IntegerDivideRight

Mod Operator_Modulo
Operator_ModuloRight

And Operator_And
Operator_AndRight
572 REALbasic User’s Guide

Creating Reusable Objects with Classes
For example, to add the ability to add two instances of a custom class, you define a
function called “Operator_Add” as a method in the custom class. This function
defines the addition process for that class. After it is defined, you can simply use the
+ operator to add two instances of that class. The + operator will automatically call
your custom Operator_Add method

For detailed information about operator overloading for custom classes, see the
section on each Operator_ keyword in the Language Reference.

Assigning a
Value to a
Method

When you call one of your methods, you can optionally assign a value to it using the
syntax that you normally use to assign a value to a property. That is, you can write:

When you do so, the value becomes the value of the last parameter that the method
expects. It must be of the same data type as that parameter. If the method expects
more than one parameter, you must pass values of all but the last parameter in the
normal way. When you want to use this syntax, you must use the “Assigns”
keyword when you declare the method. Here is an example.

Not Operator_Not

Or Operator_Or
Operator_OrRight

=, <, >, <=, >= Operator_Compare

(lookup) Operator_Lookup

(negation) Operator_Negate

(convert) Operator_Convert

Operator Keyword

objectname.methodname = value
573REALbasic User’s Guide

Creating Reusable Objects with Classes
Suppose you create a custom class based on ListBox called CustomListBox. You can
add a method to this class that adds a row to the ListBox based on the number passed
to it. The variable, a, is declared as an Integer parameter, as shown in Figure 419.

When you declare the method, use the “Assigns” keyword in the following way.

Select case a
 case 1
 addrow "January"
 case 2
 addrow "February"
 case 3
 addrow "March"
 case 4
 addrow "April"
 case 5
 addrow "May"
 case 6
 addrow "June"
 case 7
 addrow "July"
 case 8
 addrow "August"
 case 9
 addrow "September"
 case 10
 addrow "October"
 case 11
 addrow "November"
 case 12
 addrow "December"
End Select
574 REALbasic User’s Guide

Creating Reusable Objects with Classes
Figure 419. Using the “Assigns” keyword in a method declaration.

When you use the Assigns keyword, you pass the integer value to the AddMonth
method using the Assignment operator:

If the method takes more than one parameter, the value you assign is used as the
value of the last parameter. Include all the parameters in the call except the last one.

For example, suppose you write another method of the CustomListBox class called
“ChangeCell” that takes row and value as parameters. Row is the cell in the ListBox
you want to change and value is the new value.

If you want to change the value of the third element in the ListBox to “New York”,
the “normal” way to call ChangeCell is:

If you use the “Assigns” keyword, you can also call it using row as the parameter and
assign the new value using an equals sign:

Using Arrays of Classes
As is the case with any object, you can create an array of instances of a class. For
example, you can create an array of controls as part of your interface to make it easy
to manage the controls. You simply give the controls the same name and

CustomListBox.AddMonth = 2

Sub ChangeCell(row as Integer, Assigns value as String)
Cell(row,0)=value

CustomListBox.ChangeCell(2,"New York")

CustomListBox.ChangeCell(2) = "New York"
575REALbasic User’s Guide

Creating Reusable Objects with Classes
distinguish among them using its Index property. Control arrays are described in
the section “Sharing Code Among An Array of Controls” on page 348.

You can also create an array of instances of non-control classes. When you do so, you
can take advantage of the object hierarchy or class interfaces. If myClass1 is
subclassed from mySuperClass1 or a class interface implemented by myClass1, then
an array of myClass1 can be used whenever an array of mySuperClass1 is expected.
The array maintains its original element type and each insert, append, and
assignment statement to an array element is checked to make sure that the new
value matches the element type. If the type does not match, a
TypeMismatchException occurs. You can manage it via a Catch statement in a Try
block or in an Exception block.

Casting
An extremely powerful way of creating generic, reusable code is to take advantage of
the object hierarchy. using casting. The idea is best illustrated by an example.

Since the objects you create are subclasses of base classes in the REAL Studio
language, you can always test to see whether an object is a member of a specific
subclass. The IsA operator in the language does this.

With the IsA operator, you test whether an object is of a specific subclass and, if it
is, cast it as that type to do something specific with it. You cast an object by using
the classname as a function that operates on the instance.

When you cast an instance, REAL Studio does not do error-checking for you to
guarantee that you are casting to a legal object type. The instance that you are
casting has to be of the type that you specify. Casting just tells REAL Studio to treat
the object as a instance of the class to which it is cast. It doesn’t convert it from one
class to another.

Here is an example that uses a For loop to cycle through all the controls in a window
to test whether each control is a TextField. If it is, it casts the control, gets its name
and the values of its Text and DataField properties, and assigns the contents of the
TextField to the field in a database table named fieldname.

Dim r as DatabaseRecord
Dim fieldname, fieldContents as String
.
.
For i = 0 to Self.ControlCount-1 //number of controls in window

If Self.control(i) IsA TextField then
fieldname = TexField(control(i)).DataField //cast it
//the text property assigned to the contents of that field
fieldContents =TextField(control(i)).text //cast the control as a TextField

r.column(fieldname)= fieldContents
End if

Next
576 REALbasic User’s Guide

Creating Reusable Objects with Classes
As you can see, the code does not refer to any specific windows, TextFields, or even
databases. Therefore, you can write this routine once and use it in any window in
any project that includes a database.

Managing Menus within Classes
Classes that can receive the focus can control the menus when they have the focus.
This makes it even easier to encapsulate code within a control. Classes that you cre-
ate based on classes that can have the focus will have an EnableMenuItems event
handler and can have menu handlers for any of the menu items in your project.

When an instance of a class has the focus and the user clicks in the menubar (or presses
a keyboard shortcut for a menu item), the class’s EnableMenuItems event handler is
executed. This gives the class the opportunity to enable or disable any menu items.
The window’s EnableMenuItems event handler will be executed next, followed by the
application class’s EnableMenuItems event handler. If a menu item is then selected,
REAL Studio first checks the class to see if it has a menu handler for the selected menu
item. If the menu handler exists, it is executed, followed by the window’s menu
handler (if it has one for the selected menu item), followed by the application’s menu
handler (if it has one for the selected menu item).

The SecureTextArea class mentioned in the section “Examples of Subclasses” on
page 533 is an example of a class controlling menu items. When the SecureTextArea
has the focus and the user clicks in the menu bar, the SecureTextArea’s
EnableMenuItems event handler sets the Enabled property of the Cut and Copy menu
items to False, disabling them. These menu items would normally be enabled
automatically by REAL Studio.

Another example of a class that manages menus is a class based on the ListBox that
allows the user to use the Cut and Copy menu items to move menus between
ListBoxes. See the ClipListBox project in the ListBox folder in your Examples folder
for an example.

Using Classes in Your Projects
Before you can use a class in your project, you must first understand a few concepts
and terms. The use of a class in a project involves three items: the class, the instance,
and the reference.

The Class The class is a template set of events, methods, and properties from which you create
subclasses and instances.

The Instance An instance is a place in memory that stores a copy of the properties of the class.
Methods are not stored in memory with each instance. Instead, they are loaded from
the class into memory when they are called.
577REALbasic User’s Guide

Creating Reusable Objects with Classes
The Reference The reference is a value stored in a property or local variable that keeps track of
where the instance is in memory. You use the property or local variable holding the
reference to access the instance of the class. In the following example, “person” is a
local variable storing a reference to the instance of the custom class “Programmer.”
The reference is then used to access the value in the name property of the instance
created using the New operator.

You will learn more about using the New operator later in this chapter.

How you use a class in your project depends on whether the class is based on a
control.

Subclasses
Based on
Controls

The easiest way to add a class based on a control to a project is to drag the control
from the Controls list to a Window Editor.

A new class, called ControlNameX, where X is a sequential number, will be added to
the window and the Properties pane will show that it is subclassed from the
control’s class. Use the Properties pane to rename the new class.

You can also create a subclass of a control class by clicking the Add Class button
from the Project Editor or by choosing Project . Add . Class to add a new class to
the project and then use the Properties pane to set the Super Class of the new class to
a control class.

Since you’ve subclassed the class from a control, you can then add new properties
and methods to the class — to create your own custom control — and then add an
instance of the custom control to a window. See the section “Creating Custom
Interface Controls with Classes” on page 583 for an example.

To add an instance of a class based on a control to a window, use the Controls drop-
down list in the Window Editor to choose Project Controls and then drag the class
from the Controls list to the window in which you want the new instance—just as if
you were to create an instance of a built-in control by dragging its icon from the
Controls list.

Classes Based
on Classes
Other Than
Controls

Classes don’t have to be based on controls. You can also create classes based on classes
that are not based on the Control class. For example, the Thread class is not based on
the Control class. You might need to create a subclass of the Thread class and add
properties to it to store information used or created by the thread. You might even
need to create classes that have no super class. For example, you could create a class
called “People” that had properties like Name, Age, and Height to store information
about people. You could then create a subclass of people called “ComputerUsers”
which would add additional properties that define a computer user.

Dim person as Programmer
person=New Programmer
person.name="Jason"
578 REALbasic User’s Guide

Creating Reusable Objects with Classes
To create an instance of a class based on a class other than one of the control classes,
you must first have a place to store the instance. You can store the instance in a
property or a local variable. The property or local variable must be of the same type
as the class or one of the class’s super classes. For example, if you need an instance of
the Date class to store an individual’s birth date, you create a variable of type Date
to store a reference to the instance.

You use the Dim statement to create the variable—just as you would create a
variable that stores a REAL Studio data type. Use the New operator to create a new
instance of the class in memory and then assign a reference to the new instance to
the property or local variable you have typed.

In this example, the local variable “birthDate” is typed as class Date. The New
operator is then used to create a new instance of Date and assign a reference to this
variable.

You can use a simpler syntax. You can place the New operator in the Dim statement
as a modifier. When you do so, the statement creates the local variable and the
reference in one step:

Accessing the
Properties
and Methods
of a Class

Once you have created an instance of a class and stored a reference to it in a local
variable or property, you can access its properties and methods the same way you
access any object’s properties and methods. For example, in the code below, the local
variable birthDate now has access to the properties of the Date class. You can use
them to assign values to properties.

In this simple example, the instance is based on one of REAL Studio’s built-in
classes. If it was based on one of your own custom classes, which in turn was based
on a built-in class, the instance would have access to the properties and methods of
both its own super class and the built-in class that its super class was based on.

Dim birthDate as Date
birthDate=New Date

Dim birthDate As New Date

Dim birthDate as New Date
birthDate.Year=1967
birthDate.Month=3
birthDate.Day=21
579REALbasic User’s Guide

Creating Reusable Objects with Classes
When are
Instances of
Classes
Removed
From
Memory?

REAL Studio manages memory for you automatically using something called
reference counting. REAL Studio maintains a counter for each instance that you create
and records references to the object. Each reference increments the counter and
removing a reference to the object decrements the counter. You remove a reference,
for example, by setting it to Nil or by closing the window in which the instance is
located. When the reference counter reaches zero, the object is removed from
memory immediately.

This means that instances of classes are removed from memory automatically when
they are no longer used. Suppose you create a class based on a ListBox. You then
create an instance of that class in a window. When the window is opened, the
instance of the class is created in memory automatically. When the window is
closed, the instance of the class is automatically removed from memory. If you store
the reference to a class in a local variable, when the method or event handler is
finished executing, the instance of the class is removed from memory. If you store a
reference to an instance of a class in a property, the instance will be removed from
memory when the object owning the property is removed from memory.

The Application Class
The Application class is used to create a subclass that represents your application
rather than a window or a control. When you create a new project, a subclass based
on the Application class is added to your project automatically. This is the “App”
class that is listed in the Project Editor. Its Properties pane shows that it is derived
from the Application class and the default menubar is assigned to the application as
a whole.

If you wish, you can create more than one subclass based on the Application class.
However, there is only one such subclass that plays the role of the “blessed” App
class. Also, only one class in a project can be named “App”. The “blessed” App class
is the one that has the built application’s properties in the Properties pane of the
Project editor. Only one such class can exist in a project.
580 REALbasic User’s Guide

Creating Reusable Objects with Classes
Figure 420. The default App class.

Special Event
Handlers

The Application class has special event handlers. They are:

n Open: Executes when the you run the application by clicking the Run button in the
Toolbar or by choosing Project . Run (Ctrl+R or x-R) or when launching a
standalone version of your application.

n Close: Executes when you quit your application either from the Debugging
environment or in a stand-alone application.

n NewDocument: Executes when the stand-alone version of the application is
launched without double-clicking one of the application’s documents.

n OpenDocument: Executes when one of the application’s documents is double-
clicked from the desktop.

n EnableMenuItems: Executes when the user clicks in the menu bar but before any
menu items are displayed. The EnableMenuItems event handler executes after the
EnableMenuItems event handler of any classes with instances in the frontmost
window and after the window’s EnableMenuItems event handler. This is the event
581REALbasic User’s Guide

Creating Reusable Objects with Classes
handler that should be used to enable menu items that should be enabled regardless
of whether there is a window open or not (This possibility exists on Macintosh
applications). Note that if a menu item should always be enabled, you should use its
AutoEnable property instead of an EnableMenuItems event handler.

n HandleAppleEvent: Executes when an AppleEvent is received by the application.

n Activate: The application is being activated. This occurs when the application is
opening and when it is being brought to the front.

n Deactivate: The application is being deactivated. This occurs when another
application or a desktop window is being brought to the front or when the
application quits.

n Unhandled Exception: Executes when a runtime error occurs that is not handled
by an Exception Block. This event gives you a “last chance” to catch runtime errors
before they cause your application to quit. For more information on runtime errors,
see the section “Runtime Exception Errors” on page 652.

Scope of the
App Class’s
Properties

When you add properties, methods, and constants to the App class, you declare the
Scope of the new item. Your choices are Public, Protected, or Private. For descrip-
tions of these choices, see the section “Scope of a Class’s Methods, Properties, and
Constants” on page 543.

Public properties of the Application class are accessible to all code in your project.
That is, if you want to access the property anywhere in your application, set its
Scope to Public when you declare the property.

Use the App function to access the App class’s Public properties outside the App
class. For example, to access the a property called “Separator” outside the App class,
use the syntax:

To access an App class property in the Properties pane of a window or class outside
the App class, precede the reference by the number sign, “#”. In this example, you
would enter “#App.Separator” to access this property in the Properties pane.

If you set a property’s Scope to Protected or Private, it can be used only within the
App class.

Scope of the
App Class’s
Methods

Public methods of the Application class are accessible to all code in your project. If
you want to access a method outside of the App class’s own methods and event han-
dlers, be sure to set its Scope to Public. For example, if you add a method to the App
class called “Foo”, set its Scope as shown in Figure 421.

App.Separator
582 REALbasic User’s Guide

Creating Reusable Objects with Classes
Figure 421. Creating a Public method of the App class.

If you set a method’s Scope to Protected, then you can call it only within the App
class’s own methods and event handlers. Since this method is public, you can call it
the App class with the line:

Creating Custom Interface Controls with Classes
One of the most important uses of classes is for creating custom interface controls.
While REAL Studio provides most of the interface controls you will need in your
project, you may find you need to create interface controls that are not built-in to
REAL Studio. Suppose you need to create a control that displays a grid of cells. You
want the user to be able to click on the cells in the grid to select them. Figure 422
shows an example of what such a grid control might look like.

Figure 422. The custom grid control in the GridLock project.

Custom interface controls are created by creating a subclass based on the Canvas
control. The Canvas control gives you an area in which you can draw your control

App.Foo
583REALbasic User’s Guide

Creating Reusable Objects with Classes
and it receives events allowing you to interact with the user. For example, in the
grid control example in Figure 422, the object is an instance of the Gridlock class,
which was derived from the Canvas class (See Figure 394 on page 540). This is the
Gridlock class example that you can find in the Graphics folder in the REAL Studio
Examples folder. The Gridlock class inherits all the properties and events of the
Canvas control and has special methods, properties, and events that enable it to
present and operate this interface.

The Paint event handler of the Gridlock control is used to draw the grid. The Grid-
lock class has properties that store the number of rows and columns the programmer
wants for a particular instance of the Gridlock. There are also properties that store
the selected cell color and the unselected cell color.

When the user clicks in the grid area, the MouseDown event handler for the
Gridlock class executes. The code for this event handler determines which cell was
clicked and then determines if the cell should now be selected or unselected. A new
event called CellClicked has been added to the Gridlock class that is called by the
instance of the class when the user clicks on a cell. The purpose of this event is to
allow an instance of a Gridlock class to react to a cell click. The CellClicked event
handler is passed the row and column numbers of the cell that was clicked. The
CellClicked event handler also acts as a function.

If an instance of the Gridlock class returns True in the CellClicked event handler,
the Gridlock class assumes the programmer wants to filter the click, so it acts as if
the user didn’t click in the cell. The line of code that calls the CellClicked event is
an If statement that tests whether it returns False before executing the code that
changes the color of the cell that was clicked.

Drawing Your
Custom
Control

The Paint event handler of a Canvas control (or a Canvas control-based subclass) is
executed any time the control needs to be redrawn. For example, if a window is
covering part of the control and it is then moved to uncover more of the control, the
Paint event handler executes to redraw the control. If the look of the control doesn’t
change at all when it’s used, you can do all of the drawing of your control in the
Paint event handler. However, if your control changes, you will need to take a
different approach. For example, the Gridlock control changes when the user clicks
on a cell. The Gridlock control also has a method that allows the number or rows
and columns in the grid to be changed on the fly. This requires the grid to be
redrawn.

In the Gridlock example, the grid needs to be redrawn at two different times. It
needs to be redrawn in the Paint event handler when something like a window
positioned over the control has uncovered a portion of the control, and when the
grid is redefined to have a different number of rows and columns. Because of this,
the code to do the actual drawing is placed in its own method. The method is called
DrawGrid and it is passed the Graphics property of the Canvas control that the
Gridlock class is based on. The DrawGrid method can then use this property to
redraw the grid. By placing this code in a separate method, the same code can be
584 REALbasic User’s Guide

Creating Reusable Objects with Classes
used by the Paint event handler and by the DefineGrid method. The Paint event
handler is passed a reference to the Graphics property of the Canvas so this reference
can be passed on to the DrawGrid method when calling it from the Paint event
handler. The DefineGrid method calls the DrawGrid method as well since the grid
is being resized and needs to be redrawn. The DrawGrid method can be passed the
graphics property in this case by using the syntax:

Me is a reference to the instance of the class in the window. So although this code is
being called from inside the Gridlock class, the use of Me allows it access to
properties of the instance in use.

Class Interfaces
A class interface is a construct that you can use to tie together classes that do not
share a super class but have something in common in your application. Class
interfaces are used to specify what an object does without specifying how it does it.

In order to understand class interfaces better, it’s helpful to think of a class as con-
sisting of two components, the (public) interface to the class and the implementa-
tion. The interface consists of the class’s Public method calls and the
implementation is the code that implements the methods. The interface says what
the class does and the implementation says how it does it.

In the object hierarchy, a subclass inherits both the interface and the implementa-
tion from its super class. That is, it gets both the method calls and the specific
implementation of the method.

Class interfaces enable you to separate the two constructs. If two or more classes
need to do the same thing but do it in different ways, you use an interface instead of
a super class.

A class interface operates as a “spec” that contains a list of methods that custom
classes in your project use. It does not actually contain any code for the methods
themselves.

The methods in the class interface are placeholders for methods that are actually
contained in each custom class that “implements” the class interface. Also, a custom
class can implement more than one class interface.

The term “implement” simply means that the class has methods of the same names
and declarations that are found in the class interface. The class interface specifies the
methods and their declarations but not the code.

Many class interfaces are built into REAL Studio. You can implement any of these
in your classes or add and implement your own. For example, the Readable and
Writeable interfaces specify methods for reading and writing data. Each class that
uses the Readable or Writeable interfaces supplies the implementations. For exam-

DrawGrid Me.Graphics
585REALbasic User’s Guide

Creating Reusable Objects with Classes
ple, a class that reads data from the Serial port would use a different implementation
than a class that reads data from a binary file.

When you specify that a class implements a class interface, the class must imple-
ment all the methods in the class interface and the method declarations must match.
However, the classes are free to implement the methods in different ways. For exam-
ple, a method that changes the font in a StaticText would be implemented in a dif-
ferent way than a method that changes the font in a Canvas control that displays
text via calls to the Graphics class.

The process involves three basic phases:

n Creating the class interface,

n Creating the classes that implement the class interface,

n Adding the classes to your project and calling the class interface methods in your
program. Typically, that means writing generic code that tests whether a class
implements a class interface and executing class interface methods where
appropriate.

To create a class interface, do this:

1 If the Project Editor is not displayed, click on its tab and then click the Add
Class Interface button or choose Project . Add . Class Interface.
A new class interface is added to the Project Editor. Its icon is hollow, indicating
that it doesn’t actually hold code. The Properties pane shows that the only property
that you can modify is its name. It has no Super Class, as it is not part of the object
hierarchy.

Figure 423. The Project Editor with a new class interface.

2 If desired, use the Properties pane to change the name of the class
interface.
586 REALbasic User’s Guide

Creating Reusable Objects with Classes
The Aggregates property enables you to specify one or more interfaces for this inter-
face to implement.

3 If desired, click the three dots and choose one or more interfaces.
The Project Editor displays the chosen interfaces.

Figure 424. A new interface that implements the existing Writeable interface.

4 Double-click the Class Interface item in the Project Editor to display the
Code Editor for the class interface.
The Code Editor for a class interface has items only for methods, shared methods,
and notes. You cannot create properties or constants for a class interface.

5 Click the Add Method button or choose Project . Add . Method to add a
method declaration to the class interface.
The Method declaration area appears above the Code Editor area.
587REALbasic User’s Guide

Creating Reusable Objects with Classes
Figure 425. The Method declaration area for a Class Interface.

6 Enter the name of the method, its parameters, and, if it will return a value,
the data type of the value being returned.
In other words, declare the method in the normal manner. The only difference is
that there is no way to specify the Scope of a method in a class interface. This is
because the code for the method does not live in the class interface at all. You use
the Method declaration only to provide the ‘spec’ for the methods that will be writ-
ten (a.k.a., “implemented”) elsewhere. The method will have several implementa-
tions, one in each class that implements the class interface.

For more information on declaring a method, see the section “Adding Methods to
Windows” on page 329.

7 Repeat steps 4 and 5 for each method or function declaration of the Class
Interface.

After you have created your class interface, you must “hook it up” to one or more
custom classes. To be non-trivial, we assume it will be two or more custom classes.
You add the code for the methods declared in the class interface in each class that
implements the class interface.

To implement a class interface, do this:

1 In the Project Editor, select the class to which you want to add the class
interface or, if it does not yet exist, click the Add Class button in the Project
Editor or choose Project . Add . Class.
Notice that the Properties pane for the class contains a field for specifying the class
interface (or interfaces) for the class.

You can specify the class interface or interfaces that the class implements by enter-
ing their names in the Interfaces field in the Properties pane or via the Project pane’s
588 REALbasic User’s Guide

Creating Reusable Objects with Classes
contextual menu. If desired, you can specify more than one class interface for the
class.

2 In the Properties pane’s Interfaces field, click on the ellipsis (the box on the
right with three dots in it) or right+click (Control-click on Macintosh) on the
name of the class in the Project Editor and choose Implement Interface.
The Implement Interface dialog box appears. It presents a list of all the currently
defined class interfaces in the application.

Figure 426. The Implement Interfaces dialog box.

3 Click the checkboxes for the class interface or interfaces you wish to add.
When you do so, the names of the class interfaces are added to the Interfaces field in
the class’s Properties pane. REAL Studio also adds an Interfaces column to the Proj-
ect Editor that shows the names of the newly added interfaces. This is shown in
Figure 430 on page 592.

When you choose a class interface, REAL Studio adds all the method declarations
for the interface to the class’s Method Editor. The class’s Method Editor then
displays the first such method, ready for you to write the method. Each method that
is generated by the Implement Interface dialog has a comment line that explains
which Class Interface the method belongs to.

4 If desired, choose the “Include #error” option.
If you select the “Include #error in the source of each method” option in the Imple-
ment Interfaces dialog, it also includes an uncommented line with the directive
“#error”. This line causes the compiler to generate a syntax error. The purpose of the
line is to remind you to implement the method. If it weren’t there and you forget to
implement the method, you would satisfy the technical requirement that the
method exists, but it would be an empty method. The resulting compiler error
would remind you to implement the method.

When you finish implementing the method, you should remove or comment out
this line.
589REALbasic User’s Guide

Creating Reusable Objects with Classes
Here is an example method that was generated by the Implement Interface dialog.

Figure 427. The Flush method of the Writeable class interface.

You can also enter the names of class interfaces directly into the Interfaces field in
the Properties pane. Click in the text area of the Interfaces field to get an insertion
point and enter the name of the interface into the Interfaces field of the Properties
pane. When you enter an interface, REAL Studio displays a dialog asking you
whether you’d like it to generate all the method declarations for the interface.

Figure 428. The Add Methods dialog.

If you click Yes, it displays the Implement Interface dialog where you can choose
the interface you entered.

If you don’t accept this choice, you must take care to implement all the methods
yourself.

When you add a class interface to a class, the Project Editor adds a third column and
it lists the class interfaces for the class’s interfaces.

Implementing
Methods

The next task is to implement the methods of the class interfaces that you added to
the class. If you used the Implement Interfaces dialog box, you have a head start on
this task because it adds the method names and declarations of each class interface to
the class automatically. If you entered the names of the class interfaces manually,
you now need to add the required methods to the class.
590 REALbasic User’s Guide

Creating Reusable Objects with Classes
To implement a method, do this:

1 If the methods are not already added, click the Add Method button or
choose Project . Add . Method.
The the Add Method pane appears.

2 Enter a method name and the declaration that was defined in the class
interface and click OK.
This time, the Code Editor supports code entry.

3 With the Code Editor, write the implementation of each class interface
method for this class.

4 Repeat steps 4 to 6 for every method declaration in each class interface
that is implemented by this class.

5 Repeat the entire process (steps 1 to 7) for each class that implements the
class interface.
For example, in Figure 430 two classes implement the class interface,
FontInterfaceManager, shown in the Project Editor. Different classes can implement
the same method in different ways.

Modifying
and Deleting
Interfaces

If you change your mind and want to delete or replace an interface, you do so via the
Interfaces field in the Project Editor.

Click in the Interfaces field to get an insertion point and then select the name of the
interface you want to modify or delete. Type to make the desired changes.

Please note that any methods that were added to the class while the interface was
implemented are not modified or deleted when you remove the interface that they
belonged to. That is, if you add an interface via the Implement Interfaces dialog, the
methods that are specified by that interface remain as part of the class even if you
delete the interface itself. You must take care of any “clean up” activities.

A Class
Interface
Example
Project

The following very simple example illustrates the basic concepts. The application
has custom classes based on the TextField and StaticText classes that implement a
class interface. The class interface has one method specification for updating a font.
The user chooses a font from the popup menu and a message is sent to all controls in
a window that implement the class interface.
591REALbasic User’s Guide

Creating Reusable Objects with Classes
The class interface, FontInterfaceManager, contains one method specification:

Figure 429. The UpdateFont method specification.

This method declaration area specifies that each class that implements this class
interface has to have a method called UpdateFont and it must take one parameter as
a string.

Two custom classes based on TextField and StaticText implement this method, as is
shown in the Project Editor:

Figure 430. The Project Editor with two classes that implement the class interface.

The implementation of the UpdateFont method happens to be the same in both
classes, but this is not a requirement of class interfaces in REAL Studio. It is simply:

Sub UpdateFont (s As String)
Self.TextFont=s
592 REALbasic User’s Guide

Creating Reusable Objects with Classes
With these objects in place, generic code can be written that determines whether a
control in a window implements the FontInterfaceManager class interface.

Suppose several instances of CustomTextFields and CustomStaticTexts are added to
a window. The following code in the Change event of a PopupMenu changes the
font displayed by all such controls based on the user’s selection. The IsA operator
tests whether a control implements the class interface. If it does, the UpdateFont
method of the class interface is called, as implemented by each custom class. The term
Me.Text contains the current selection of the PopupMenu.

As you can see, you can specify that any custom class implements a class interface,
regardless of its super class. In this way, class interfaces can group together classes
that are not related to one another via the object hierarchy and give them
functionality that can be managed in one place in your project.

Creating a
new Class
Interface from
an Existing
Class

If an existing class in your project contains methods that you want to reuse as a class
interface, you can generate the new class interface from the Project Editor.

To use an existing class as the basis of a class interface, do this:

1 Right+click (Control-click on Macintosh) on the class you want to use as the
starting point for the new class interface.
The contextual menu for the class appears.

2 Choose Extract Interface from the contextual menu.
The Extract Interface dialog box appears.

Dim i as Integer
For i=0 to Self.ControlCount //number of controls in the window
If Self.Control(i) IsA FontInterfaceManager then
FontInterfaceManager(Self.Control(i)).UpdateFont(Me.Text)
End if
Next
593REALbasic User’s Guide

Creating Reusable Objects with Classes
Figure 431. The Extract Interface dialog box.

The Extract Interface dialog lists all the methods in the current class.

3 Enter the name of the new class interface in the Interface Name field.
The name of the class you clicked on, followed by Interface is entered by default.

4 Click the checkbox for each method you want to include in the new class
interface.

5 When you are finished, click OK to save the result.
REAL Studio creates the new class interface, adds it to the project, and makes the
current class an implementor of the new interface. That is, the name of the new class
interface is now shown in the Interfaces field of the class’s Project pane.

Interface Inheritance
Although Interface Inheritance sounds complicated when described in abstract lan-
guage, it actually addresses a simple problem. If you have several controls that need
to perform the same task but in a different way (depending on the specifics of the
types of control) you can write and execute interface-specific code in an elegant way.

Figure 432 on page 595 shows an application that uses interface inheritance. The
purpose of this application is to conduct a search for a user-entered string and find
the string in the three controls located above the separator: The TextField, ListBox,
and PopupMenu are all based on custom classes. Although the task is identical (a
find operation), it cannot be done with exactly the same code for all three objects
since the three objects store and manipulate data differently. Therefore, each custom
class has its own implementations of the methods used to do the search.

The ListBox, TextField, and PopupMenu are all derived from custom classes that
use a custom interface, FindInListInterface. They all have a Find function that takes
the same parameter, but all implement it differently. The code for the Find button
can call all of their Find functions using the same syntax.
594 REALbasic User’s Guide

Creating Reusable Objects with Classes
Figure 432. An example application that uses interface inheritance.

The user enters a search string in the TextField, FindValue, to the left of the Find
button. When he clicks the Find button, the following code is executed:

The same method, FindIt, is called for each of the three controls, but each line of
code actually executes a different version of FindIt—the one that is appropriate for
that type of control. The second parameter is the name of the control; each control
inherits methods from the custom class on which it is based.

FindIt FindValue.text, listBox1
FindIt FindValue.text, popupMenu1
FindIt FindValue.text, TextField1
595REALbasic User’s Guide

Creating Reusable Objects with Classes
The TextField, PopupMenu, and ListBox are all instances of custom classes. The
custom classes have two methods, Find and SelectRow, that implement the correct
search routines for that object type. This is shown in Table 36.

The FindIt method itself uses the FindInListInterface:

The FindInListInterface class simply has two blank methods, Find and SelectRow.
It simply defines the methods and their parameters. When the FindIt method runs,
it actually executes the versions of the methods that are appropriate for the control
passed as the second parameter to FindIt.

Table 36. Find functions and SelectRow methods for different controls.

Control Find Function SelectRow Method

TextField Function Find (FindValue as
string) as Integer
dim rows, foundPos,
foundCRpos as integer
rows=-1
foundPos=instr(text,findValue+
chr(13))
do until
foundCRpos>=foundPos

foundCRpos=instr(foundCRpos
+1,text,chr(13))

rows=rows+1
loop
return rows

Sub SelectRow (Row as Integer)
dim counter, startPos, endPos as integer
do until counter=row

startPos=instr(startPos+1, text, chr(13))
if startPos <> 0 then

counter=counter+1
end if

loop
endPos=instr(startPos+1,text,chr(13))
selStart=startPos
selLength=endPos-startPos

ListBox Function Find (FindValue as
string) as Integer
dim i as integer
for i=0 to listcount-1

if list(i)=findValue then
return i

end if
next

Sub SelectRow (Row as Integer)
listindex=row

PopupMenu Function Find (FindValue as
string) as Integer
dim i as integer
for i=0 to listcount-1

if list(i)=findValue then
return i

end if
next

Sub SelectRow (Row as Integer)
listindex=row

Sub FindIt (findValue as String, source as FindInListInterface)
dim row as integer
source.selectRow source.find(findValue)
596 REALbasic User’s Guide

Creating Reusable Objects with Classes
Introspection
REAL Studio includes a facility for obtaining information about an application’s
structure at runtime. It is the Introspection system. The Introspection system is
implemented as a REAL Studio module and consists of the following classes:

The Introspection classes are Public rather than Global in scope. This means that
you need to use the dot notation to access its classes. For example, this code obtains
a TypeInfo object for the passed class instance and reports its class name.

Name Description

AttributeInfo Provides information about an item’s attributes. Attributes are
compile-time properties. They are created via the Attributes
Editor in the IDE. Each attribute consists of its identifier (a.k.a.
name) and optionally a value.

ConstructorInfo Provides information on a class’s constructors. Use the
GetParameters method to get the parameters of each
constructor, if any and the ReturnType property to get the
TypeInfo on the value returned by the constructor, if any.

MemberInfo The super class for ConstructorInfo, MethodInfo, PropertyInfo,
and TypeInfo. Contains a property that contains the datatype’s
name.

MethodInfo Provides information on the methods in the datatype. Use the
GetParameters function of this class to get information on the
parameters of each method in the class.

ParameterInfo Provides information on the parameters of methods belonging
to the class. Use the MethodInfo.GetParameters function to
obtain a ParameterInfo array to get the parameter info.

PropertyInfo Provides information on the properties of the datatype.

TypeInfo The root of the introspection system and the primary way to
access program metadata. It is an abstract class that describes
all the attributes or members a datatype might have.

Dim tcp as New TCPSocket
Dim t as Introspection.TypeInfo
t=Introspection.GetType(tcp)

MsgBox "My class name is "+t.Name
597REALbasic User’s Guide

Creating Reusable Objects with Classes
The MethodInfo and PropertyInfo classes get the methods and properties belonging
to a class. For example:

The GetMethods function returns an array of MethodInfo objects, which can be used
to get the datatype of each element.

Similarly, the ParameterInfo class is used to get information about a method’s
parameters, if any. For example,

For each element of the myMethods array, it gets the parameters for that method
and creates a ParameterInfo array for that method. The ParameterType method gets
TypeInfo for the parameter.

See the entries in the Language Reference for the Introspection module and its classes
for more information on the Introspection system.

Importing Classes From Other Projects
Since classes can be exported, they can also be imported. When a class is exported, it
appears on the desktop with a cube icon. Figure 433 shows an example of an
exported class. To import a class, just drag the class file into your Project Editor or
choose File . Import and use the open-file dialog box to choose the desired class file.

Dim d as New date
Dim myDbMethods() As Introspection.MethodInfo= _

Introspection.GetType(d).GetMethods

For i as Integer =0 to UBound(myDbMethods)
Listbox1.Addrow myDbMethods(i).Name

Next

Dim tcp as New TCPSocket

Dim myMethods() As Introspection.MethodInfo =_
Introspection.GetType(tcp).GetMethods

For i as Integer = 0 to Ubound(myMethods)
Dim myParameters() as Introspection.ParameterInfo =_

myMethods(i).GetParameters
If Ubound(myParameters) > 0 then //if a method has any parameters
For j as Integer=1 to Ubound(myParameters) //loop over the parameters
ListBox1.AddRow myMethods(i).Name
ListBox1.Cell(ListBox1.LastIndex,1)=_

myParameters(j-1).ParameterType.Name
Next
End if
Next
598 REALbasic User’s Guide

Creating Reusable Objects with Classes
This copies the class into the Project. If you wish, you can delete the class file if
don’t need to use it elsewhere. The Project is not dependent upon it.

Figure 433. An exported class file (Macintosh).

If a class you are importing is based on another class, that other class must be
present in order for the class you are importing to function. If that class is based on
one of the built-in classes (like the TextField for example), this isn’t an issue.
However, if the class is based on a class that isn’t built-in, then that other class must
be present in your Project Editor.

Exported classes can be encrypted. This means that, while you can import and use
the class, you cannot view or edit the source code for the class. If the class is
encrypted, a small key badge appears in the class’s icon in the Project Editor.

Encryption is supported only in the Professional and Studio editions of REAL
Studio. Decryption is supported in all editions of REAL Studio.

For more information, see the following section “Encrypting Your Source Code” on
page 599.

Importing
External
Project Items

If you need to use the class in more than one project, you can add it to the project as
an external project item. An external project item is stored on disk and is referenced
by each project that uses it. If a change to the item is made from one project, those
changes are made available to all the other projects that reference the external item.
Changes to the external project item are saved to disk when you save the project.

To import an item as an external project item, hold down the Alt key (Option key
on Macintosh) and the File . Import item changes to File . Import as External.
Choose the item and it will be imported as an external project item.

For more information, see the section, “External Project Items” on page 542.

Exporting Classes For Use In Other Projects
Classes can be easily exported from your Projects for use in other projects. You can
export the class by clicking on the class to select it in the Project Editor and choos-
ing File . Export Class. To export the class as an external project item, follow the
steps in the section “External Project Items” on page 542.

Encrypting
Your Source
Code

You may want to share classes with other REAL Studio users. If you wish to share a
class with other users but you don’t want to share the source code itself, you can
encrypt the class before you export it. This creates an exported class that can be
imported and used but cannot be edited. The user cannot even view the source code.
599REALbasic User’s Guide

Creating Reusable Objects with Classes
This is especially important if you plan to create sophisticated classes that you wish to
sell as third party add-ons to REAL Studio.

Encryption is supported only in the Professional and Studio editions of REAL
Studio. Decryption is supported in all editions.

To encrypt a class, do this:

1 Click on the class to be encrypted in the Project Editor and choose
Edit . Encrypt or Right+click on Windows and Linux (Control-click on
Macintosh) on the class in the Project Editor and choose Encrypt from the
contextual menu.
You can optionally add an Encrypt button to the Project Editor toolbar. If you have
done so, you can encrypt an item by selecting it and clicking the Encrypt button.
The Encrypt Class dialog box appears, as shown in Figure 434.

Figure 434. The Encrypt Class dialog box.

2 Enter and confirm a password for encryption.

Important: Don’t forget your password.

3 If you want the class to be accessible only to REAL Studio 2006r3 and
above, then check the “Use REAL Studio 2006r3 Encryption” checkbox.

An encrypted class appears in the Project Editor with a small key in the right corner
of the class icon. If it is subclassed from a control class, it has the icon of the control.
600 REALbasic User’s Guide

Creating Reusable Objects with Classes
Figure 435. A project with an encrypted class.

When a programmer tries to open an encrypted class, REAL Studio presents the
Decrypt class dialog box, shown in Figure 436.

To decrypt an encrypted class, do this:

1 Click on the module to be decrypted in the Project Editor and choose
Edit . Decrypt or Control-Click on the module in the Project Editor and
choose Decrypt from the contextual menu or choose Edit . Decrypt.
The Decrypt class dialog box appears.

Figure 436. The Decrypt Class dialog box.

2 Enter the decryption password and click Decrypt.
In a few moments, the key will disappear from the class’s icon, indicating that it has
been successfully decrypted. If you entered an incorrect password, a dialog box will
inform you of that fact.

NOTE: Since other users cannot open an encrypted class to view its source code, you will need to
provide them with a list of methods and properties if they should have access to them.
601REALbasic User’s Guide

Creating Reusable Objects with Classes
Deleting Classes From a Project
Before deleting classes from a Project, make sure you are not using the class in your
code anymore. Also be sure to check for other classes that may have this class as their
super class.

To delete a class from a Project, do this:

1 Click on the class in the Project Editor to select it.

2 Press the Delete key on the keyboard or choose Edit . Clear or Right+click
(Windows and Linux) or Control-click on Macintosh on the class and choose
Delete from the contextual menu.

If you delete a class accidently, choose Edit . Undo (Ctrl+Z or x-Z).
602 REALbasic User’s Guide

CHAPTER 11 Creating Databases
with REAL Studio

With REAL Studio, you can create database front-end applications that can be used
with a variety of database engines, including REAL Software’s own data source.

REAL Software’s own single-user database engine, REAL SQL Database, is built
into all versions of REAL Studio. REAL Software’s multi-user database engine,
REAL Server, is sold separately to REAL Studio Professional customers. It is
included with the Studio version of REAL Studio.

Database engines that are not included with REAL Studio are supported only in the
Professional and Studio versions of REAL Studio.

Contents

n REAL Studio’s database architecture,

n Structured Query Language (SQL),

n REAL Studio’s database tools,

n Creating and modifying databases from the Project Editor,

n The DatabaseQuery control,

n Using the DataControl control,

n Creating a database programmatically.
603REALbasic User’s Guide

Creating Databases with REAL Studio
REAL Studio’s Database Architecture
You can use REAL Studio to build a “front-end” to your database. It works in con-
junction with a database “back-end” that actually stores the data itself. The database
back-end can be a separate application or it can be REAL Studio’s own database
back-end, REAL SQL Database. The front-end serves as the user interface — the
means by which queries are sent to the source and information is displayed and
printed. The end user uses the front-end to view, enter, and modify records, search
for and sort records, and print reports.

The database back-end, such as REAL SQL Database, REAL Server Database,
PostgreSQL, or Oracle, actually stores the data. The database application that
actually holds the data is referred to in REAL Studio as the data source.

A great feature of this architecture is that a database front-end that you create in
REAL Studio can be adapted to work with any supported data source—or multiple
data sources. You can develop a database application with the internal REAL SQL
Database and then deploy the system after switching the data source.

A REAL Studio front-end can also use two or more data sources simultaneously. For
example, you can access data locally on REAL SQL Database while simultaneously
accessing remote data on a SQL or ODBC-compliant database.

REAL Studio uses its plug-in architecture to support multiple data sources. Plug-
ins are external files that must be placed in the Plugins folder in order to use the
data source. The exception is the REAL SQL Database, which is built into the
REAL Studio application and does not require an external plug-in.

You (or a third-party) can add support for additional data sources by writing a plug-
in for that back end. REAL Software’s plug-in SDK contains information on writing
database plug-ins.

Structured Query Language
A REAL Studio front-end uses the Structured Query Language (SQL) to communi-
cate with its data sources. The plug-in for your data source receives a SQL statement
from REAL Studio and (if necessary) translates the statement into a form that the
data source understands, and sends it to the data source.

The REAL SQL Database is based on SQLite. It uses the most recent version, which
is 3.6.6. It supports the subset of SQL described at http://www.sqlite.org. REAL
Studio simply passes your SQL to the data source. Therefore any valid SQL for that
data source will work in a REAL Studio front-end for that source. Please refer to the
documentation for your selected data source for further information on supported
SQL and specifics on the data types supported by that data source.

If you are unfamiliar with SQL, you will need to learn its basics before
implementing your REAL Studio front-end. This manual does not attempt to teach
you SQL; rather, it describes the subset of SQL that is currently supported for the
604 REALbasic User’s Guide

http://www.sqlite.org
http://www.sqlite.org
http://www.sqlite.org

Creating Databases with REAL Studio
REAL SQL Database data source. For complete information on SQLite, see their
web site at http://www.sqlite.org.

For other SQL data sources, please consult one of the many good SQL references,
such as SQL for Dummies by Allen G. Taylor (ISBN: 0-7645-0105-4), The Practical
SQL Handbook, by Bowman, Emerson, and Darnovsky (ISBN: 0-2014-4787-8).

REAL Studio’s Database Tools
A database front-end typically uses a mixture of database-specific and generic con-
trols and commands. There are two database-specific controls, the DatabaseQuery
and DataControl controls, and several classes and methods that are database-specific.
Beyond that, you will use generic controls such as StaticTexts, TextFields, Popup-
Menus, ComboBoxes, and ListBoxes to display and edit data, PushButtons and
menu items to perform actions, and TabPanel controls and other interface elements
to polish the user interface.

All REAL SQL Database tables have an Integer Primary Key column. If you don’t
explicitly define one, one will be created for you. You can refer to the Integer
Primary Key column using the “rowid” keyword. But, if you don’t explicitly define
your own Integer Primary Key column, you won’t get the “rowid” column unless
you refer to it in queries.

The REAL SQL Database supports text encodings. When you insert records into the
database, the database stores text values using the UTF-8 encoding. If it is not
already UTF-8, it will be converted. If you want to defeat this conversion, store text
data in a Blob column.

The REAL SQL Database engine supports transactions for both changes to the
database design and for changes to the data. A transaction is started automatically
when you make any change to the database and ended by a call to the SQL
commands COMMIT TRANSACTION or ROLLBACK TRANSACTION.

Selecting a
REAL Data
Source

You can select a data source using either the language or the
Project . Add .Database . New REAL SQL Database or Select REAL SQL Data-
base submenus in the IDE. Except for the REAL SQL Database, a data source will
appear in the Database submenu only if its plug-in is in the Plugins folder.

When you choose Select REAL SQL Database, a standard open-file dialog box appears.
Navigate to the directory that contains the REAL SQL Database and open it.

When you choose New REAL SQL Database, a standard save-file dialog box
appears. You can save the REAL SQL Database on any mounted volume. Name the
database file as you would any other file and click Save.

When you choose an existing data source or add a new REAL SQL Database, it
appears in the Project Editor as shown in Figure 437.
605REALbasic User’s Guide

http://www.sqlite.org

Creating Databases with REAL Studio
Figure 437. A database in the Project Editor.

To remove a data source from the Project Editor, highlight the data source and press
the Delete key on the keyboard or choose Edit . Delete. You can also Right+click
(Control-click on Macintosh) on the data source and choose Delete from the
contextual menu.

You can also create or open a REAL SQL Database using the language. To open an
existing REAL SQL Database, create an instance of the REALSQLdatabase class and
assign the location to its DatabaseFile property. Then call the Connect method. If
Connect returns True, the connection was successful and you can proceed with
database operations. Otherwise, you should look at the ErrorMessage and ErrorCode
properties to troubleshoot the problem.

Here is an example:

This example opens the “Pubs” database, which is in the same folder as REAL
Studio. If the database is not in the same directory as the REAL Studio application,
use the Volume function and the Parent or Child properties of the FolderItem class

A database item
in the project

Dim dbFile as FolderItem
Dim db as REALSQLdatabase
db=New REALSQLdatabase
dbFile = GetFolderItem("Pubs")
db.DatabaseFile=dbFile
If db.Connect() then
//proceed with database operations here..
else
Beep
 MsgBox "Database Error: " + Str(db.ErrorCode) + EndOfLine + _
 EndOfLine + db.ErrorMessage
end if
606 REALbasic User’s Guide

Creating Databases with REAL Studio
to navigate to it. Examples of this are shown in the section “Getting a File at a
Specific Location” on page 492.

To create a new REAL SQL Database, follow the same procedure except call
CreateDatabaseFile instead of Connect. It returns True if the operation was
successful. Here is an example:

Creating and Modifying Databases from the Project Editor
You can double-click a REAL SQL Database in the Project Editor to display its
Schema—the list of its tables and each table’s columns. From that list, you can view
the data itself and the list of columns and their properties.

Figure 438. A database Schema for an existing database.

If the database is new, the list of tables will be blank; you can add tables by clicking
the Add Table button.

Dim db as REALSQLdatabase
Dim f as FolderItem
f=New FolderItem("mydb")
db=New REALSQLdatabase
db.databaseFile=f
If db.CreateDatabaseFile then
//proceed with database operations...

else
Beep
MsgBox "Database Error: " + Str(db.ErrorCode) + EndOfLine + _

 EndOfLine + db.ErrorMessage
end if

Displays a list of
records in the
selected table

 Creates a
new table

List of tables
in database

Deletes the
selected column

 Creates a new column
in the selected table

Saves the changes
to the data source

List of
columns in
the selected
table

Properties of
selected table
or field

Adds or deletes
indexes for the
selected table
607REALbasic User’s Guide

Creating Databases with REAL Studio
To create a new table, do this:

1 Click the Add Table button.
REAL Studio adds a new table to the database named “Untitled”. The Properties
pane shows that it has one property, its Name.

Figure 439. A new table in the Database editor.

2 Enter the Name of the table into the Properties pane.
When you do so, the name of the table changes in the Tables pane.
Each table has to have at least one column. This is a unique identifier (Integer) that
you can use to identify each record in relational operations. You don’t need to create
a Primary Key column of your own. If you refer to the “rowID” column, it will cre-
ated for you.

3 Click the Add Column button in the Table editor toolbar to add the first
column.
REAL Studio adds a column named “Untitled” in the Columns pane, with the Var-
Char data type.

4 Select the new column and use its Properties pane to set its Name and data
type properties.
The supported column types are shown in the Type pop-up menu.

5 Assign any other properties to the column, as desired. If the data source
does not support a property that is listed in the Properties pane, it is
dimmed out.

6 Repeat steps 3 and 4 to add additional columns.
As you add each column, it appears in the column list. Figure 440 shows the Table
editor with a new table and one column.
608 REALbasic User’s Guide

Creating Databases with REAL Studio
Figure 440. The New Table dialog with one column.

7 When you are finished specifying the table, click the Save button in the
toolbar to commit all the changes to the data source.

Adding
Indexes

After adding your columns, you will want to index certain columns. Indexes
improve the performance of the database. You should index columns on which you
plan to do the majority of your searches and sorts. Information retrieval and rela-
tional operations among tables are faster when indexed columns are used.

Note Certain data sources do not support indexing. If the data source you are working
with does not support indexing, the Indexes button described in this section does
not appear in the New Table/Edit Table dialog

Columns that are not good candidates for indexing are those that only take on a few
values (i.e., gender or race), columns that are rarely searched on, and any columns in
small tables where search and sort times are unlikely to be long.

You should not index too many columns because each index adds to the size of the
database and, as records are added and deleted, it takes time for the system to update
each index.

You can create indexes in your code via the SQL Create Index statement. If you want
to create an index within the REAL Studio IDE, use the following procedure.

To create the indexes for a table, do this:

1 Click the Indexes button in the Database Editor toolbar.
REAL Studio adds an Indexes panel to the editor.

2 Click Add Index to add a new index to the list of indexes.
A new untitled index appears in the Indexes list. You define this index by adding
columns to it.

3 Rename the index to something more meaningful.
Usually you will use the names of the column or columns that comprise the index.

4 Click the Add Column button in the Indexes toolbar.
609REALbasic User’s Guide

Creating Databases with REAL Studio
The Select Column dialog box appears, listing all the eligible columns in the
selected table.

5 Click on a column name to add it to the index.
REAL Studio adds the column name to the list of columns in the center of the
Indexes editor.

6 (Optional) To build a composite index (an index on two or more columns),
click on Add Column once again and add another column to the index.

For example, you may want to create a composite index on LastName and
FirstName columns so that the database can quickly work with different people
with the same last name.

Creating a composite index is different from creating several distinct indexes (such
as the Primary Key index and the Name index). You create several distinct indexes
by clicking the Add Index button once per index and adding one column per index.
A finished index is shown in Figure 441.

Figure 441. The index for the Movies Name column.

7 (Optional) To create additional indexes, click Add Index once again and
repeat the process.

8 Click Save in the Indexes toolbar to save the indexes to the database.

Viewing Data The Database Editor window enables you to view, sort, and update records, but it
isn’t a full-fledged end-user interface. You use a SQL Select statement to retrieve
and sort the records. If the Select statement has no errors, REAL Studio will display
the requested records in a list. If it encounters an error, it will display an error code
and message. REAL SQL Database returns SQLite error codes. See the entry in the
Language Reference for the REALSQLDatabase class for information on those error
codes or http://www.sqlite.org.

To view the existing data, click the Browse button in the Browse toolbar. REAL
Studio adds a new tab panel to the window for listing records. This is shown in
Figure 442.
610 REALbasic User’s Guide

http://www.sqlite.org
http://www.sqlite.org

Creating Databases with REAL Studio
Figure 442. The Browse panel before running a query.

Initially, no records are shown. You must first select records to view via a Query.

Click the Query button in the Browse panel to display the Query dialog box. It
enables you to specify a query via a “Find” dialog, shown in Figure 443.

The Select From dialog box builds a SQL Select statement for you from your
specifications. You can also do the query by writing a SQL Select statement
manually. If you wish to specify the query that way, click the Advanced button. It is
described next, in the section “Advanced Select” on page 613.

Figure 443. The Select From Database dialog box (Simple screen).

The simple version of the dialog box enables you to specify your query without
knowing about the syntax of a SQL Select statement. The elements of this dialog
perform the following functions:

n The Search In drop-down list contains the list of all of the tables in the database.
With the Simple dialog, you can search in only one table. First choose the table that
will be searched. Figure 443 specifies that this query will be in the Actors table.

n The Criteria area is where you specify the query. Each row in the Criteria area
allows you to query on one column. You can specify multiple queries and combine
them with either the AND or the OR operators. The first drop-down list in the
Criteria area lists all the columns in the selected table. Choose a column to search
on. Figure 443, for example, specifies the Name column in the Actors table.

n The Value area is where you specify the value you are looking for in the search.
611REALbasic User’s Guide

Creating Databases with REAL Studio
n The Operators drop-down list lets you specify the relationship of the column’s
contents to the value you entered in the Value area. Your choices are “is” (a.k.a.
equal to), “is not” (a.k.a. not equal to), “greater than”, “less than”, “starts with”,
“ends with”, and “contains.” Greater Than and Less Than pertain to numeric, date,
and time columns, while starts with, ends with, and contains pertain to VarChar
columns.

For example, the following dialog specifies “Name equal to Fisher”.

Figure 444. A completed simple search.

If you want to search on more than one column, you need to add a row to the
Criteria area. Do this by clicking the Plus sign (to the right of the Value area). A
new blank row is created in the Criteria area. This is shown in Figure 445.

Figure 445. A second criterion row in the Criteria area.

Repeat the process of specifying the search criterion on the second column.

If you want to remove one of the rows in a multiple-column search, click the minus
sign (next to the plus sign) in the row you want to remove.

When you have two or more rows in the Criteria area, you must specify whether a
record must meet all of the specifications or any one of the specifications. The first
type of search uses the AND operator to relate all statements, while the second type
of search uses the OR operator.

You do this using the “Results Match” drop-down list. The default selection, “All”,
requires that a record is not selected unless all of the statements in the Criteria area
612 REALbasic User’s Guide

Creating Databases with REAL Studio
are true; the “Any” selection means that a record will be selected if any one of the
statements in the Criteria area are true.

Figure 446. The Results Match drop-down list.

If you search on only one column, the Results Match drop-down list is not relevant.

When you are finished specifying the query, you can click Select to do the search.

Advanced
Select

If you want to enter the SQL Select statement directly or modify the one that is
generated from the “Simple” version of the dialog box, click the Advanced button.
The Advanced version of the dialog has only one field, in which you must write a
valid SQL Select statement.

Figure 447. The Advanced version of the Select From dialog box.

If you have already entered search specifications into the “Simple” version of the
dialog, those specifications will have been translated into a valid SQL Select
statement for you. You can then edit that query or replace it.

For example, here is the same query that expressed on both dialog types:
613REALbasic User’s Guide

Creating Databases with REAL Studio
Figure 448. A query in the Advanced and Simple versions of the dialog box.

You may, of course, continue editing the SQL statement that REAL Studio
generated.

The Simple search screen does not contain interface elements for all of the options
that the SQL Select statement supports, so you may want to take advantage of these
options. For example, the Simple screen does not enable you to specify the list of
columns that will be returned by the query. Any search that is specified on the
Simple screen will return all the columns.

If you want fewer columns, you should replace the asterisk in the SQL statement
with the column list. For example, Figure 449 shows an edited version of the query
in Figure 448 that specifies two columns.

Figure 449. A modified SQL query.

If you switch to the Simple version of the dialog after entering a SQL query, REAL
Studio will set the values of the drop-down lists and the Value area to the extent
that it can. If you have specified options in the SQL statement that are not available
in the Simple view, you will lose that information.
614 REALbasic User’s Guide

Creating Databases with REAL Studio
In the Simple view, you can add an ORDER BY clause to sort the rows by one or
more columns. Figure 450 shows a SQL statement that uses the ORDER BY clause
to sort all the movies in the table in descending order.

Figure 450. A listing of all records.

Figure 451 shows another example of a SQL statement that returns two columns
and the records sorted in ascending order (the default sort order).

Figure 451. Selecting and sorting rows with a SQL Select statement.

Storage Types
and Column
Type
Affinities

The data types shown in Table 37 are supported by the REAL SQL Database.
Except for the Integer primary key column, any column can store data of any type.

If you are using another data source, please consult the documentation for your data
source for information about its supported data types.
Table 37: Data Types supported by REAL SQL Database

Data Type Description

Binary Stores code, images, and hexadecimal data of any size.

Blob Stores a binary object. The REAL SQL Database supports blobs of
up to any size. A blob can be stored in a column of any declared
data type. Use a Blob column in REAL SQL Database and
REAL Server Database to store an image as a string.
615REALbasic User’s Guide

Creating Databases with REAL Studio
Boolean Stores the values of TRUE or FALSE. “False” and zero are treated as
the boolean value of FALSE and “True” and 1 are treated as the
boolean value of TRUE. The value of other values are treated as
undefined if retrieved via the DatabaseField.BooleanValue
function. If you use DatabaseField.StringValue instead, it will
attempt to return the original data if it can’t be identified as
boolean.

Currency A 64-bit fixed-point number format that holds 15 digits to the left
of the decimal point and 4 digits to the right.

Date Stores year, month, and day values of a date in the format YYYY-
MM-DD. The year value is four digits; the month and day values
are two digits.

Double Stores double-precision floating-point numbers.

Float Stores floating-point numeric values with a precision that you
specify, i.e., FLOAT (5).

Integer A numeric data type with no fractional part. The maximum
number of digits is implementation-specific. The REAL SQL
Database supports 8-byte integers. Prior to REAL Studio 2006
Release 4, the REAL SQL Database supported only 32-bit integers.
The DatabaseField.IntegerValue function will continue to work as
it has but it can now return values up to 64 bits. However, the field
type returned by Database.FieldSchema is now 19 rather than 3. If
you are using this value, be sure to update your code.
If you are using another data source, check the documentation of
your data source.

SmallInt A numeric data type with no fractional part. The maximum
number of digits is implementation-specific, but is usually less than
or equal to INTEGER. The REAL SQL Database supports 4-byte
smallints. The Database.FieldSchema function returns 3 for
SmallInts. If you are using another data source, check the
documentation of your data source.

Text Stores alphabetic data in which the number of characters can vary
from record to record. The REAL SQL Database uses UTF-8 text
encoding. If the text is not already in UTF-8, it is converted. If you
want to preserve a different encoding, use a Blob column instead.

Time Stores hour, minute, and second values of a time in the format
HH:MM:SS. The hours and minutes are two digits. The seconds
values is also two digits, may include a optional fractional part,
e.g., 09:55:25.248. The default length of the fractional part is zero.

Data Type Description
616 REALbasic User’s Guide

Creating Databases with REAL Studio
Values that are passed in single or double quotes (as literals) are stored as Text.

The DatabaseQuery Control
The DatabaseQuery control can be used to send queries to the data source, but this
function can also be performed with the language, using the SQLSelect function of
the Database class. It is up to you.

You add a DatabaseQuery control to a window like any other control, but it is not
visible to the end-user. It is used only as an object that performs database queries. It
has the following properties:

The SQLQuery that you enter in the Properties pane is executed automatically when
its window appears. For example, the properties shown in Figure 452 will retrieve
all rows and columns from the Actors table when the window opens. However, the
DatabaseQuery control cannot display the rows and columns all by itself.

Figure 452. A DatabaseQuery control’s Behavior properties.

The DatabaseQuery control has one method, RunQuery, which executes SQLQuery
against Database. You can call it via your code.

TimeStamp Stores both date and time information in the format YYYY-MM-
DD HH:MM:SS. The lengths of the components of a TimeStamp are
the same as for Time and Date, except that the default length of
the fractional part of the time component is six digits rather than
zero. If a TimeStamp values has no fractional component, then its
length is 19 digits If it has a fractional component, its length is 20
digits, plus the length of the fractional component.

VarChar Stores alphabetic data in which the number of characters can vary
from record to record. The REAL SQL Database uses UTF-8 text
encoding. If the text is not already in UTF-8, it is converted. If you
want to preserve a different encoding, use a Blob column instead.

Data Type Description

Name Description

Database The data source that will be queried.

SQLQuery The text of the SQL query to be run against Database
617REALbasic User’s Guide

Creating Databases with REAL Studio
The DataControl Control
The DataControl control gives you a very simple and powerful way to create a data
entry screen that works with a database table. The DataControl is a single object
that consists of record navigation buttons (First, Last, Next, and Previous records)
and a caption. When you place it in a window, it looks like this:

Figure 453. A DataControl in a window.

You use a DataControl by creating a window that uses TextFields, ListBoxes, Popup
Menus, ComboBoxes, or StaticText controls to display and edit data. Custom classes
based on these controls can also use a DataControl as their data source.

These controls have two properties that are meaningful only when used in
conjunction with a DataControl: DataSource and DataField. They are shown in the
Database Binding topic at the bottom of the control’s Properties pane:

Figure 454. The Database Binding properties of a TextField.

The DataSource property should be assigned the name of the DataControl in the
window. It, in turn, is bound to a database table using its Database and TableName
properties. When you set the Database, a pop-up menu of tables from the database
becomes available for the TableName property.

Figure 455. The DataControl’s Behavior properties.

These properties specify that the DataControl will manage the records in the Actors
table in the Movies database. The SQLQuery property is the SQL query that will
run when the form is opened. This SQL statement finds all records in the Movies
table.
618 REALbasic User’s Guide

Creating Databases with REAL Studio
The following window displays columns in TextFields and uses a DataControl for
record navigation.

Figure 456. A simple database that uses a DataControl.

Each TextField is linked to the DataControl in its Properties pane by setting the
DataSource and DataField properties.

The TextField for the movie name is bound to the column “Name” in the table to
which the DataControl is linked. In this case, it is the Movies table.

Figure 457. The Database Binding properties for the “Name” TextField.

Each field on the form is bound to a column in the Movies table in this manner.

Creating a Database Front End Programmatically
To fully exploit REAL Studio’s database capabilities, you will need to write some
code. The commands that are listed in the Database theme in the Language Reference
provide you with all the necessary tools to build sophisticated database front-ends.

The Examples folder that ships with REAL Studio includes a fully worked out
relational database example. The Orders Database is a Products/Orders/Customers
relational database that illustrates the process of creating a REAL SQL Database.
Please refer to that example and the accompanying documentation for more details
on REAL SQL Databases.

Accessing a
Data Source

The following classes allow you to choose the database back-end(s) used in your
application. Except for the REAL SQL Database, each class requires that the appro-
priate database plug-in be installed in REAL Studio’s Plugins folder. All the data-
619REALbasic User’s Guide

Creating Databases with REAL Studio
base plug-ins are available from REAL Software. Database plug-ins may be updated
more frequently than REAL Studio itself; the latest versions of each plug-in can be
found at http://www.realsoftware.com.

Data sources are accessed via a group of subclasses of the Database class. Each
subclass accesses a specific data source. The database subclasses shipped with REAL
Studio are shown in the following table. Third parties may also write plug-ins that
support other data sources.

Third-parties may supply plug-ins that work with other data sources. FrontBase can
also be accessed from REAL Studio using a third-party plug-in. Contact FrontBase
for more information.

Please see the entries for the new Database subclasses in the Language Reference for
more information.

Creating a
Database in
Code

Creating the database in code is a little more involved than via the IDE but is more
flexible. You can handle the case in which the application cannot find the database
and create a new one automatically. You also can manage the user interface without
the DatabaseQuery and DataControl controls.

Begin by creating an object of type REAL SQL Database (or REAL Server Database)
as a property of the App class. In the Open event of the App class, an instance of the
database is created and your code attempts to connect to it. You set the DatabaseFile
property to the FolderItem that you expect to be the database file. If the connection

Table 38: Classes used to access data sources.

Database Subclass Description

MySQLCommunityServer Accesses MySQL Community Edition databases.

MySQLEnterpriseServer Accesses MySQL Enterprise Edition databases.

ODBCDatabase Accesses ODBC-based databases.

OracleDatabase Assesses Oracle 8i and above databases.

PostgreSQLDatabase Accesses PostgreSQLDatabase databases.

REALSQLDatabase Built into REAL Studio and supports the REAL SQL
Database. The REAL SQL Database data source is
supported in all versions of REAL Studio.

REALSQLServerDatabase The REAL Server is based on SQLite and is a multiuser
database. It is available from REAL Software as a
separate product to REAL Studio Professional
customers. REAL Studio Studio includes REAL Server
at no additional charge. The
REALSQLServerDatabase class has its own SQL
commands for managing the server. These
commands are described in its own Users Guide.
620 REALbasic User’s Guide

Creating Databases with REAL Studio
fails, the event handler calls a method that will create the database and its schema
(tables and fields).

Opening a
Data Source

When opening a data source, you should test whether your connection is successful
before proceeding with database operations. Use the Connect method of the
Database class to determine whether the connection was successful. If it was,
Connect will return a value of True. If the connection failed, you should examine the
contents of the ErrorMessage and ErrorCode properties of the Database class.

// Create database object
// myDB is a property of the App class
myDB = New REALSQLDatabase

// sets its databasefile property to the file..
myDB.databaseFile = GetFolderItem("myDatabase.rsd")

// try to connect to the database
If myDB.databaseFile.exists = True then

// The database file already exists, so we want to connect to it.
If myDB.Connect() = False then

// there was an error connecting to the database
// call a method to handle the error
DisplayDatabaseError(False)
Quit
Return

End if

Else

// The database file does not exist so we want to create a new one.
// The process of creating a database will establish a connection to it
// so there isn't a need to call Database.Connect after we create it.
// Call a method that creates the database and its tables...
CreateDatabaseFile

End if

// Set the application to AutoQuit,
// so if all windows are closed then the application will quit.
App.autoQuit = True
621REALbasic User’s Guide

Creating Databases with REAL Studio
For example, the following code opens a REAL Server database.

These methods return an object of type Database. Table 39 gives the Database class
methods.

Dim db as REALSQLServerDatabase
db=New REALSQLServerDatabase
db.host="127.0.0.1"
db.port=4430
db.userName="Mary"
db.Password="Elton"
If db.Connect then
//proceed with database operations
If db.error then
Beep
 MsgBox "Database Error: " + str(db.ErrorCode) + EndOfLine + _

 EndOfLine + db.ErrorMessage
End if

Else
MsgBox "Connection failed!"
End if

Table 39: Database Class methods.

Name Parameters Description

Close Closes the database.

Commit Commits (saves) changes to records. If you
quit the application after making changes to
a RecordSet, REAL Studio issues an implicit
Commit. Use Commit and Rollback to
manage transactions.

Connect Connects to the database server and opens
the database for access. Returns a Boolean.
Before proceeding with database
operations, do a test to be sure that Connect
returns True.

FieldSchema TableName as String Returns a RecordSet with information about
all columns in the table. See notes, below.

InsertRecord TableName as String,
Data as
DatabaseRecord

Inserts Data as the last row of TableName.

Property Name as String Returns the database property specified by
Name from the data source. This must be
supported by the data source.

Rollback Cancels a set of changes to records.
622 REALbasic User’s Guide

Creating Databases with REAL Studio
When you use the language instead of a DatabaseQuery control, you call the SQLSe-
lect method to query the database. Other SQL commands are set via the SQLExe-
cute method. For example, the following type of statement is used to create a table
in place of the interactive method discussed in the section, “Creating and Modifying
Databases from the Project Editor” on page 607.

Editing
Records

You select the record or records you want to edit by passing the SQLSelect function
a SQL SELECT statement as a string. It returns an object of type RecordSet. For
example, the following selects all records in a table, returning all fields.

In the terminology of SQL, a RecordSet is a database cursor. You may encounter the
term cursor instead of recordset when you consult SQL reference material.

You can then display the RecordSet in a ListBox and/or edit them. See the section
“Listing Records” on page 626 for a generic method that you can use to display a
list of records. If you need to edit the rows, you must process the records one row at
a time.

When an SQL statement returns a RecordSet, the user has “possession” of those
records for his exclusive use. If the RecordSet contains more than one record, you
can use the RecordSet’s properties and methods to cycle through the rows and
columns of the RecordSet.

After a query using the SQLSelect method, the RecordSet contains a pointer to the
current record (by default, the first record in the RecordSet). You can use the BOF
(Beginning Of File) and EOF (End Of File) properties of the RecordSet class to

SQLSelect SelectString as String The SQL Select statement. It returns a
RecordSet. Call SQLSelect for any SQL
command that returns a RecordSet.

SQLExecute ExecuteString as
String

The SQL Execute statement. Used to execute
SQL commands that do not return a
RecordSet.

Table 39: Database Class methods. (Continued)

Name Parameters Description

Dim db as REALSQLDatabase
db=New REALSQLDatabase

db.SQLExecute "create table Customers (FirstName varchar,"+ _
"LastName varchar, Address varchar, Email varchar, "+ _
"Company varchar, Phone varchar, Fax varchar, City varchar, "+ _
"State varchar, PostalCode varchar, "+ _
"ID integer NOT NULL PRIMARY KEY)"

Dim rs as RecordSet
rs = db.SQLSelect("SELECT * FROM Movies")
623REALbasic User’s Guide

Creating Databases with REAL Studio
determine if the current record pointer is before the first record or beyond the last
record. You can use these to determine if your query has found any records. If your
query finds no records, both BOF and EOF will both be True since the current
record pointer points at nothing.

If your query finds one or more records, both BOF and EOF will be False, since the
current record pointer is pointing at the first record and not at the beginning or end
of the file. For example, if your query found three records, the RecordSet would look
like this:

BOF
Record1 (the current record pointer is pointing at this record)
Record2
Record3
EOF

As the record pointer moves to a particular record, you can use the Edit and Update
methods to edit the record or the DeleteRecord method to remove the record. To
modify the record, call the Edit method and perform the modifications.

To get or set the value of an individual field, use the “Value” property of the
DatabaseField class that matches the data type you are working with. There are
separate properties for each data type. They are listed below.

Name Description

BooleanValue Used to get and set the values of Boolean field types. When you
read using BooleanValue, it requires that the value of True is
coded as either ‘True’ or 1 and False is coded as either ‘False’ or 0.
If this is not the case, using StringValue instead should get the
original values in the column.

CurrencyValue Used to get and set the values of Currency field types.

DateValue Used to get and set the values of Date field types.

DoubleValue Used to get and set the values of Double field types.

Int64Value Used to get and set the values of Int64 field types. Support for 64-
bit integers is at the framework level. Database plug-ins need to
be updated to support 64-bit integers.

IntegerValue Used to get and set the values of Integer field types.

JPEGValue Used to get and set the values of Picture field types. The REAL
SQL Database and the REAL Server Database do not support this
field type. Use a Blob column to store pictures.

MacPICTValue Used to get and set the values of Picture field types. The REAL
SQL Database and the REAL Server Database do not support this
field type. Use a Blob column to store pictures.

NativeValue Used to get and set the values of fields in their native encoding.
Useful for reading and writing blobs to and from database fields.
624 REALbasic User’s Guide

Creating Databases with REAL Studio
For example, code such as the following uses the StringValue property to assign the
contents of a group of TextFields to the corresponding database fields.

After modifying the columns for a row, call Update to update the RecordSet. When
you are finished, call the Database object’s Commit method to commit the set of
modifications to the database or call the Rollback method to cancel the
modifications. The EOF property becomes True when you try to move the pointer
past the last record.

If you don’t call Commit, REAL Studio issues an implicit Commit when the user
quits the application.

StringValue Used to get and set the values of String/Character field types. If
the field is not of this type, StringValue will try to return the
value as a String. REAL SQL Database converts text to the UTF-8
text encoding.

Value Used to get and set the value of a field of any data type. The
properties that get and set the values of specific data types are
recommended over Value. Set Value to Nil to set the field to
NULL. The NULL value is currently supported in the PostgreSQL
plug-in.

Name Description

// Update customer information
// Call RecordSet.Edit prior to this code
rs.Field("Company").StringValue = CustomerCompany.Text
rs.Field("FirstName").StringValue = CustomerFirst.Text
rs.Field("LastName").StringValue = CustomerLast.Text
rs.Field("Phone").StringValue = CustomerPhone.Text
rs.Field("Fax").StringValue = CustomerFax.Text
rs.Field("Email").StringValue = CustomerEmail.Text
rs.Field("Address").StringValue = CustomerAddress.Text
rs.Field("City").StringValue = CustomerCity.Text
rs.Field("State").StringValue = CustomerState.Text
rs.Field("PostalCode").StringValue = CustomerPostalCode.Text
// call RecordSet.Update after this code and then call Commit to commit
// the changes to the data source
625REALbasic User’s Guide

Creating Databases with REAL Studio
Conversely, you use these properties to get values from a record in the database. This
code displays some fields in a record in a series of TextFields:

See the examples for the RecordSet, DatabaseField, and Database classes in the
Language Reference for more information. The separate Orders database example in
your Examples folder walks you through the process of saving, modifying, printing,
and importing/exporting records.

Listing
Records

Most database front-ends include a List View of the data that uses a ListBox to
display a selection of records. The easiest way to do this is to add a generic method
to the window that contains the ListBox. The method should take as its parameters
the ListBox that will display the data and the RecordSet that holds the records.

// Display the order record data
StatOrderNumber.Text = rs.Field("OrderNumber").StringValue
OrderOrderedOn.Text = rs.Field("DateOrdered").StringValue
OrderShippedOn.Text = rs.Field("DateShipped").StringValue
OrderPurchaseOrder.Text = rs.Field("PurchaseOrder").StringValue
OrderTaxRate.Text = Str(rs.Field("TaxRate").DoubleValue)
StatSubTotal.Text = Format(rs.Field("SubTotal").DoubleValue,_

"\$###,###,##0.00")
StatTotalTax.Text = Format(rs.Field("TotalTax").DoubleValue,_

"\$###,###,##0.00")
StatOrderTotal.Text = Format(rs.Field("Total").DoubleValue,_

"\$###,###,##0.00")
OrderCustomerNumber.Text = rs.Field("CustomerID").StringValue
626 REALbasic User’s Guide

Creating Databases with REAL Studio
This Private window method, PopulateListBox, is called when the window opens
and whenever the user does a search.

Adding
Records

You add a new record using the Database object’s InsertRecord method. It has two
parameters, the database object and an object of type DatabaseRecord.

Private Sub PopulateListBox(lb as ListBox, rs as RecordSet)

// Populates the passed listbox with the data in the passed recordset
// This will loop through the records in the recordset and add rows
// to the listbox that contain the data in the recordset.

Dim i as Integer
// Clear the passed listbox
lb.DeleteAllRows

// Loop until we reach the end of the recordset
While Not rs.EOF

lb.AddRow ""// add a new row to the listbox

// Loop through all of the fields in the recordset
// and add the data to the correct column in the listbox
For i = 1 to rs.FieldCount

// The listbox Cell property is 0-based so we need to subtract 1
//from the database field number to get the correct correct column
//number. This means field 1 is in column 0 of the listbox.

lb.cell(lb.LastIndex, i-1) = rs.IdxField(i).StringValue
Next

rs.MoveNext // move to the next record

Wend

// If the listbox is set to be sorted by a particular column then we want to
// sort the listbox contents after we populate it, so that they appear in the
// correct order.

If lb.SortedColumn > -1 then // the listbox is sorted by a column
 lb.sort // sort the listbox data using the current sort settings

End if

Name Type Description

Column Name as String Column in current table.
627REALbasic User’s Guide

Creating Databases with REAL Studio
For example, the following code adds a record to the “authors” table.

See the descriptions of the Database, RecordSet, and DatabaseRecord classes in the
Language Reference for additional discussion and examples.

Storing
Pictures

The REAL SQL Database uses the Blob field type to store pictures. One strategy is
to write the picture data to a temporary file and then read it into a String variable as
a BinaryStream. Then use the DatabaseField’s BlobColumn property to assign it to a
Blob field.

dim db as REALSQLDatabase
db=New REALSQLDatabase
.
dim rec as DatabaseRecord
rec = New DatabaseRecord
.
rec.Column("au_id") ="09"
rec.Column("au_fname") ="Oscar"
rec.Column("au_lname")="Wilde"
db.InsertRecord("authors",rec)
628 REALbasic User’s Guide

Creating Databases with REAL Studio
This example takes an image stored in an ImageWell control and adds it to the
current database record.

You can then save the image by assigning the string to a Blob column:

// Convert the picture to binary data that can be stored in the database.
// We do this by saving the picture to a temporary file and then
// reading it back in as binary data.

Dim imageData as String
Dim bs as BinaryStream

If productImageWell.image <> NIL then
// Get a temporary file to save the image to
f = SpecialFolder.Temporary.Child("Temp_Image.jpg")

// Save the image out to the file
f.saveAsJPEG productImageWell.Image

// Open the file as a BinaryStream and read the data in
bs=BinaryStream.Open(f,False)
If bs <> NIL then

imageData = bs.read(bs.length)
bs.close

End if

// delete the temporary file if it exists
If f.exists then

f.delete
End if

End if

rec = New DatabaseRecord
rec.BlobColumn("Image") = imageData

db.InsertRecord("products",rec)
629REALbasic User’s Guide

Creating Databases with REAL Studio
630 REALbasic User’s Guide

CHAPTER 12 Debugging Your Code

Wouldn’t it be great if every line of code executes just the way you want without a
single error? Well, for those times when it doesn’t work out that way, REAL Studio
provides you with some tools to track down the bugs and fix them.

Contents

n What is debugging?

n Displaying the Debugger by setting breakpoints

n Watching your variables and properties

n Following the execution of methods

n Interrupting code execution at runtime

n Handling runtime exception errors

n Profiling your project

n Remote debugging
631REALbasic User’s Guide

Debugging Your Code
What is Debugging?
Debugging means removing errors, both logical and syntactical, from your program-
ming code. Errors in programming code are referred to as “bugs.” You are probably
wondering why errors are called “bugs.” Well, back in the 1940’s, the United States
Navy had a computer that occupied an entire warehouse. At that time, computers
used vacuum tubes and the light from the tubes attracted moths. These moths
would get inside the computer and short out the tubes. Technicians would have to
go in and remove the bugs to make the computer work again. Since this was a gov-
ernment project, everything had to be logged, so they would put down “debugging
computer” in the log. But enough of the history lesson.

Debugging is part of programming. It’s the part of programming most program-
mers like the least. Fortunately, REAL Studio makes it easy to track down those
nasty bugs and squash them like a, well, bug. REAL Studio comes with a Debugger
which is a set of windows that help you see what is going wrong.

Logical Bugs These are bugs in your programming logic. You will know you have found one of
these when your code compiles but does not produce the results you were expecting.
REAL Studio’s built-in Debugger can help you find these by letting you watch your
code execute one line at a time.

Syntactical
Bugs

These are bugs where you have mistyped the name of a class, property, variable, or
method. You may have also tried to use two values together that don’t go together.
For example, if you try to assign a string value to a variable or property of type inte-
ger, you will get a Type Mismatch error because they are different data types.

Analyzing the
Project

Since REAL Studio cannot compile a project that contains syntax errors, it offers the
option of analyzing the project as a preliminary step. Choose Project . Analyze
Project or Project . Analyze Item, where Item is the current item in the IDE
window. Analyze Project checks for errors and other issues but does not compile the
project. Some issues that it identifies are the use of deprecated items and ‘old style’
constructors, unused local variables and parameters, and type conversion issues.

If no errors or issues are found, it displays an alert box.

Figure 458. The Check Passed alert box.

If it finds errors or issues, it opens an Issues screen. The Issues screen reports both
the syntactical errors and issues in the same list. It reports one issue per line, even if
632 REALbasic User’s Guide

Debugging Your Code
there are several issues in the same line. You may find that you need to rerun
Analyze Project to catch additional errors in a line.

A typical Issues screen with both errors and issues is shown in Figure 459 on
page 633.

Figure 459. An Issues screen with both bugs and warnings.

Errors are identified in the left column by the alert icon and issues by the
caution icon . You have to fix all of the syntax errors before you can compile the
project; The issues are presented for your information and can help you optimize
your code. You should take them under advisement and follow their
recommendations when appropriate for your project.

In this view, the results are organized by error/issue. To the left of the icon, there is
a disclosure triangle. This is because there may be several instances of an error or
issue. Click the disclosure triangle to reveal the instances of that bug or issue.
633REALbasic User’s Guide

Debugging Your Code
Figure 460. The instances of a bug.

The expanded view shown in Figure 460 shows the expanded view of the “missing
‘Then’ keyword” error. It shows that there’s one instance of that type of error. The
line of code containing the error is shown; double-click it to go to the Method
Editor containing the bug.

Viewing the
Issues screen
by Method

The default view of the Issues screen presents the items organized by error/issue.
You can also view the items organized by method. In this view, each item is a
method and the disclosure triangle reveals all the errors/issues that Analyze Project
found in that method. You control the display via the icons in the Issues toolbar.

Figure 461. The Issues/Methods icons.

The errors/issues icon organizes the results as shown in Figure 460. The Pushpin
icon denotes the listing by the method that contains the error/issue. Figure 462
shows the same results organized by method.

Display by Error/Issue Display by Method
634 REALbasic User’s Guide

Debugging Your Code
Figure 462. The method view of the Issues pane.

When you expand a method, you see all the errors/issues that were found in that
method. Figure 463 shows the method that contain the “missing ‘Then’ keyword”
error.

Figure 463. The expanded CancelClose method.
635REALbasic User’s Guide

Debugging Your Code
Filtering
Types of
Issues

You can control the types of issues that the Issues screen will report. Clicking the
“Type Filter” button in the Issues toolbar will display a dialog box that lists all the
types of issues that it will check. Only the selected issues are reported. If you don’t
want to receive reports concerning a particular issue, deselect that issue.

Figure 464. The Type Filter dialog box.

For example, in Figure 459 the Analyze Project system is reporting that an Event
Parameter is not used. This project does not have to use that parameter in order to
function properly. If you don’t want Analyze Project to check for that issue, you can
deselect the “Item1 is an unused event parameter” item. When a type that was
deselected occurs, then the Issues tab contains the note “(hidden)”. But it does not
list the error.

The Debugger
When you start a debug build, REAL Studio attempts to compile the application. If
it finds no syntax errors, it launches the application in a new window and a Debug-
ger panel called “Run” appears in the REAL Studio IDE. It enables you to halt exe-
cution of your application and execute your code line-by-line while watching and
modifying the values of your variables.

There are three menu commands that initiate a debugging session: Run, Run
Remotely, and Run Paused.

n Run: Run compiles the application and, if the compiler finds no errors, launches the
built application in a new window on your machine. This is the normal way to use
the debugger.

n Run Remotely: Run Remotely enables you to test your application on other
platforms. REAL Studio builds the debug application, but launches it on the remote
computer of your choice. Run Remotely is available only in the Professional and
Studio versions of REAL Studio. For more information, see the section “Remote
Debugging” on page 657.

n Run Paused: Run Paused builds the application and starts the debugger but it does
not launch the executable automatically. If you have resources that you need to be in
a specific location for the debug app to run, you need to use Run Paused instead of
Run.
636 REALbasic User’s Guide

Debugging Your Code
Run Paused allows you to debug the REAL Studio project but have an external
entity responsible for launching the executable. You can then copy whatever
resources your application needs into “the right location” in the debug app directory
and then manually launch the executable. It will then connect to the debugger and
you can continue to debug as usual.

It can be used for debugging REAL Studio plug-ins at the same time as debugging
REAL Studio code.

Run Paused gives you a debug run that is more similar to what your release build
will behave like as files and resources are located in the same places they will be in
the final build.

The other choice you have is conditional compilation with different paths for the
database in the debug build and the production version.

Breaking into
the Debugger

While it is running, you can stop the application and monitor execution in the
Debugger panel. There are several ways that REAL Studio halts the compilation
process:

You Have Set
A Breakpoint
In Your Code

A breakpoint is a marker you can set at a line of code. It tells REAL Studio to stop
execution and display the Debugger when it reaches that line of code. It stops just
before it executes it. In the Code Editor, the lines that accept breakpoints are indi-
cated by a dash in the first column, to the left of area that accepts code. You can set
a breakpoint in the Code Editor simply by clicking on the dash. You can also add a
breakpoint using the contextual menu. Place the insertion point on the line to
which you want to add a breakpoint, right+click (Command-click on Macintosh),
and choose Turn Breakpoint On from the contextual menu. You can set as many
breakpoints as you wish.

In Figure 465 on page 638, a breakpoint is set. A red dot appears to the left of the
line of code to indicate that a breakpoint has been set.

To remove a breakpoint, click on the red dot or place the insertion point in the line
and chose Turn Breakpoint Off from the contextual menu.

Breakpoints are persistent. This means they will stay in your code until you remove
them. You remove a breakpoint by clicking on the red circle. You can also clear all
breakpoints by choosing Project . Clear All Breakpoints.

NOTE: Breakpoints have no effect in stand-alone applications you build by clicking the Build
button in the Toolbar or by choosing Project . Build Application.

You use the
Break Keyword

Instead of setting a break point in the Code Editor as shown in Figure 465, you can
place the Break keyword in your code. When the compiler reaches this line of code,
it breaks into the debugger as if a breakpoint had been set. With the Break
keyword, you can set the breakpoint conditionally. For example, you if you want to
break into the debugger only when the value of a variable is equal to a certain value,
637REALbasic User’s Guide

Debugging Your Code
you can put the Break keyword in an If statement that tests for that value. It’s
convenient to use the one-line version of the If statement, for example:

breaks into the debugger when a local variable equals 103.

You Have
Pressed a
Keyboard
Equivalent

If you are running your project and you need to interrupt the code that is executing,
press Control-C on Macintosh or either Ctrl+Break or F5 on Windows or Linux to
halt code execution and display the Debugger. This is handy if you find yourself in
an endless loop.

You can also switch back to the Development environment by clicking the Stop
button in the Debugger Toolbar.

Command-Shift-Period does not work under Mac OS X.

In Figure 465, the line of code at the breakpoint is highlighted. Execution has
stopped at the breakpoint. The line in gray is about to be executed.

Figure 465. The Debugger screen.

The Debugger
Screen

The Debugger screen is divided into two panes. The Code Editor pane shows the
method that is currently executing and the Variables pane shows the variables local
to the method displayed in the Code Editor pane.

The Stack drop-down list, just above the Code Editor, contains the name of the
current method, along with the list of methods that eventually invoked the current
method. They are listed in the order that they were called. You can check the Stack
drop-down list to verify that methods are actually called when you expect them to
be called. You can view the code for any method listed in the Stack drop-down list
by clicking on it.

If ErrorNum=103 then Break

Breakpoint

Stack drop-
down list

Variables pane
638 REALbasic User’s Guide

Debugging Your Code
Changing the
Highlight Color

The highlight color can be set in the Code Editor panel of the Options dialog box
(Preferences on Macintosh). It is called “Debugger Highlight” and is listed in the
Syntax Highlighting listbox. Highlight “Debugger Highlight” and then click on
the color patch to the right of the list to modify it. A Color Picker will appear.
When you select your color and close the Color Picker, the new color will be shown
in the Syntax Highlighting groupbox.

Figure 466. Changing the Debugger Highlight color.

The Variables
Pane

The Variables pane contains a list of all the variables local to the method shown in
the Code Editor area, along with their current values (if any).

Figure 467. The Variables pane.

Any objects (rather than variables) that are defined in the method are shown as
hyperlinks rather than values.

Hyperlink to Object
Viewers
639REALbasic User’s Guide

Debugging Your Code
Viewing and
Changing the
Values of
String
Variables

An important feature of the Debugger is that a variable’s value can be changed
while the application is running. You can change the value of most types of
variables in the debugger. Exceptions are variants, enums, multiline strings, and
array types.

A variable whose value can be changed has a Write icon () to the right of its
current value. A variable whose value can be changed via its Viewer has a
combination magnifying class/write icon . The magnifying glass indicates that
it has a separate Viewer. Click it to display the Viewer for the variable. A variable
whose value can be viewed in a Viewer but cannot be changed has a magnifying
glass icon without the Write icon .

For example, In Figure 467 the DisplaySaveDialog boolean variable has a Write
icon. Click on it to get pop-up that enables you to change its value to True.

The FileName variable has the Viewer/Write icon. Click it to display its Viewer. It
is shown in Figure 468.

Figure 468. The Viewer for a String variable.

The Viewer for a string variable whose value can be changed has three tab panels,
Text, Binary, and Edit. The Text panel displays the current text of the string. The
second panel shows the text in Binary, and the last panel, Edit, enables you to edit
the value.

In addition to the current value of the string, the Text pane also displays its
encoding and length. The “View As” drop-down list enables you to change the
encoding used in the display. Normally, a string will be stored with the UTF-8
encoding and would be readable to you. If the string somehow has a Nil encoding or
the wrong encoding, you can tell the Debugger to use an encoding that is useful to
you. This affects only the encoding used in the Viewer; it does not change the
encoding of the variable itself.

The Binary panel displays the string in hex. It enables you to detect the presence of
any non-printable characters that may be in the string. Ordinarily, REAL Studio
stores strings in UTF-8 but you may get non-printable characters in a string if it
represents raw data from a binary stream. For example, if the string has a null byte
in the last position, it is easy to see it in the hex representation.
640 REALbasic User’s Guide

Debugging Your Code
Figure 469. The Binary panel for a String variable.

The Edit panel displays the text of the string in editable format. You can also assign
a text encoding to the string.

Figure 470. The Edit Panel for a String variable.

You can change its value by modifying or replacing the text in the Content field.

If a variable has the magnifying glass icon , then its Viewer lacks the Edit
panel. You can view the Text and Binary panes.

Figure 471. The Viewer panels for a read-only variable.
641REALbasic User’s Guide

Debugging Your Code
Displaying
Object Viewers

If you click a link in the Variables pane, it changes to show the current properties of
the object you clicked. The top object, Globals, links to a pane that shows the values
of your global variables, if any.

If you Shift-click (Command-click on Macintosh) on a hyperlink, the requested
Object Viewer opens in a separate window. Otherwise, the new Object Viewer
replaces the current Object Viewer in the IDE window.

You can also right+click (Control-click on Macintosh) on a hyperlink to display a
contextual menu that lets you choose between opening the new Object Viewer in
the IDE or in a new window. The latter is equivalent to Shift-clicking (Command-
clicking on Macintosh) on the hyperlink.

Figure 472, for example, shows the Object Viewer for an application’s main
window. You get this by clicking the TextWindow link in Figure 467.

Figure 472. The Variables Pane for TextWindow.

As you execute code line by line in the Debugger, the Object Viewer updates values
in real time. In this way, you can see whether a particular value (or lack of a value) is
causing the problem.

In Figure 472, the top link, Contents, displays a list of objects in the window. In
this case, there are several buttons, a Canvas, and a TextField. Click the Contents
link to examine these objects and click an object to display its variables.
642 REALbasic User’s Guide

Debugging Your Code
Figure 473. The Contents of TextWindow pane.

Click a control to display its variables and objects, if any. In the case of
TextWindow, several controls are contained within the window. They are listed on
the Contents pane. For example, clicking the first link, TextField, shows its
properties. As you drill down the hierarchy of objects, the pop-up menu above the
variables pane enables you to jump back up to an earlier level in the hierarchy.

Figure 474. The Contents pane of TextWindow’s Object Viewer and the Object
Viewer of one of TextWindow’s controls.

This sequence is repeated down to the last level of objects. For example, if a window
contains an ImageWell control, it is listed on the window’s Contents pane. If the
ImageWell has a picture assigned to its Image property, the picture is shown on the
Contents pane of the ImageWell’s Object Viewer.

If the variable that you are investigating is an array, the array’s Object Viewer
displays each value in the array and its index. For example, the Variables Object
Viewer below shows that there are three arrays. Right+clicking on the aAddresses
array to display its Object Viewer shows the values of each of its elements.
643REALbasic User’s Guide

Debugging Your Code
Figure 475. A Variables Object Viewer and the Object Viewer for one of its arrays.

Viewing the
Values of
Singles and
Doubles

A Single or Double in the Variables pane can be displayed in one of three formats,
Decimal, Scientific Notation, or Rounded. The default is Decimal.

To change the format, right+click on the value or the Write icon to display a
contextual menu and then choose the desired format. When you click outside the
field holding the value, the format changes.

Viewing the
Values of
Integers

An Integer in the Variables pane can be displayed in one of four formats: Decimal,
Hex, Binary, or Octal. The default is Decimal.

To change the format, right+click on the value or the Write icon to display a
contextual menu and then choose the desired format. When you click outside the
field holding the value, the format changes.

Viewing the
Values of Pop-
ups and
ComboBoxes

A PopupMenu or ComboBox in the Variables pane will have a hyperlink to its
Viewer. Click on the link to get the Viewer for the control and then click the
Contents link at the top of the Viewer. It is a hyperlink to a viewer for the items in
the PopupMenu or ComboBox. Both the text and the rowtag associated with the
item are shown. This is illustrated in Figure 476.

Figure 476. The Viewer for the items in a PopupMenu.
644 REALbasic User’s Guide

Debugging Your Code
Viewing the
Values in a
Structure

A structure appears in the Variables pane as an expandable item. Click the plus sign
or arrow to expose the fields in the structure.

Figure 477. A structure in the Variables pane.

The values of fields can be changed in the debugger. If the value can be changed
directly in the Variables pane, it will have the Write icon to the right. Select the
current value and replace it.

String fields will have their own viewer just like the viewers in the section “Viewing
and Changing the Values of String Variables” on page 640. Unlike string variables,
string fields in a structure are of a fixed length. If there are fewer characters in the
value than the declared length, then the unused characters are null. This can be seen
in the Binary pane in the string field’s viewer.

Figure 478. The Text and Binary panes for a string field.

Displaying the
items in a
ListBox

A ListBox appears in the Contents viewer of a window. Click it to get the Object
Viewer for the ListBox and then click its Contents link to see the items in the List-
Box.
645REALbasic User’s Guide

Debugging Your Code
Figure 479. The items in a ListBox in the Debugger.

In the Contents pane, the drop-down list above the list of items gives you the choice
of viewing the ListBox’s items or the tags associated with each cell. Choose Tag to
change the view to the Tags.

Displaying the
values of a
RecordSet

A RecordSet appears in the Variables pane as an object. Click its link to get its
Object Viewer and then click its Contents link to see the current values of the fields
in the RecordSet.

Figure 480. A RecordSet in the Debugger.

Viewing Shared
Properties

If you have a class with only shared properties (and possibly methods) and you don’t
have any instances of that class created in your code but want to see the class shared
properties in the debugger, put code such as this in a shared method:
#If DebugBuild

Dim tmp as New ClassThatImTryingToDebugSharedMethodsIn
Break

#Endif
You now have an instance that you can easily see the shared properties.
646 REALbasic User’s Guide

Debugging Your Code
Displaying
Multiple
Threads in the
Debugger

If your application has more than one running thread, the Debugger displays an
extra drop-down menu above the Code Editor area that allows you to choose the
thread you want to watch. The new drop-down menu appears to the right of the
Stack drop-down menu.

Figure 481. The Threads menu in the Debugger.

Controlling
Execution

Using the Debugger’s Toolbar, you can control execution. Instead of just allowing
your code to run normally, you can control execution on a line-by-line basis.

The Debugger’s Toolbar has five buttons that perform the functions of the Debug
menu items:

Figure 482. The Debugger Toolbar.

When the Debugger is active the Project . Step submenu offers the Over, Into, and
Out commands as well. In addition, the Run button in the Main Toolbar has
changed to Resume.

n Resume: (Main toolbar) Continues execution from the breakpoint line without
further interruption. This exits from the Debugger screen.

n Pause: Pauses execution without stopping and exiting to the IDE.

n Stop: Stops execution and returns to the REAL Studio IDE. This also exits from the
Debugger, but without executing any more code.

n Step: Executes the current line (indicated by the highlight) and moves on to the
next line. If the current line includes one of your methods, the Debugger executes
the method but will not step through the method’s code.
647REALbasic User’s Guide

Debugging Your Code
n Step In: Executes the current line and moves on to the next line. If the current line
includes one of your methods, the Debugger displays the method and steps through
the method’s code.

n Step Out: Executes the rest of the method without stopping on each line. This is
handy when you have used Step In to step through a method that was called by
another method and now wish to continue code execution without stopping on each
line.

n Edit Code: Jumps to the Code Editor for the method that is currently executing.
Use this button to modify code or correct errors in the current method. It does not
close the Debugger tab.

Following the Execution of Methods
When your code isn’t cooperating or you’re just not sure what is executing and
when, it’s helpful to be able to watch your code as each line executes. The Debugger
makes this easy. Once the Debugger is displayed, the line that’s highlighted indi-
cates which line of code is about to be executed. When you tell the Debugger to
continue, it executes that line and goes on to the next line of code. What it does
next depends on the command you give it when you wish to continue. The Debug-
ger Toolbar and the Project menu give you three commands, each of which will exe-
cute the current line and then take a different course of action for the next line of
code.

Step Step executes the current line and moves on to the next line. If the current line
includes one of your methods, the Debugger executes the method but will not step
through the method’s code. When the method is finished executing, the Debugger
will continue from the next line of code in the current method. Consider the follow-
ing code:

Let’s assume that “ToFrench” is a method that translates English to French. If you
step through this code using the Step Over menu item, the second line of code is
executed, but the Debugger won’t display the code in the ToFrench method. It
executes the ToFrench method and continues with the next line of code.

Step In Step In executes the current line and moves on to the next line. If the current line
includes one of your methods, the Debugger displays the method and steps through
the method’s code. When the method is finished executing, the Debugger returns
to the calling method or event handler and continues with the next line of code.

TextField1.SelBold=True
TextField1.Text=ToFrench(TextField1.Text)
TextField1.SelBold=False
648 REALbasic User’s Guide

Debugging Your Code
Step Out Step Out executes the rest of the method without stopping on each line. This is
handy when you have used Step In to step through a method that was called by
another method and now wish to continue code execution without stopping on each
line. If you entered the current method or event handler using Step In, then step-
ping out executes the rest of the method and stops on the next line of code in the
method that called the method you are stepping out of.

Tracking
Method
Execution
with the Stack

A method or event handler can call another method or event handler which can call
another one. This can go on for a while and you may need to keep track of the path
of methods that were executed to get you where you are now. The Stack drop-down
list does just that. When code execution begins (for example, when a PushButton is
clicked), the Stack lists the PushButton’s action event handler. If the action event
handler calls a method, that method is added to the top of the list in the Stack when
it’s called. If that method calls another method, it is added to the top of the list.
Once the current method finishes executing, it is removed from the list as REAL
Studio returns to the method that called it. It’s called the “Stack” because the meth-
ods are “stacked” one on top of the other in the order they were called.

If you need to see the code from a method or event handler called earlier in the
stack, click on its name in the Stack drop-down list to display the code for that
method in the Code Editor area of the Debugger screen.

NOTE: The larger the Stack gets, the more memory is being used. If you run out of memory it
could be because your stack is so long that it takes up all the memory that has been allocated to
the stack. The solution is try to make fewer method calls and use fewer local variables.

Watching Your Values
Part of debugging is monitoring the conditions under which certain lines of code
execute. Another part of debugging is monitoring the values of variables, objects,
and properties as your code executes. The Variables pane is used for these purposes.
This pane displays any local variables, parameters, the current object, and its super
class. It also displays global properties from modules and the Application subclass if
there is one.

Local Values The Variables pane displays the local variables with their current values or, in the
case of object, links to their object viewers. Click a hypertext link to display an
Object Viewer pane that shows the current values for all the properties of the object.

Negative numbers appear in red in an Object Viewer. Items that appear in blue
underline are hyperlinks to their Object Viewers. They update as you step through
your code and the code affects the values of properties.

NOTE: The Object Viewer currently only supports viewing single dimension arrays.
649REALbasic User’s Guide

Debugging Your Code
Parameters If the Variables pane appears while REAL Studio is executing a method that is
passed parameters, the values of those parameters are shown in the Variables pane
when the method is called.

Global Values The top entry in the Variables pane is for global variables. It displays a viewer for
items global to the application. This includes the App class, modules, threads, sockets,
and windows. Any of these items that exist in the current application will have links
to viewers for each item.

Figure 483. The Globals pane.

Object IDs The Debugger can optionally display the internal object IDs within the Debugger.
These IDs are used internally by the compiler and are not generally needed to debug
REAL Studio applications. For that reason IDs are not displayed by default. To
display the object IDs, choose Edit . Options (Linux and Windows) or REAL
Studio . Preferences (on Mac OS X) and click on the Debugger icon in the browser
area. The Debugger Preferences screen is shown in Figure 484.
650 REALbasic User’s Guide

Debugging Your Code
Figure 484. Debugger Options.

Click the “Show Object IDs in Variable Lists” CheckBox and click OK to save your
preference. When you use the Debugger, the object IDs will be shown in brackets
following each object’s data type or class, as shown in Figure 485. It shows the
viewer for the App class, which will be in the Globals pane.

Figure 485. The Debugger with the Show Object ID preference selected.

Starting and Stopping Your Project
You can switch back to the Development environment while your application is
running in the Debugger by clicking the Pause button in the Debugger toolbar or
choose Project . Stop (Ctrl+K or x-K). Click the Resume button in the toolbar to
resume the application.

Object IDs
651REALbasic User’s Guide

Debugging Your Code
Runtime Exception Errors
When you test your application in the IDE, REAL Studio performs basic syntax
checking and, if it finds a problem, it stops compilation and alerts you to the prob-
lem.

There are certain types of errors that can be detected only at runtime, (i.e., when the
line of code that contains the problem is actually executed). This is because these
errors depend on values that are not known until the code is running. An applica-
tion containing a runtime error compiles without error and may even run without
problems for a very long time before the lines of code containing the error are actu-
ally called.

But when these lines are executed, REAL Studio has no choice but to stop
execution. If you are testing the application in the IDE, the Code Editor will
reappear and an error message will be shown below the line that contains the
runtime error. An example runtime error message is shown in Figure 486.

To find and fix all such errors via the Debugger, you should select the Break on
Exceptions item in the Project menu. With Break on Exceptions on, the Debugger
will appear when a runtime error is encountered while you are testing your
application. However, the unhandled exception will cause the built (standalone)
application to quit.

Figure 486. An Unhandled Runtime Exception error in the Debugger.

This error occurs when the value of the counter, i, reaches the value of nFonts. The
programmer has forgotten that font numbering starts at zero rather than one; the
loop should be from zero to FontCount-1. Until the value of nFonts is actually
reached at runtime, the error cannot be detected. If the error is buried in an obscure
method that is very rarely called, the application may survive many hours of testing
without encountering the error.

Runtime Exception error

Line that caused the error
652 REALbasic User’s Guide

Debugging Your Code
As with syntax errors, the Tips bar contains the error message.

Runtime Errors
in Standalone
Applications

If the error occurs in a built application, REAL Studio displays a generic message
box that identifies the type of problem that it encountered. An example message
box is shown in Figure 487.

Figure 487. An Unhandled Runtime Exception Error in a Built Application.

The application will quit when the end-user accepts the message box.

Handling
Runtime
Errors

REAL Studio provides a way to detect and handle runtime errors that occur in
standalone applications. There are several types of so-called runtime exceptions that
you can detect in your code and handle. Please see the description of each Runtime
Exception error in the Language Reference for more examples.

You can “catch” and handle runtime errors using the Try or Exception blocks. With
either type of block, you can display a more informative message box that will help
track down the problem.

Exception blocks always appear at the end of a method (not where you think the
error might occur) because every line after the Exception line is considered part of
the exception block.

When a block “catches” an exception error, the code in the Exception block runs,
allowing you to obtain information on the location of the problem and the values
that caused the error.

With an exception block, you can add code to your methods that handle the error in
specific ways, depending on the type of error and the context in which it was
encountered. This provides more control over the error handling process than the
Break on Exceptions menu command.

In the Code Editor, the Exception line has the same level of indentation as the Sub
or Function line. You can use Exception alone if you wish to handle any type of
exception in the Exception block, as shown below:

The syntax of an Exception block is as follows:

Sub…
.
.

Exception
MsgBox "Something really bad happened, but I don’t know what."

Exception errorParameter As errorType
653REALbasic User’s Guide

Debugging Your Code
Both errorParameter and errorType are optional; errorType cannot be used without
errorParameter.

The example shown above is sufficient to prevent the application from quitting, but
the message is not very informative because you don’t have a clue what type of
exception occurred.

One way to test ErrorParameter is with an If statement in the Exception block:

For example, the runtime exception error shown in Figure 486 on page 652 can be
handled with the following exception handler.

When this method runs, it displays a message box such as shown in Figure 488:

Figure 488. A Handled OutOfBoundsException error.

When the end user accepts this message box, the application does not quit.

Sub…
.
.

Exception err
If err IsA TypeMismatchException then

MsgBox "Tried to retype an object!"
elseif err IsA NilObjectException then

MsgBox "Tried to access a Nil object!"
.
.
End if

Sub Action()
Dim i, nFonts as Integer
nFonts=FontCount

for i=1 to nFonts
listBox1.addrow(Font(i))

next
Exception err

if err IsA OutOfBoundsException then
msgBox "Error loading font names into Font menu!"

end if
654 REALbasic User’s Guide

Debugging Your Code
Instead of using multiple If statements, you can also use multiple Exception blocks,
each of which handles a different runtime exception type:

In case you fail to include an Exception block in the method in which the error
occurs (or a method that calls the defective method), you have one last chance to
“catch” runtime errors before they bring down a built application. This is in the
UnhandledException event of the Application class. This event occurs if a runtime
error occurs anywhere in the application that was not handled by an Exception
block. This event is passed a parameter of type RuntimeException and you can write
a function that handles the exception. For safety’s sake, you can write a generic
routine that catches all runtime exceptions.

In this example, if the Action event shown here did not include an Exception block,
you could catch the runtime error using the following function in an App class (a
class derived from the Application class).

This method of handling runtime errors cannot provide the specific diagnostic
feedback (such as Figure 488) because it will receive all OutOfBoundsExceptions
throughout the application.

Profiling your Project
The Profiler is a service that monitors the built application while it is running. It
measures the amount of time spent in each method, and it also reports how many
times the method is called. With the Profiler, you can track down performance
issues within your applications quickly without any additional coding.

The Profiler is available only in the Studio version of REAL Studio.

To use the Profiler you must enable it via the Project menu. Choose
Project . Profile Code to enable the Profiler. When enabled, a checkmark appears
to the left of the menu item. If you don’t have the Studio version of REAL Studio,
this menu command is not available.

Sub…
.
.

Exception err as TypeMismatchException
MsgBox "Tried to retype an object!"

Exception err as NilObjectException
MsgBox "Tried to access a Nil object!"

Function UnhandledException(error as RuntimeException) as Boolean
If error IsA OutOfBoundsException then
MsgBox "An OutOfBounds Exception error has occurred!"
End if
Return True
655REALbasic User’s Guide

Debugging Your Code
Figure 489. Enabling the Profiler.

Once the Profile Code menu item is checked, the Profiler will automatically profile
any debug application or build. Only code that is actually executed is profiled, and
only user-written methods twill be profiled, not built-in methods.

Since the Profiler is an integrated feature of the IDE, the profile data that is
gathered will be formatted and presented in the IDE when you debug your
application. You have the option to also save this profile data in HTML or CSV
(comma separated values) format. A “No Profile Data Was Gathered” error can
occur if you are Remote Debugging (this is not yet supported), or if the debugging
session ends prematurely. The application must exit properly for the Profiler to
gather its data.

When you quit out of the debugger, the Profile screen appears. You can use the
Expand Rows item to expand all the items in the profile or expand them
individually.

Figure 490. The initial view of a profile.
656 REALbasic User’s Guide

Debugging Your Code
The expanded view of an item lists all the methods belonging to the item and
reports the number of calls, the total execution time, and the average time.

Figure 491. An expanded view of a profile.

Click the Save Profile button in the Profiler toolbar to save the profile to disk in
either HTML or CSV (comma separated values) formats.

The profiler feature also works when you build your application. In this mode the
Profiler is compiled into your built application. When your application finishes
executing, the profile is saved in CSV format as “Profile.txt” in the same directory as
your application. The application must exit properly for the Profiler to generate this
file.

Remote Debugging
Remote debugging enables you to test your application on a different computer
from your development machine. For example, if you are developing under
Mac OS X and need to test the application under Windows, you can do so from
your Macintosh. Remote Debugging sends a debug build of the application to the
remote machine and launches it automatically.
657REALbasic User’s Guide

Debugging Your Code
Without Remote Debugging, you would have to create a standalone Windows
build on your Macintosh, move it to the Windows computer, and then launch it
from that computer.

Remote Debugging is available in the Professional and Studio versions of REAL
Studio. Also, Remote Debugging requires that you open additional ports in both
computers’ firewalls. This information is given in the section “About Firewalls” on
page 663.

We’ll call the computer on which the REAL Studio IDE is running the development
machine and the remote computer on which you will be testing your application the
debugging machine.

Remote Debugging works with a small utility application that runs on the
debugging machine. It is called the Remote Debugger Stub. The Remote Debugger
Stub is available as a separate download from the REAL Software web site.

You first configure the Remote Debugger Stub on the debugging machine. When
you want to test the application on that machine, you use the IDE’s Project . Run
Remote menu command instead of the Project . Run command. If you don’t have
the Professional or Studio versions of REAL Studio, the Run Remote command is
not available.

To configure the Remote Debugger Stub, do this:

1 Copy the Remote Debugger Stub application to a debugging machine and
double-click it.
The Stub main screen appears. Initially, the machine name will be “Machine Name
Goes Here”.

Figure 492. The Remote Debugger Stub main screen.

2 Choose File . Options (Windows and Linux) or Remote Debugger
Stub . Preferences (Mac OS X) to configure the Remote Debugger Stub.
The configuration dialog box appears:
658 REALbasic User’s Guide

Debugging Your Code
Figure 493. The Remote Debugger General Preferences screen.

It offers the following options:

n Name: The name of the debugging machine that will identify it on the develop-
ment machine. It can be any name you like.

n Password: The password you will use from the development machine to access
this machine.

n Download Location: The local directory where the application will be down-
loaded for testing. The default is the same directory as the stub.

The second panel of the Preferences screen allows you to set the listening port.
Normally, you do not need to change this preference.
659REALbasic User’s Guide

Debugging Your Code
Figure 494. The Networking Options panel.

n Network Interface: The network interface that the stub will support. Most
computers have only one network interface adapter; it is identified as “Default”
and by its IP address. If the computer has more than one network interface
adapter, then the IP addresses of each adapter will appear as menu items.

n Port: The port that all incoming TCP connections should be routed to. Most
people will want to use the default value. If you have a firewall, this port may be
blocked by default and you will need to modify the firewall to permit communi-
cations.

n Max Connections: The maximum number of connections that you will allow to
this machine.

n Public Debugger: If selected, the machine can be auto-discovered by the devel-
opment machine during the setup process. By default, the debugger stub is pub-
lic. When it is public, the name of the machine appears in the remote debugging
setup dialog automatically. If this option is not selected, the developer will need
to enter the IP address of the machine in order to connect.

n Public Debugger Stub: If selected, the machine appears in the development
machine. Otherwise, the developer can select it only by knowing the machine’s
IP address.

The next step is to set up Remote Debugging on your development machine. Before
you can use a remote machine for debugging, REAL Studio needs to be configured
to send the debug application to the remote machine and launch it automatically.

To configure the REAL Studio IDE for Remote Debugging, do this:

1 Choose Project . Run Remotely . Setup.
660 REALbasic User’s Guide

Debugging Your Code
The Debugging panel of the Options dialog box appears. Alternately, you can open
the Options dialog box directly (Preferences dialog on Macintosh) and navigate to
Debugger options.

Figure 495. The Debugger Options panel.

The Remote Debugging Sessions ListBox will show all the debugging machines
that have already been configured. The Network Interface drop-down list shows all
the network interface adapters for the machine. Most computers have only one net-
work interface adapter; it is identified as “Default” and by its IP address. If the com-
puter has more than one network interface adapter, then the IP addresses of each
adapter will appear as menu items.

2 (Optional) If the default network interface adapter is not correct, select the
correct network interface.

You then need to add the desired machines to this list.

3 Click Add to add a debugging machine to the list.
The Auto-discover dialog box appears.
661REALbasic User’s Guide

Debugging Your Code
Figure 496. The Auto-discover Remote Machines dialog.

In Figure 496, one computer is running the Remote Debugger Stub and has the
Public Debugger Stub option enabled. It is identified by the Machine Name that
had been entered into the Remote Debugger Stub configuration screen.

If you find that not all your remote debugging machines are listed, verify that the
Remote Debugger Stub is actually running on those machines and that you have
selected the Public Debugger Stub option. This is set by default on the Networking
preferences screen. Also, double-check that the firewalls on both machines are con-
figured property. For more information, see “About Firewalls” on page 663.

4 (Optional) Click Refresh if a machine that you are expecting to be listed
does not appear.

5 Highlight a debugging machine.
Its Machine Name and IP address appear in the Name and Address areas in the
lower section of the dialog box. You can also add a debugging machine by typing its
name and IP address into the entry areas but you may want to figure out why REAL
Studio was unable to see it automatically.

6 Enter the password if the machine is password-protected.

7 If Public Debug Stub is off, enter the IP address and password of the
machine.

8 Click OK to add the debugging machine.
When you return to the Debugging Preferences panel, it will appear in the Remote
Debugger Connections ListBox.

9 If desired, repeat the process to add additional debugging machines.
When you are finished with the Debugging Preferences screen, the selected debug-
ging machines are added to the Project . Run Remotely submenu.

The most recently used debugging machine will be at the top of the menu and get
the keyboard shortcut.
662 REALbasic User’s Guide

Debugging Your Code
To debug on a remote machine, do this:

1 Verify that the Remote Debugger Stub is running on the desired
debugging machine.
You should see the message “Listening on Port XXXXX.” If not, you may need to
configure the firewall on that machine.

2 Choose the desired debugging machine from the Project . Run
Remotely . DebugMachineName menu.
REAL Studio creates a debug build for the correct platform, sends it over the net-
work to the debugging machine and launches it automatically. As it is doing so, a
progress indicator on the development machine gives you the status of the opera-
tion.

3 Reorient yourself in front of the debugging machine and test the
application normally.
If you have put a breakpoint in your code or otherwise break into the Debugger, it
will appear on the development machine.

When you are finished debugging, you need to quit out of the debug build before
resuming work in the IDE on the development machine. You can do so on the
debugging machine or, on the development machine, click the Stop button in the
Debugger or choose Project . Stop Debugging.

About
Firewalls

If you are behind a firewall, the default ports you need to open are as follows:

You can change the ports communicated on by the stub (port 44553) in the
Networking panel of the Options dialog box. In the IDE, you can connect to the
new port by specifying the address as “X.X.X.X:Port” (Figure 496 on page 662).
Please note that if you change the default port, the stub can no longer be
automatically discovered.

In order for remote debugging to work, the selected UDP and TCP ports must be
opened in the OS’s firewall or any third-party firewall applications that are running.

Table 40: Development Machine.

44553 UDP

44553 TCP

13897 TCP

Table 41: Debugging Machine.

44553 UDP

44553 TCP
663REALbasic User’s Guide

Debugging Your Code
664 REALbasic User’s Guide

CHAPTER 13 Communicating With
The Outside World

Some applications need to communicate with other applications or even serial hard-
ware devices to exchange information. Sometimes this is done automatically while
other times it is initiated by the user. For example, when you use your computer to
connect to the Internet, you are initiating communications between an application
on your computer and an application on another computer at your Internet Service
Provider (ISP). Fortunately, REAL Studio provides controls that make communica-
tions between applications on different computers, and even communications
between a computer and a serial hardware device easy.

Contents

n Communicating with serial devices

n Communicating with other computers via TCP/IP

n Communicating with other computers via UDP
665REALbasic User’s Guide

Communicating With The Outside World
Communicating With Serial Devices
A serial device is a device that communicates by sending and/or receiving data in
serial. This means that it is either sending data or receiving data at any one moment.
It doesn’t send and receive at the same time. The most common serial device is a
modem. Some printers are serial devices. Serial communications using REAL Studio
are done with the Serial control. To communicate with a serial device you configure
a Serial control, open the serial port to make the connection, read and/or write data
to and/or from the serial device connected to one of your serial ports, and finally
close the serial port when you are through to disconnect from the serial device.

Getting Set
Up

So the first step is to place a Serial control in one of your project’s windows or
instantiate a Serial object using code. Before you can begin communicating with a
serial device using a Serial control, you need to set up the Serial control so that it
will know which serial port your serial device is connected to. You will also need to
set the speed at which communications will occur, as well as a few other settings.
This can all be done at design time using the Properties pane or at runtime using
code.

How you configure the Serial control’s behavior properties will depend on what the
serial device is expecting. Some devices can only communicate with one specific
configuration. Other devices (like modems) can communicate using many different
configurations. In the case of a modem, you will not only have to consider what
configurations the modem will accept but also what configuration the modem your
modem will be connecting to will accept. The Serial control’s default configuration
should work for most modems. You may need to change the default configuration
for other serial devices.

Opening the
Serial Port

Once you have configured the Serial control, you can open the serial port to initiate
communications with the serial device. This is done by calling the Open method of
the Serial control. This method is, in fact, a function that returns True if the connec-
tion is opened and False if it is not. For example, suppose you have a Serial control
whose name is “Serial1.” To open the serial port using this control, you can use the
following code:

Once you have successfully opened the serial port, it will be unavailable to all other
applications (and in fact, to other Serial controls as well) until it is closed.

Reading Data When the serial device sends data back to the Serial control that is connected to it,
the Serial control’s DataAvailable event handler executes. The data that has been

If Serial1.Open then
MsgBox "The serial port was opened."

Else
MsgBox "The serial port could not be opened."

End if
666 REALbasic User’s Guide

Communicating With The Outside World
sent back goes into a place in the computer’s memory called a buffer. The buffer is
simply a place to store the data that has been sent by the serial device because most
serial devices don’t have much memory of their own. When new data arrives in the
buffer, REAL Studio executes the DataAvailable event handler of the Serial control.

In the DataAvailable event handler, you use the Serial control’s Read or ReadAll
methods to get some or all of the data in the buffer. Both of these methods act as
functions. Use the Read method when you want to get a specific number of bytes
(characters) from the buffer. If you want to get all the data in the buffer, use the
ReadAll method. In both cases, the data returned from the buffer is removed from
the buffer to make room for more incoming data. If you need to examine the data in
the buffer without removing it from the buffer, you can read the data from the Serial
control’s LookAhead method.

This example appends any incoming data to a TextField:

You can clear all data from the buffer without reading it by calling the Serial
control’s Flush method.

Both the Read and ReadAll methods of the Serial class take an optional parameter
that enables you to specify the encoding. Use the Encodings object to get the
desired encoding and pass it as a parameter. For example, the code above has been
modified to specify that the incoming text uses the ANSI encoding, a standard on
Windows:

You may need to specify the encoding when text is coming from another platform
or is in another language. For information about text encoding, see the section
“Working with Text Encodings” on page 416.

Writing Data You can send data to the serial device at any time as long as you have opened the
serial port with the Serial control’s Open method. You send data using the Serial
control’s Write method. The data you wish to send must be a string, as the Write
method accepts only a string as a parameter.

The Write method is performed asynchronously. This means that the next line of
code following the Write method can already be executing before all the data has
actually been sent to the serial device. If you need your code to wait for all data to be
sent to the serial device before continuing, call the Serial control’s XmitWait
method immediately following a call to the Write method.

Sub DataAvailable()
TextField1.AppendText Me.ReadAll()

Sub DataAvailable()
TextField1.AppendText Me.ReadAll(Encodings.WindowsANSI)
667REALbasic User’s Guide

Communicating With The Outside World
Changing a
Serial
Control’s
Configuration
on the Fly

There may be times when you need to change a Serial control’s behavior properties
while the serial port is open. While you can change these properties, the changes
won’t take effect until you close the serial port and reopen it. If you need the behav-
ior properties to update immediately, call the Serial control’s Poll method. This
updates all properties immediately and calls the DataAvailable event handler imme-
diately if there is any data waiting in the buffer.

Closing the
Port

Once you are finished communicating with a serial device, you must close the serial
port to end the communications session and make the port available to other Serial
controls or other applications. To close the serial port, call the Close method of the
Serial control that opened the serial port.

Communicating
With Modems

Modems have a set of commands you can send them to tell the modem to do things
such as dial a particular number. Most of these commands are the same for every
modem. Your modem probably came with a guide that lists its commands. Consult
that guide for more information.

Communicating
with USB and
FireWire
Devices

These devices use a much higher-level API that requires drivers for interaction. USB
doesn’t work like serial and requires its own support. Some USB devices have a chip
in them that makes them appear as a serial device. Typically this chip is an FTDI
chip. If the device has this chip, you can communicate with the device via the Seri-
alPort class. If that does not work for you, then the Monkeybread plug-in has USB
support for a handful of specific types of devices.

USB wraps up several things into one:

n A cable interconnect specification (what the cable connectors need to look like),

n A low-level packet oriented protocol, so the OS can figure out what driver to load
and talk to the USB device to identify it,

n A vendor API, i.e., HID device like a mouse, keyboard, or mass storage device.

Just because something uses a USB cable doesn't mean you can talk to it.

Some device types are very common so the OS vendors have the drivers built in.
This includes HID devices (e.g., mice and keyboards) and mass storage devices like
hard disks. If it’s one of those, they will work without any additional work.

Almost anything else requires a driver from the vendor. If you’d like to control such
a device, you will need to obtain a shared library from the manufacturer or write
your own. Try to contact the manufacturer to see if they have a library. If the
manufacturer has a library for USB communications, you can talk to the library
from REAL Studio using Declare statements.
668 REALbasic User’s Guide

Communicating With The Outside World
TCP/IP Communications with the TCPSocket Control
Sometimes applications need to communicate with other applications on the same
network. This can be accomplished using the REAL Studio’s TCPSocket control. The
TCPSocket control can send and receive data using TCP/IP.

In versions of REAL Studio prior to 5.0, TCP/IP communications were handled
with the Socket control. The Socket control has been superseded by the TCPSocket
control.

The TCPSocket control is derived from the SocketCore class. The SocketCore class
handles the core functionality that both the TCP and UDP protocols provide (the
UDP protocol is described in the section “UDP Connections with the UDPSocket
Control” on page 677). The SocketCore class is an abstract class that cannot be
instantiated. The SocketCore class has properties and methods that are inherited by
the TCPSocket, ServerSocket, and UDPSocket controls. If you have used the Socket
control in your projects, you should update to the TCPSocket control.

TCP/IP is the protocol of the Internet. It’s the way most data is transmitted via the
Internet. In fact, the “IP” in TCP/IP stands for “Internet Protocol.”

The TCPSocket control can be used to communicate with other computers on the
same network. When you connect to the Internet, you are part of the Internet
network. This allows you to communicate with other computers on the Internet via
TCP/IP.

Getting Set
Up

You can either add a TCPSocket control to a window or instantiate a TCPSocket
object using code. Before you can connect to another computer using the TCPSocket
control, you must first set the port. The port is to TCP/IP what channels are to tele-
vision or frequency assignments are to radio stations. Ports give an application the
ability to focus on specific data rather than receiving all the data transmitted to your
computer via TCP/IP. This allows you to browse the web and send email at the
same time because the web uses one port and email uses another. The port is repre-
sented by a number and there are thousands of available ports. Some have already
been designated for specific functions like web browsing, email, FTP, etc. If you are
designing an application that will need to communicate with another application,
you will need to find out what port the other application is using. For example, if
the other application is an SMTP server, it’s probably using port 25 since that is the
port that is reserved for SMTP (Simple Mail Transfer Protocol).

A TCPSocket control has a Port property (inherited from the SocketCore class) that
can be assigned at design time or runtime but it must be assigned a value before you
can connect to another computer. If you plan on initiating the connection, you must
also assign the IP address of the computer you wish to connect to the Address
property of the TCPSocket control that will make the connection.

Mac OS X and Linux have a built-in restriction regarding port numbers. Ports
below 1024 cannot be assigned by a user who is not running with “root” privileges.
Mac OS X is configured so that a user cannot gain root privileges via the graphic
669REALbasic User’s Guide

Communicating With The Outside World
user interface. Most users run with Admin privileges—not root—so you should use
ports above 1024 for normal TCP/IP communications with Mac OS X computers
because the TCPSocket cannot access port numbers below 1024. This is not a bug
but a security feature that is built into these operating systems.

NOTE: A TCPSocket control can only be connected to one application at a time. If you need to
maintain multiple connections simultaneously, you should use the ServerSocket control, which is
designed for this purpose. See the section “Handling Multiple Connections with the ServerSocket
Control” on page 675.

Making a
Connection to
Another
Computer

Once you have assigned a port and an IP address, you can connect to an application
on the computer at that IP address, provided that the application is listening for
TCP/IP connections on the port you have specified. To initiate a connection, you
call the TCPSocket control’s Connect method. A connection is not necessarily estab-
lished immediately after you call the Connect method. There may be network con-
nection issues that take some time to resolve before the connection is actually
established.

There are two ways to determine that you are connected. You can either wait until
you receive a Connected event from your TCPSocket or test the return value of the
IsConnected method of the SocketCore class. If you don’t wait for this feedback, you
either cause the connection process to halt, resulting in a lost connection error (102),
or an out of state error (106).

When the connection is established, the TCPSocket control’s Connected event
handler executes. If a connection is not established, an error occurs and the
TCPSocket’s Error event handler is executed.

Once a connection is established, your application can begin sending and receiving
data with the application at the other end of the connection.

Listening For
a Connection
From Another
Computer

In some cases you may want your application to wait for another application to con-
nect to it rather than initiate the connection. To do this, you use the TCPSocket
control’s Listen method. For example you have a button that when pressed, causes
the application to listen for a TCP/IP connection on the port number that is
assigned to the TCPSocket’s Port property. Let’s assume that the TCPSocket control
is named “TCPSocket1.” In the PushButton’s Action event handler, you use the fol-
lowing code:

Once a connection is established, the TCPSocket control’s Connected event handler
executes, letting you know that you have a connection.

Reading Data When the application at the other end of the connection sends data back to the
TCPSocket control that it’s connected to, the TCPSocket control’s DataAvailable

Sub Action()
TCPSocket1.Listen
670 REALbasic User’s Guide

Communicating With The Outside World
event handler executes. The data that has been sent back goes into a place in the
computer’s memory called a buffer. The buffer is simply a place to store the data that
has been sent by the other application. When new data arrives in the buffer, REAL
Studio executes the DataAvailable event handler of the TCPSocket control.

In the DataAvailable event handler, you can use the TCPSocket control’s Read or
ReadAll methods to get some or all of the data in the buffer. Both of these methods
act as functions. Use the Read method when you want to get a specific number of
bytes (characters) from the buffer. If you want to get all the data in the buffer, use
the ReadAll method. In both cases, the data returned from the buffer is removed
from the buffer to make room for more incoming data. If you need to examine the
data in the buffer without removing it from the buffer, you can read the data from
the TCPSocket control’s LookAhead property.

This example appends any incoming data to a TextField:

When you are reading text from an outside source, you may need to specify the text
encoding. The text encoding is the scheme that maps each letter in the text to a
numeric code. If the text comes from another application, operating system, or is in
another language, you may need to tell REAL Studio which encoding was used. For
more information on text encoding, see the section “Working with Text Encodings”
on page 416.

Both the Read and ReadAll methods of the TCPSocket class take an optional
parameter that enables you to specify the encoding. Use the Encodings object to get
the desired encoding and pass it as a parameter. For example, the code above has
been modified to specify that the incoming text uses the ANSI encoding, a standard
on Windows:

From then on, REAL Studio stores the encoding with the text. The text will display
and print properly and string operations will work as expected.

Writing Data You can send data to the application you are connected to at any time. You send
data using the TCPSocket control’s Write method. The data you wish to send must
be a string, as the Write method accepts only a string as a parameter. In this
example, the text from a TextField is being sent via a TCPSocket control:

If you need to send the text to an application that is expecting a specific text
encoding, then you should convert the text to that encoding prior to sending it. Use
the ConvertEncoding function to do this. Its parameters are the text to be converted

Sub DataAvailable()
TextField1.AppendText Me.ReadAll()

Sub DataAvailable()
TextField1.AppendText Me.ReadAll(Encodings.WindowsANSI)

TCPSocket1.Write TextField1.Text
671REALbasic User’s Guide

Communicating With The Outside World
and the text encoding to use. For example, the following line writes the text in the
TextField using the MacRoman encoding:

When you call the Write method, you begin the process of sending data across the
network. Certain low-level socket service providers have limits on the maximum
amount of data the socket can send in one batch. This is dependent on a few factors;
among them are which library is providing the TCP/IP services (such as WinSock
on Windows), and how much data you are trying to send.

You might think that the provider will only affect transfers of large data, but this is
not true. Never assume how much data REAL Studio will send between calls to the
SendProgress event. It is normal to see this fluctuate. Each provider specifies the
minimum and maximum amount of data it will send.

If you are trying to send data larger than the maximum, it will not be sent all in one
chunk. Instead, REAL Studio will loop until your data is completely sent, giving
you periodic SendProgress events. If you try to send too little data, the internet
service provider (ISP) will queue your data up. This doesn’t always mean your data
has been sent although you will receive SendProgress and SendComplete events.

This is due to the ISP implementing the Nagle algorithm, which helps network
productivity. For every chunk of data that is sent across the network, there is a
header attached to the beginning of that data. You never will have to deal with
these headers, because they are taken care of for you by the ISP. The reason this is
important, though, is that if you are sending one and two bytes at a time across the
network, you are also attaching these 40 or so bytes of header to each send. This can
bog down a network unless the Nagle algorithm is implemented.

Currently, REAL Studio does not allow the user to turn this feature off, and leaves it
set to the default. Note that, if you send only one byte of data, and never send any-
more, the system will still send your one byte out even though the Nagle algorithm
is enabled.

The conclusion is this: Do not assume that you know when your data has been
completely sent. Rely on the SendComplete event to tell you when the send has
finished. Also, do not expect the bytesSent parameter of the SendProgress event to
be the same value every time. This value will change based on how many bytes of
data the ISP was able to send.

Note: If you are going to be sending small chunks of data across a network
(especially a small network), it might make more sense to use the UDPSocket class
instead.

Handling
Errors

Errors can occur while attempting to connect or while sending or receiving data.
Errors are not always what they seem. For example, when the other computer closes
the connection, an error is generated. When an error occurs, the TCPSocket con-
trol’s Error event handler is executed. Errors are represented by numbers. The TCP-

TCPSocket1.Write ConvertEncoding(TextField1.text,Encodings.MacRoman)
672 REALbasic User’s Guide

Communicating With The Outside World
Socket control’s LastErrorCode property will contain the number of the last error
that occurred. See the SocketCore class in the Language Reference for a complete list of
error numbers.

Errors are simply ways to alert your application to conditions it may not have
anticipated or be able to anticipate.

Orphaning a
Socket

One of the new features of the new socket architecture is the ability to orphan a
socket. This feature is needed to support the functionality of the ServerSocket.

To make this new functionality possible, we have introduced some new behavior to
the socket class. When you call the Connect method of the SocketCore class, the
Listen method of the TCPSocket class, or add a socket using the AddSocket method
of the ServerSocket class, your socket’s reference count is incremented.

This means that the socket does not have to be owned by the window in order for it
to continue functioning. This is helpful in certain circumstances. For example,
suppose you write your own socket subclass that implements all of the events for the
socket, called MySpiffySocket. In the action event for a PushButton you use the
following code:

The socket will continue to stay connected, even though there is nothing owning a
reference to it except within the PushButton’s Action event.

In other words, a socket will continue to live until you tell it to die. If you have
dragged a TCPSocket to a window and then called the Connect or Listen methods
before closing the window, there will be two references to the socket, whereas in
previous versions of REAL Studio there was only one reference—the window’s
reference. In this case, the socket will continue to function until its connection is
terminated, even after the window has been closed.

The termination can be done either locally, by calling the Close method of
TCPSocket or remotely, with the remote host terminating the connection. If you
have not called the Connect or Listen methods, then there will be only one reference
to it (the window’s), and it will be destroyed appropriately when the window closes.
In either case, once the application terminates, all sockets are released gracefully,
and your application will not leak memory.

Maximum
Number of
Sockets

There is a limit to the number of sockets your application can have opened
concurrently on Mac OS X (prior to Mac OS X 10.3). This is because BSD sockets
use a file descriptor for each open socket (one that is currently bound to any port on

Dim s as MySpiffySocket

s = New MySpiffySocket
s.port = 7000
s.address = "somecool.server.com"
s.connect
673REALbasic User’s Guide

Communicating With The Outside World
the machine). The standard limit on Mac OS X is set to 256 file descriptors, but this
limit can fluctuate based on the amount of RAM in your machine. This means that
you can have, at most, 256 sockets connected at once per application. In practice,
this number tends to be less than 256, because your application might have files
open, or the underlying API calls might be using a file descriptor for their purposes.
This is not an issue on Windows or (to a certain extent) Linux, and it is not a bug in
REAL Studio. It is a characteristic of the underlying BSD system.

Note that you can run into this issue on Linux, but it tends to be far less likely.

Closing the
Connection

When you are finished communicating and wish to disconnect from the other appli-
cation, you do so by closing the connection. The connection is closed by calling the
TCPSocket control’s Close method. Suppose you have a Socket named “Socket1”
that has established a connection. To close the connection, you can use the following
code:

Sending and
Receiving
Email via
TCP/IP

REAL Studio includes subclasses of the TCPSocket class that are designed
specifically to build an email client application—an application that sends and
receives email, like Apple’s Mail program, Eudora, or Microsoft’s Entourage.

A typical email client program actually uses two protocols, POP, which stands for
Post Office Protocol and SMTP, which stands for Standard Mail Transfer Protocol.
The POP protocol is used to receive messages and SMTP is used to send messages.
An email client program uses both to communicate with a mail server that supports
POP and SMTP, such as 4D Mail.

REAL Studio provides direct support for these two protocols via the POP3Socket
and the SMTPSocket classes. Both are subclassed from TCPSocket but have special
methods and properties to make it easy to handle email.

For example, the POP3Socket class has properties for the Username and Password
sent to the mail server and methods to poll the mail server for unread messages,
retrieve messages, delete messages, and disconnect from the mail server.

The SMTPSocket class has a property to hold the messages in queue to be sent and
methods to add email messages to the queue, send messages, and disconnect from
the mail server.

To manage an email message, REAL Studio uses three additional classes,
EmailMessage, EmailHeaders, and EmailAttachment. The EmailMessage class
holds the body, header, and attachments, which are created or stored using the
EmailHeaders and EmailAttachment classes.

For detailed information on the methods and properties of these classes, see the
Language Reference. For an example email client, see the example email application
on the REAL Studio CD or the REALsoftware web site.

Socket1.Close
674 REALbasic User’s Guide

Communicating With The Outside World
The Professional and Studio versions of REAL Studio support secure POP3 and
SMTP communications via the POP3SecureSocket and SMTPSecureSocket classes.
These classes are subclassed from the SSLSocket class, but are otherwise identical.
You can support secure communication by setting the Secure property of the
SSLSocket class to True.

HTTP
Communications

The HTTP protocol is the protocol that web browsers use. REAL Studio supports
the HTTP protocol via the HTTPSocket class, derived from the TCPSocket class,
and the HTTPSecureSocket class, derived from the SSLSocket class. It contains
methods and properties that enable you to retrieve a URL or post a form using
HTTP.

With the Professional and Studio versions of REAL Studio, you can support secure
communications (https) by invoking the Secure property of the SSLSocket class.
When you do so, the default port changes from 80 to 443.

See the Language Reference for information about the methods, events, and properties
of these two classes.

Handling Multiple Connections with the ServerSocket Control
If you need to communicate with more than one application via the same port, it is
difficult to do using the TCPSocket because each TCPSocket can manage only one
connection at a time. To use the TCPSocket, you would have to implement a system
for managing multiple TCPSockets, as connections are received.

To handle this situation, you should use the ServerSocket control. A ServerSocket is
a permanent socket that listens on a single port for multiple connections. When a
connection attempt is made on that port, the ServerSocket hands the connection off
to another socket, and continues listening on the same port. Without the Server-
Socket, it is difficult to implement this functionality due to the latency between a
connection coming in, being handed off, creating a new listening socket, and
restarting the listening process. If you had two connections coming in at about the
same time, one of the connections may be dropped because there was no listening
socket available on that port.

To initiate the ServerSocket’s listening process, set the port to listen to by assigning
a value to the Port property and call the ServerSocket’s Listen method.

On Mac OS X and Linux, attempting to bind to a port less than 1024 will cause a
SocketCore.Error event to fire with an error 105 unless your application is running
with root permissions. This is a built-in security feature of Unix-based operating
systems. This is not a bug, but a security feature that prevents problems that can
arise from allowing sockets to listen on privileged ports.

The ServerSocket control automatically manages a “pool” of TCPSockets available
for use. You don’t create the TCPSockets explicitly; instead you can set the size of
this pool using the MinimumSocketsAvailable and MaximumSocketsConnected
675REALbasic User’s Guide

Communicating With The Outside World
properties after establishing the listening socket. If you change the
MaximumSocketsConnected property, it will not kill any existing connections. It
just may not allow more connections until the existing connections have been
released). If you change the MinimumSocketsAvailable property, it may fire the
AddSocket event of the ServerSocket to replenish its internal buffer.

When you call the ServerSocket’s Listen method, it first fills its internal pool of
handoff sockets. It does this by calling the AddSocket event. This event will be
called until it has enough sockets in the internal pool of available sockets. It adds
the number specified by the MinimumSocketsAvailable property, plus ten extra
sockets. (Note that if you return Nil from this event, it will cause a
NilObjectException.) The ServerSocket is not ready to hand off connections until
this process is completed. Connections that come in while the server is populating
its pool are rejected. To determine when the ServerSocket is ready to accept
incoming connections, check its IsListening property.

A ServerSocket can only return a TCPSocket (or a subclass of TCPSocket) in its
AddSocket event. Since UDP is a connectionless protocol (see “UDP Connections
with the UDPSocket Control” on page 677), it does not make sense for a
ServerSocket to deal with UDPSockets.

Reference
Counting

The reference count isn’t incremented when you return a socket with the AddSocket
method. Instead, the socket is pooled internally and its reference count is incre-
mented when the server hands off a connection to that socket. If the ServerSocket is
destroyed before it uses one of these pooled sockets, the unused sockets get
destroyed as well. Until that time, the ServerSocket is the parent of the TCPSocket,
and so the TCPSocket will remain. If a socket returned from the AddSocket event
has been handed a connection and then the ServerSocket is destroyed, the socket will
remain connected and continue to function.

The new functionality described here tells you that a socket can be orphaned. This
does not hold true for a ServerSocket or a UDPSocket. Each of these sockets must
have a reference holder. If it does not, then once the socket goes out of scope in your
code, it is destroyed. However, when the ServerSocket is destroyed, it will not
terminate any of your already-made connections, if there are any. It will only destroy
TCPSockets that have not been connected.

The ServerSocket is available only in the Professional and Studio versions of REAL
Studio.

Handling Secure TCP Connections with the SSLSocket Control
The SSLSocket control is used to do secure communications via TCP/IP using
Secure Sockets Layer (SSL) technology. SSL is an internet protocol that specifies how
to pass secure communications over the internet. This provides world-class security,
allowing you to accept credit card numbers, serve medical records, human resources
information, or other sensitive data without fear of interception.
676 REALbasic User’s Guide

Communicating With The Outside World
There are currently four different protocols supported by REAL Studio. They are
shown below:

The default protocol is SSLv23; this is compatible with most SSL servers. You must
set this property before you establish the connection by calling the Connect method
of the SSLSocket class. Trying to set the protocol after you have begun the
connection process will have no effect.

Not all servers will accept a connection with the default protocol (SSLv23). This is
server-specific, and may not be known beforehand. When you don’t know whether
the server will accept SSLv23 connections, try making multiple connection attempts
to the server. If the initial attempt is rejected and returns a 102 error, then try again
with a different ConnectionType. Be sure to have a way to terminate this process if
none of the connection types works, or if you get an error other than 102.

To establish an SSL connection, set the Secure property to True and use the Connect
method.

Like the ServerSocket control, the SSLSocket control does not have an icon of its
own in the Controls list. Since it is not derived from the Control class, you can
instantiate it via code. Or, you can add it to a window using the window’s
contextual menu by choosing Add . SocketCore . TCPSocket . SSLSocket or drag
a TCPSocket to a window and then change its Super Class to SSLSocket.

The SSLSocket control is a subclass of TCPSocket and is available only in the
Professional and Studio versions of REAL Studio.

UDP Connections with the UDPSocket Control

The User Datagram Protocol, or UDP, is the basis for most high speed, highly
distributed network traffic. It is a connectionless protocol that has very low
overhead, but is not as secure as TCP. Since there is no connection, it does not take
as many steps to prepare when you wish to use a UDP socket.

Like the TCPSocket control, the UDPSocket control is derived from the SocketCore
class. Since it is derived from the SocketCore class rather than the Control class, you
don’t need to add a UDPSocket control to a window to instantiate it. You can
instantiate it with code via the New operator.

In order to use a UDPSocket, it must be bound to a specific port on your machine.
Once the bind has occurred, the UDPSocket is ready for use. It will immediately
begin accepting any data that it sees on the port that it has bound to. It also allows
you to send data out, as well as set UDP socket options.

SSL v2 SSSL version 2
SSLv23 SSL version 3, but can roll back to version 2 if needed
SSLv3 SSL version 3
TLSv11 TLS (Transport Layer Security version 1
677REALbasic User’s Guide

Communicating With The Outside World
Datagrams In order to differentiate between which machine is sending you what data, a
UDPSocket uses a data structure known as a Datagram. A Datagram has two
properties, Address, which is the IP address of the remote machine that sent you the
data, and Data — the actual data itself. When you attempt to send data out, you
must specify information in the form of a Datagram. This information is the remote
address of the machine you want to receive your packet, the port it should be sent
to, and the data you wish to send to the remote machine.

UDPSocket
Modes

UDP sockets can operate in various modes which are all very similar, but have vastly
different uses. The mode that most resembles a TCP communication is called
“unicasting.” This occurs when the IP address you specify when you write data out
is that of a single machine. An example would be sending data to
www.realsoftware.com, or some other network address. It is a Datagram that has
one intended receiver.

The second mode of operation is called “broadcasting.” As the name implies, this is
a broadcasted write. It is akin to yelling into a megaphone. Everyone gets the
message, whether they want to or not. If the machine happens to be listening on the
port you specified, then it will receive the data on that port. This type of send is very
network intensive. As you can imagine, broadcasting can create a huge amount of
network traffic. The good news is, when you broadcast data out, it does not leave
your subnet. Basically, a broadcast send will not leave your network to travel out
into the world. When you want to broadcast data, instead of sending the data to an
IP address of a remote machine, you specify the broadcast address for your machine.
This address changes from machine to machine, so REAL Studio provides a property
of the UDPSocket class that tells you the correct broadcast address.

The third mode of operation for UDP sockets is “multicasting.” It is a combination
of unicasting and broadcasting that is very powerful and practical. Multicasting is a
lot like a chat room: you enter the chatroom, and are able to hold conversations with
everyone else in the chatroom. When you want to enter the chatroom, you call
JoinMulticastGroup, and you only need to specify the group you wish to join. The
group parameter is a special kind of IP address, called a Class D IP. They range from
224.0.0.0 to 239.255.255.255. Think of the IP address as the name of the
chatroom. If you want to start chatting with two other people, all three of you need
to call JoinMulticastGroup with the same Class D IP address specified as the group.
When you wish to leave the chatroom, you only need to call LeaveMulticastGroup,
and again, specify the group you wish to leave. You can join as many multicast
groups as you like, you are not limited to just one at a time. When you wish to send
data to the multicast group, you only need to specify the multicast group’s IP
address. All people who have joined the same group as you will receive the message.
678 REALbasic User’s Guide

Communicating With The Outside World
Multicasting has some extra features that make it an even more powerful utility for
network applications. If you wish to receive the data you sent out with a multicast
send, you can set the SendToSelf property (also known as loopback) of the
UDPSocket. If it is set to True, then when you do a send (to a multicast group) you
will get that data back. You can also set the number of router hops a multicast
datagram will take (also known as the Time to Live). When your Datagram gets
sent out, it runs through a series of routers on the way to its destinations. Every time
the Datagram hits a router, its RouterHops property gets decremented. When that
number reaches zero, the Datagram is destroyed. This means you can control who
gets your datagrams with a lot more precision. There are some “best guesses” as to
what the value of RouterHops should be.

Note that if your Datagram runs through a router that does not support
multicasting, it is killed immediately.

Due to the connectionless functionality of UDP, it does not provide any guarantees
that your data will reach its destination. You can work around this by creating your
own protocol on top of the UDP protocol which acknowledges receives.

The UDPSocket operates in asynchronous mode, but the Connect method works
synchronously. If the connect fails, you will get an error event immediately, and the
IsConnected property will be set immediately.

Making Networking Easy
If you only need to establish network communications among REAL Studio applica-
tions on a network, you can use a group of classes that are specialized for this task.
They are based on the TCP or UDP protocols but they can only communicate
among REAL Studio applications. If you need to communicate with another appli-
cation, such as an FTP server, you need to use the more generic classes.

In exchange for this limitation, it is extremely easy to set up communications. Only
a few lines of code are needed, and you don’t need to know a lot about the TCP or
UDP protocols.

Value Description

0 Same host

1 Same subnet

32 Same site

64 Same region

128 Same continent

255 Unrestricted
679REALbasic User’s Guide

Communicating With The Outside World
The
AutoDiscovery
Class

The AutoDiscovery class is perfect for managing network communication among
REAL Studio applications. As its name implies, the AutoDiscovery class can
automatically “discover” all of the computers on the network that are running the
“easy” UTP protocol that’s used as the basis for network communications with this
class. With the AutoDiscovery class, you can send and receive messages with
individual users or multicast to a group of users.

Joining a
MultiCast
Group

To join a multicasting group of users, all you need to do is pass the name of the
group to the Register method of the AutoDiscovery class. Everyone who joins the
group uses the same name. Internally, the class takes care of assigning a proper
multicasting IP address for you. For example, the line:

is all you need to join the group. To get the list of all group members, call the
GetMemberList method. It returns a string array of the IP addresses of all
computers currently in the group. At any time you can call the UpdateMemberList
method to refresh this list.

This code gets the list of member computers and displays them in a ListBox.

Sending a
Message

To send a message to the group, you use the SendMessageToGroup method. It takes
an integer command code (which you can assign arbitrarily) and the text of the mes-
sage. For example, the following sends the contents of TextField2 as the message
with a command ID of 50:

To send a message to an individual, you need the computer’s IP address, which you
can get from the GetMemberList method, the command ID, and the message text.
Call the SendMessageToIndividual method. For example, the following sends the
same message to the person at 192.168.1.118:

This example uses the underscore character to continue the line of code in a second
line in the Code Editor.

AutoDiscovery1.Register("myMulticastingGroup")

Dim s(-1) as string //declare the array and let GetMemberList resize it
Dim i as Integer
s= AutoDiscovery1.GetMemberList
For i=0 to Ubound(s) //Ubound gets index of the last element of s

ListBox1.AddRow s(i)
Next

AutoDiscovery1.SendMessageToGroup(50,TextField2.Text)

AutoDiscovery1.SendMessageToIndividual("192.168.1.118",_
,50,TextField2.Text)
680 REALbasic User’s Guide

Communicating With The Outside World
The
EasyUDPSocket
and
EasyTCPSocket
Classes

The EasyUDPSocket and EasyTCPSocket classes are “easy” versions of the UDP-
Socket and TCPSocket classes, respectively, that are specialized for REAL Studio-to-
REAL Studio network communication. They both eliminate the need to deal with
some lower-level networking issues in order to provide a simple solution to a partic-
ular problem.

The main difference between the EasyTCPSocket class and the regular TCPSocket
class is the message-based aspects of the protocol. The connection process is
identical to a regular TCPSocket. However, when you want to send data to a remote
machine you must use the SendMessage method to do so. When you receive a
message sent via this protocol, you will get a ReceivedMessage event.

Receiving a
Message

Receiving a message couldn’t be easier. The AutoDiscovery class has a ReceivedMes-
sage event that fires when AutoDiscovery receives a message from anyone in the
group (or an individual), including yourself. The event returns the IP address of the
sender’s computer, the Command ID, and the message text. An event handler like
this is all you need:

Understanding Protocols
Any kind of communication requires that all parties involved agree on a method of
communication and a language. For example, if you want to communicate with a
friend, you might talk to them face to face, call them on the phone, or send them
email. Both of you must be able to communicate using the same language or you
won’t be able to communicate at all. Communications via TCP/IP work the same
way. The language used is called a protocol. A protocol is simply an organized way of
sending and/or receiving information.

If you are writing an application that will communicate with another application
via TCP/IP, you will need to understand the protocol the other application will be
expecting in order to communicate with it. For example, on the Internet, the
protocol for the world wide web is called HTTP (HyperText Transfer Protocol), the
protocol for sending email is called SMTP (Simple Mail Transfer Protocol), and the
protocol for receiving email mail is called POP3 (Post Office Protocol 3). Complete
descriptions of these Internet protocols and others are available on the Internet. The
descriptions of these protocols are called RFCs (Request For Comments). The easiest
way to find information on RFCs is to go search for “RFC”. This will give you a list
of links to various web sites that explain all of the various Internet protocols.

If you are writing an application that communicates with other applications you
have written, then you can define your own protocol. Your protocol will simply be a
set of commands you define that allow the applications to understand what the
other wants.

Sub ReceivedMessage(FromIP as String, Command As Integer, data as
String)
MsgBox FromIP + " sent us " + Str(Command) + ": " + data
681REALbasic User’s Guide

Communicating With The Outside World
682 REALbasic User’s Guide

CHAPTER 14 Extending the Capabilities
of REAL Studio

One of the things that makes REAL Studio easy to learn and use is that it abstracts
you from the inner workings of the operating system. You don’t have to know any
of the thousands of commands that make up the API (application programming
interface) used to work with the Windows, Macintosh, or Linux operating systems.
This also means that REAL Studio may not have a particular capability that you
require. Fortunately, REAL Studio provides several ways to extend its capabilities,
allowing you to add just about any functionality you need.

Contents

n Making API calls to the operating system

n Calling AppleScripts

n Communicating with AppleEvents

n Using and Writing REAL Studio Plug-ins

n Using Shared and Dynamically Linked Libraries

n Office Automation

n ActiveX components
683REALbasic User’s Guide

Extending the Capabilities of REAL Studio
Making API calls to the Operating System
Using the Declare statement, you can access the API on the Macintosh, Linux or
Windows platforms. Both PPC and Intel machines are supported. You need to use
the conditional compilation feature to isolate your Declare statements for each
platform. With the Declare statement, you specify the name of the toolbox call and
its shared library, and the parameters the call uses. If the call returns a value, you
specify the data type of the value that is returned.

If the functionality is available on both platforms, you can use the same name for
both platforms. However, often the parameters for the call will be different. Use
conditional compilation to isolate your calls as well.

The following button Action uses the Macintosh Speech manager to speak the text
in a TextField:

If the name of the toolbox call is the same as a REAL Studio method, use the Alias
keyword to refer to the call. For example, if SpeakString was the name of a REAL
Studio method, you could not use the above syntax. You could use, for example:

You would then use MySpeakString in your code to invoke the toolbox call.

See the description of the Declare statement in the Language Reference for more
information and examples.

dim s as string
dim i as integer
#if TargetMacOS then
Declare Function SpeakString lib "SpeechLib" (SpeakString as pstring) as Integer
#endif
s=TextField1.text
#if TargetMacOS then
i=SpeakString(s)
#else
MsgBox "Speech is supported only on Macintosh!"
#endif

Declare Function MySpeakString lib "SpeechLib" Alias "SpeakString"
(SpeakString as pstring) as Integer
684 REALbasic User’s Guide

Extending the Capabilities of REAL Studio
Calling AppleScripts
AppleScript is Apple’s system-level scripting language that makes controlling
applications easy. REAL Studio supports AppleScript. You can write a script in
AppleScript and then call that script in your REAL Studio project.

Note: Applescript is available for use only on Macintosh.

Preparing an
AppleScript to
Work in REAL
Studio

In order for REAL Studio to run an AppleScript, the entire script must be enclosed
in an “on run” handler like this:

Next, your script must be saved as a compiled script. In the Script Editor supplied
by Apple, choose File . Save As. Then choose “Script” from the File Format pop-up
menu.

Adding an
AppleScript to
a Project

To include an AppleScript, just drag your compiled script file into the REAL Studio
Project Editor. The script will appear with a script icon next to it. Figure 497 shows
an example of a project with a script installed.

Figure 497. A compiled AppleScript in Project Editor

When you drag a compiled script into your Project Editor, REAL Studio creates an
alias to the AppleScript on disk. Its name is shown in italics, as indicated in
Figure 497. When you create a standalone application, the AppleScript is included
in the built application.

on run
 //your script code goes here
end run

Installed
Script

685REALbasic User’s Guide

Extending the Capabilities of REAL Studio
Passing
Values To an
AppleScript

If you are writing a script you want to pass parameters to, the parameters must be
enclosed in curly braces following the on run statement. In the following example,
the x and y are parameter variables that will hold the values of the two parameters
passed to the script:

Returning
Values From
an
AppleScript

You write a script to act as a function by having it return a value. To return a value
from a script, simply use the return command in AppleScript followed by the value
you wish to return. This simple example takes a number of days and returns the
equivalent number of years:

Calling an
AppleScript

Scripts are called just like the built-in methods and functions. Type the name of the
script as it appears in the Project Editor. If the script requires parameters, the
parameters follow the name of the script just as they do with any of the built-in
commands. This example calls a script that sets the sound level of the Macintosh
to 5:

Scripts that return values (acting as functions) work just like the built-in REAL
Studio functions. This script gets the current sound level and assigns it to a variable:

Removing an
AppleScript

To remove a script from a project, click on the script in the Project Editor to select
it then press the Delete key or Control-click on the Applescript and choose Delete
from the contextual menu.

on run {x,y}
 //your script code goes here
end run

on run {daysOld}
 return daysOld/365
end run

SetSoundLevel 5

Dim level as Integer
level=GetSoundLevel()
686 REALbasic User’s Guide

Extending the Capabilities of REAL Studio
Communicating with AppleEvents
AppleEvents is the core communications system between applications on the Mac-
intosh. As a matter of fact, when you are calling AppleScript code, AppleScript is
actually performing all of its magic with AppleEvents. When you choose
K . Restart on Mac OS X, the Finder sends a “Quit” AppleEvent to any open appli-
cations. This particular AppleEvent is one that all applications are required to sup-
port.

You can perform some very fast and powerful actions with AppleEvents. You create
AppleEvent objects in REAL Studio using the AppleEvent constructor. The
constructor takes as its parameters class of AppleEvent, the Event ID of the
AppleEvent you wish to send, and the bundle id of the target application of the
AppleEvent. AppleEvents have three parts: an event class, an event ID, and the
creator code of the target application.

The Event Class and Event ID together uniquely define a particular AppleEvent.
The EventClass acts as a category for logically grouping events together. While
there are many standard (and even some required) AppleEvents, many applications
have several custom AppleEvents for performing actions specific to the application.
Consult the application’s documentation or its author to get information on what
custom AppleEvents may be available.

Sending
AppleEvents

Once you create the AppleEvent object and populate the necessary parameters with
data, you then send the AppleEvent to the target application using the AppleEvent
object’s Send method.

In this example, an AppleEvent is created to tell the Finder to restart the Macintosh.
“FNDR” is the class of AppleEvent and “rest” is the event ID. “rest” is short for
“restart”. Finally, “com.apple.finder” is the bundle ID for the Finder. The
AppleEvent class has a Send method. This method is a function that returns True if
the AppleEvent is successful and False if it fails.

Receiving
AppleEvents

In order to receive AppleEvents your project must have a subclass that has Applica-
tion as its Super property value. That’s because the Application class is the only class
with a HandleAppleEvent event handler. The App class that is included in the
Desktop Application template has this event handler. When your application
receives an AppleEvent, the application class’s HandleAppleEvent event handler is
executed and the AppleEvent is passed as a parameter to the event handler.

dim ae as AppleEvent
ae=New AppleEvent("FNDR","rest","com.apple.finder")
if not ae.send then

MsgBox "The computer couldn't be restarted."
end if
687REALbasic User’s Guide

Extending the Capabilities of REAL Studio
This event handler, when called, is passed an AppleEvent object, the event class, and
the event id. There are required AppleEvents that your application should support.
One of the them is the Quit AppleEvent.

In this example, if the HandleAppleEvent event handler receives a quit AppleEvent
from the Finder, it calls the Quit method.

You can create your own set of AppleEvent classes and event IDs for your applica-
tion that represent various actions your application can take in response to them.

If your application needs to know if the Mac has gone to sleep or when the Mac
wakes up from sleep, you can get this information easily. It turns out that the Mac
OS sends a “wake” AppleEvent to all applications when the computer wakes up
from sleep.

The HandleAppleEvent event handler of the Application class fires anytime your
application receives an AppleEvent. This event handler is passed the AppleEvent,
the EventClass, and the EventID. To determine whether you have received the wake
event, check to see if the EventClass is “pmgt” and the eventID is “wake” in the
HandleAppleEvent event handler. If you receive an AppleEvent with these values,
the Macintosh has just woke up from sleep.

Keep in mind that AppleEvent classes and IDs are case-sensitive. Also, you won't
receive these events when running your application in the IDE. You will receive
them only in your built applications.

Sophisticated
AppleEvents

AppleEvents can actually contain quite a bit of very specific data. AppleEvents for
example, can be used write to applications that process data for web servers. For more
information on AppleEvents, see the AppleEvent class in the Language Reference.

Function HandleAppleEvent(Event as AppleEvent, eventClass as String,
EventID as String) as Boolean

 if eventClass="aevt" and eventID="quit" then
 //the Finder wants the app to quit
 beep
 msgBox "I must quit now."
 quit
 end if
688 REALbasic User’s Guide

Extending the Capabilities of REAL Studio
Using and Writing REAL Studio Plug-ins
Many applications have their own plug-in format. Netscape Navigator, Adobe Pho-
toShop, 4th Dimension, are just a few examples of applications that have a plug-in
formats. Plug-ins are a way for an application to be extended by other programmers.
For example, there is a plug-in for Firefox that allows it to play QuickTime movies
that have been embedded into web pages.

REAL Studio also has its own plug-in format. Plug-ins are written in languages like
C and C++. For example, James Milne of Essence Software wrote a plug-in for
REAL Studio that plays a particular type of music file. REAL Studio also uses plug-
ins to manage connectivity to database back ends. You can add support for other
database engines simply by writing (or obtaining from a third-party) the plug-in for
that database engine.

If your application is being designed to run on Mac OS X, plug-ins must be
carbonized.

Loading Plug-
ins

Loading plug-ins is easy. Simply create a folder called “Plugins” in the same folder
that contains REAL Studio. Then drop your plug-in files into that folder. Any plug-
ins in this folder will automatically be available to your projects.

Using Plug-ins Some plug-ins are in the form of controls similar to those that appear in the REAL
Studio Controls list. When you have this type of plug-in in your Plug-ins folder, a
new control will appear in the Controls list. Plug-in controls appear in the Plug-in
Controls category in the Window Editor’s Controls list.

You use a plug-in control the same way you use any other control in the Controls
list, by dragging it to a window. The Properties pane will then display any
properties that can be set from the Design environment.

Plug-ins can also be a set of methods that has no interface whatsoever. Plug-ins of
this type do not appear anywhere in the interface. You must have some
documentation to know which methods exist in the plug-in, what the methods do,
and how to use them.

Including
Plug-ins in
Your Stand-
Alone
Applications

When you build a stand-alone application from your project, any plug-ins you are
using in your project will automatically be built-in to the stand-alone application.

Writing Your
Own Plug-ins

If you know C or C++, you can write REAL Studio native plug-ins. The REAL Stu-
dio Plug-in Software Development Kit (SDK) is available on the REAL Software
web site. This kit contains all the information you need to write plug-ins including
sample plug-ins and include files for Metrowerks CodeWarrior.
689REALbasic User’s Guide

Extending the Capabilities of REAL Studio
Using PowerPC Shared Libraries
PowerPC shared libraries are files that have subroutines that can be called and
passed parameters. These parameters are referred to as “entry points.”

In REAL Studio 2005 and above, shared and dynamically linked libraries are
accessed via the Declare statement in the language. See the Language Reference for
information on the Declare statement.

Microsoft Office Automation
REAL Studio includes four classes that enable you to program Microsoft Office
applications directly from REAL Studio. Office automation is supported only on the
Windows platform. Obviously, Microsoft Office must also be installed on the
machine that will run the built application.

The five classes are as follows:

Office Automation is the Component Object Model (COM) technology that makes
Microsoft Office applications programmable.

The language that you use to automate Microsoft Office applications is documented
by Microsoft and numerous third-party books on Visual Basic for Applications
(VBA). Microsoft Office applications provide online help for VBA. To access the
online help, choose Macros from the Tools Menu of your MS Office application, and
then choose Visual Basic Editor from the Macros submenu. When the Visual Basic
editor appears, choose Microsoft Visual Basic Help from the Help menu. The help is
contextual in the sense that it provides information on automating the Office
application from which you launched the Visual Basic editor.

The help files for VBA may not have been installed by default. If VBA Help does
not appear, you will need to perform an optional install before you can access the
help files. On Windows Office 2003, Office prompts you to install the VBA Help
files when you first request VBA help by following the procedure described in the
previous paragraph.

Microsoft has additional information on VBA at http://msdn.microsoft.com/vbasic/
and have published their own language references on VBA. One of several third-
party books on VBA is “VB & VBA in a Nutshell: The Language” by Paul Lomax
(ISBN: 1-56592-358-8).

Class Description
ExcelApplication Inherits from OLEObject and is used to automate Excel.
Office Contains all the enums you need for Office Automation.
OLEObject Used to automate COM servers and the base class for

ExcelApplication, PowerPointApplication, and
WordApplication.

PowerPointApplication Inherits from OLEObject and is used to automate
PowerPoint.

WordApplication Inherits from OLEObject and is used to automate Word.
690 REALbasic User’s Guide

Extending the Capabilities of REAL Studio
Uses of Office
Automation

With Office Automation, you can create methods to automatically create and for-
mat documents in Word. You can use Automation to run other applications from
within a REAL Studio application. For example, a REAL Studio application can run
a hidden instance of Excel to perform mathematical and analytical operations on
data in a REAL SQL database. Or, you could use Word to create mail-merge letters
using data in a REAL SQL database.

Here is a simple example of office automation that creates an OLEObject, launches,
MS Word, and opens a blank document.

For some examples, see the entries for the ExcelApplication, WordApplication, and
PowerPointApplication classes in the Language Reference.

ActiveX
Components

ActiveX components are standard user interface elements or programmable objects
that enable you to build a highly customized interface rapidly. With the Windows
version of REAL Studio, you can add ActiveX controls and components to your
application using the Project . Add . ActiveX Component menu item. It presents
a dialog box with the list of ActiveX controls and components that are installed on
your PC. That is, the list will differ depending on what is currently installed and
available and would not necessarily agree with what is installed on your users’
computers.

Figure 498. The ActiveX Components dialog box.

Click the CheckBox corresponding to each ActiveX component that you want to
add and click OK. If you added any ActiveX controls, they will appear in the
Project Controls list in the project’s Window Editors and your Project Editor. If an

Dim word as New OLEObject("word.Application")
Dim wordcopy as OLEObject
wordcopy=New OLEObject(word)
wordcopy.Visible=True
wordcopy.Documents.Add
691REALbasic User’s Guide

Extending the Capabilities of REAL Studio
ActiveX component is not a control, it will appear only in the Project Editor. Once
added, you can incorporate the control or component into your REAL Studio
application as if it were a standard REAL Studio object. You work with it just as if
it were a REAL Studio control or class.

For example, if the machine has a licensed copy of SAS Graph installed
(http://www.sas.com) you can add programmatic statistical graphing capabilities to
REAL Studio via the SAS Graph control, as shown below.

Figure 499. The SAS Graph control added to a REAL Studio window.

For information about programming ActiveX components and specific Microsoft
ActiveX components, refer to Microsoft documentation in the MSDN library at:

http://msdn.microsoft.com/library/
692 REALbasic User’s Guide

http://www.sas.com

CHAPTER 15 Building Stand-Alone
Applications

When you are ready to turn your project into a standalone application, there are a
few things you will need to know. This chapter will help you understand what
finishing touches your application may need to make it complete.

REAL Studio can create two types of standalone applications: fully-functional and
demo. The fully-functional version is the same as the application that runs when
you click the Run button in the Toolbar or choose Project . Run in the IDE, except
that no copy of REAL Studio is needed (hence the name “standalone”). A demo
version is the same as one built with the fully-functional version, except that it quits
automatically after five minutes.

The Professional and Studio versions of REAL Studio build fully-functional
standalone applications for the Windows, Mac OS X, and Linux platforms. The
Personal version allows you to build fully-functional applications only for the
platform on which REAL Studio is running. It can only build demo versions for
each platform on which REAL Studio is not running.
693REALbasic User’s Guide

Building Stand-Alone Applications
Contents

n Choosing a Target Platform

n Building Your Application

n Project Editor Items

n Assigning Custom Icons

n Registering Your Creator Code

n Using and Writing REAL Studio Plugins

Choosing a
Target
Platform

Before you build your application, you choose the platform or platforms on which it
will run. REAL Studio can build for Windows, Linux, and Mac OS X. You can
build for any or all of these platforms simultaneously.

To choose a target platform, do this:

1 Choose Project . Build Settings.
The Build Settings dialog box appears.

Figure 500. The Build Settings dialog box.

By default, the operating system that you are currently running is selected. You can
choose as many other targets as you wish.

Note that the Personal version of REAL Studio only builds demo versions of the
application for platforms other than the one on which the IDE is running.

Your choices are:

n Windows 2000 and later: Builds a Windows application that will run on
Windows 2000, XP, and Vista.

n Linux with GTK+ 2.x: Builds a Linux application that runs on x86-based machines.
Linux builds of REAL Studio desktop applications require GTK+ 2.8 or above,
glibc-2.3 (or higher), the CUPS (Common UNIX Printing System) and
libstdc++.so.6. For information on GTK, see http://www.gtk.org. Linux builds of
console applications do not require GTK.
694 REALbasic User’s Guide

Building Stand-Alone Applications
n Mac OS X Universal Binary: Builds for Mac OS X for computers that use either
the PowerPC or the Intel architecture. Mac OS X 10.2 or above is required.

n Mac OS X PowerPC: Builds for PowerPC Macintoshes in the Mach-O format.
Mac OS X 10.2 or above is required.

n Mac OS X Intel: Builds for the Intel-based Macintoshes in the Mach-O format.
Mac OS X 10.2 or above is required.

All three Macintosh choices use the Mach-O format. Mach is the Unix kernel on
which Mac OS X is based and Mach-O is the object file format for Mach. Mach-O is
the native executable format for Mac OS X.

Building Your Application
Building a standalone version of your project as an application couldn’t be easier. Just
click the Build button in the Toolbar or choose Project . Build Application (Ctrl+B
on Windows and Linux or x-B on Macintosh). REAL Studio will create standalone
applications for all the platforms that you selected in the Build Settings dialog.

REAL Studio uses a folder called “Builds - ProjectName” that stores all of the builds
for that project. Inside this folder, there will be folders for each selected target
platform. If you build for all possible target platforms, the Builds folder will contain
the following subfolders:

n Windows

n Linux

n Mac OS X (Intel)

n Mac OS X (PowerPC)

n Mac OS X (Universal)

This folder structure prevents possible naming conflicts when building for multiple
targets.

For example, here is the Builds folder for the “GridLock” project. The Builds folder
is named “Builds - GridLock.rbp” and the selected target platforms for the build
are: Windows, Mac OS X (Universal), and Linux.
695REALbasic User’s Guide

Building Stand-Alone Applications
Figure 501. The Builds folder for the GridLock project.

Each subfolder will contain the build for that platform. If you rebuild for a target,
then the new build will overwrite the older build without notifying you. When
building several targets at once, the complier will halt the build process for the first
target that encounters errors.

If you haven’t changed the application’s name for that platform, each build will use
the default name of “MyApplication” and use the default generic application for the
platform.

Figure 502. A standalone application (Linux1, Windows, and Macintosh) that uses
the default names and icon.

See the section “Customizing the Standalone Application’s Properties” on page 700
for information on changing the application’s name and icon.

Building for
Windows

The build process for the Windows platform differs from the other platforms. In
general, the Windows build process results in a folder that contains two items:
the .exe file, as shown in Figure 502, and a folder that contains the .dlls that the
application uses. A .dll will be written to this folder for each REAL Studio plug-in
that the application uses. This includes any internal plug-ins that the application
calls and any third-party plug-ins that you have installed. If dlls are included in the
build, the build folder will be nested inside the Windows folder shown in Figure
501. Otherwise, the Windows folder will contain only the .exe file.

1. Different Linux distributions may have different icons.
696 REALbasic User’s Guide

Building Stand-Alone Applications
REAL Studio implements a number of items as internal plug-ins. They do not
appear on the desktop as plug-ins, but are treated as plug-ins for purpose of the
application build. Whether or not an item is implemented as an internal plug-in is
an implementation detail that may change in subsequent releases. The complete list
of internal plug-ins is found in the “Internal Plug-ins” topic in the Language
Reference. You will get a .dll if the application uses an item in its list.

If an application does not use any plug-ins, then the complier generates only
the .exe file. If it does use a plug-in, it generates a folder that uses the name that you
gave the Windows version of the application. The folder will contain a folder called
MyApplication Lib, where MyApplication is the application’s name. This is the folder
that contains the required .dlls.

Since the .dlls are an integral part of the application, it is mandatory that you do not
move or rename them. Also, you cannot share a .dll library among several builds. If
you distribute the built application, you must distribute the entire folder, not just
the .exe file. This marks a change in procedures from releases of REAL Studio prior
to 2008 Release 2.

Incremental
Compilation

When you compile various versions of a project repeatedly, REAL Studio uses incre-
mental compilation by default. When it does a compilation, REAL Studio compiles
each project item individually and saves the compiled code in a cache. The next
time you compile the project, it analyses what has changed. It reloads as much of the
saved code as it can and compiles only the aspects of the project that have been
added, modified or depend on other items that have been modified. For example, if
you change a class, REAL Studio recompiles that class and everything that refers to
that class and its subclasses.

If desired, you can disable incremental compilation and force a full compilation. To
do so, chose Edit . Options (REAL Studio . Preferences on Macintosh) and display
the Build Process screen. Deselect the Enable Incremental Compilation option.
697REALbasic User’s Guide

Building Stand-Alone Applications
Figure 503. The Enable Incremental Compilation option.

By default, when REAL Studio is finished building the application, it will bring the
window containing the application to the front for you. This will be a subfolder in
the Builds folder for that project. If you have specified more than one target
platform, the Build folder will be opened. You can double-click the standalone
application for your platform to launch the built application.

If you don’t want REAL Studio to bring the window containing the application to
the front, you can deselect this preference in the Build Process screen of the Options
dialog box (Preferences on Mac OS X). This panel is shown in Figure 503.

Deselect the “Show Built Applications on Desktop” preference to disable this feature.
On Windows, the desktop is called “Windows Explorer” on Macintosh, it is called
the Finder, and on Linux, it is called the Desktop.

When you build an application, REAL Studio does not ask before overwriting an
existing build in the Builds folder. If you want to keep an earlier build around,
move it into another folder before rebuilding the application.

The Build Process screen in the Options dialog box allows you to change the
directory used to store debug builds of the application (those that are created when
you click the Run button in the toolbar). If you wish, you can change this by
changing the path shown in the “Build unsaved apps in” field.

When you click the Build button in the Main toolbar or choose Project . Build
Application, REAL Studio displays the Build Progress dialog box. It shows the
progress of each build you specified. If you are building for multiple targets, each
target is shown in its own line.
698 REALbasic User’s Guide

Building Stand-Alone Applications
Figure 504. The Build Progress dialog.

If you want to display one of the files resulting from a build, click the magnifying
glass on the right side of the desired row.

If the attempt to build failed, the magnifying glass is replaced by an alert icon and
an “Errors” panel opens in the IDE. It lists all the errors that prevented compilation.

If the Builds window is closed and you want to reopen it without creating a new
build, choose Window . Builds.

Analyzing the
Project

When you attempt to compile an application, REAL Studio must first check your
code for errors. If it finds an error, it cannot compile the application. It will stop the
compilation process and display the error or errors in a new “Errors” panel in the
IDE (If you have tabbed editing off, the Errors screen will open in a new window).

if REAL Studio finds no errors, it displays an alert box indicating that the project
passed all its tests.

Figure 505. The “Check Passed” alert box.

Before you attempt to compile the application, you can use the Project . Analyze
Project command to review the project. Analyze Project checks the project for both
syntax errors and other issues. For example, it checks for deprecated items, for the
obsolete syntax for declaring constructors, and unused variables and parameters. For
more information on the Analyze Project command, see the section “Analyzing the
Project” on page 632.
699REALbasic User’s Guide

Building Stand-Alone Applications
Customizing the Standalone Application’s Properties
Of course, you will want to replace the default name of your application and you
may also want to build for other platforms, set version information, and platform-
specific options.

You choose the target platforms for the build and the default language in the Build
Settings dialog box.

You customize your build options by setting the properties of the App class. The
Properties pane for the App class contains themes for the application’s Appearance,
Version Info, Windows, Macintosh, and Linux build settings, and Advanced
settings.

Figure 506. The properties of the App class.

After you’re finished entering these properties, REAL Studio will use these settings
when you build the application.

To customize your application’s properties, do this:

1 If the Project Editor is not displayed, click its tab in the IDE.

2 Select the App class in the Project Editor.
700 REALbasic User’s Guide

Building Stand-Alone Applications
The Properties pane changes to show the Application object’s properties, shown in
Figure 506. The properties are organized into seven groups: ID, Appearance, Ver-
sion Information, Windows, Linux, and Macintosh settings, Advanced, and Debug-
ger.

Appearance
Settings

In the Appearance group, you choose the default window and menubar and install
the application’s icon. The default window and menubar are shown when the appli-
cation starts. The drop-down lists offer all the project’s windows and menubars. The
default selections are the window and menubar that are added to a Desktop Applica-
tion project when you first created the project with the File . New Project menu
command or started the REAL Studio IDE application.

You can also paste in or import the custom icon for the application. If no custom
application is provided, REAL Studio will use the generic application icon for each
platform on which the application is built. Custom icons are recognized only if the
application has its own Creator code. Click the “...” button for the Icon to display
the Edit Icon dialog box for the application.

REAL Studio does not include an icon editor; you must design your icons in an icon
editor program or image creation application and import or paste them into REAL
Studio.

Figure 507. The Edit Icon dialog box.

The Edit Icon dialog box allows you to install icons of various depths and sizes. The
procedure for adding an application icon is the same as for document icons. For
more information, see the section “Adding a Document Icon” on page 485.

The Edit Icon dialog can be resized and the areas for the Image, Mask, and Preview
will resize proportionally.
701REALbasic User’s Guide

Building Stand-Alone Applications
You need to provide at least the following items:

n For Mac OS X, a 128 x 128 image (or larger), and smaller sized icon images for
other platforms. Even for Mac OS X it is best to provide smaller sized image files at
32 x 32 and 16 x 16.

n A mask that defines the icon’s edges so that the operating systems can determine
which regions in the square image are clickable.

If you are going to distribute your application on Macintosh, we highly recommend
that you set a Creator code and register it with Apple, Inc.

Another way of adding custom icons to your built application is to put your icon
data (including ‘icns’ 32-bit icons) in a Resources file that you add to your project.
These icons will overwrite the icon resources supplied by REAL Studio itself.
However, it is easier to accomplish the same thing using the Edit Icon dialog box.

For information on using the Edit Icon dialog box, see the section “Adding a
Document Icon” on page 485.

Version
Information

Some of the information in the Version Info area will be displayed when the user
clicks on your application icon and chooses File . Get Info (x-I) on Macintosh or
chooses Properties from the application’s contextual menu on Windows. The text
you enter in the Package Info area appears directly below the application’s name.
The text you enter in the Long Version entry area appears in the Version area below
the modification date. Here is the General panel of the Properties window on
Windows XP.

Figure 508. General and Version properties panels on Windows XP.
702 REALbasic User’s Guide

Building Stand-Alone Applications
The File Version field on the Version panel concatenates the MajorVersion,
MinorVersion, BugVersion, and NonReleaseVersion properties. The Description
field contains the value of the PackageInfo field and the Copyright field contains the
contents of the LongVersion property.

The Other Version Information Listbox contains the following properties:

On Macintosh, the Version number will appear in the Get Info dialog box, the
Finder’s List view, and written to the ‘vers’ resource of your application.

The version information can be displayed in a Windows List view if you select the
“Details” view option and right+click on the column headings to display the
Choose Details dialog (Figure 509). Scroll down and select the Product Version
option. On Mac OS X, the comparable option is available using the View . Show
View Options menu command. If you are using a List view in a window, this
command displays the dialog box shown on the right in Figure 509.

Figure 509. The View Options dialog box for List Views (Windows XP and
Mac OS X).

Table 42: App class properties displayed in the Other Version Info Listbox.

Item Property

Company CompanyName

Country

File Version MajorVersion.MinorVersion.BugVersion.NonReleaseVersion

Internal Name InternalName

Original File name WindowsAppName

Product Name ProductName

Product Version ShortVersion

Release StageCode
703REALbasic User’s Guide

Building Stand-Alone Applications
The remaining Get Info settings are not visible but are stored in your built
application’s ‘vers’ resource. The ‘vers’ resource can be used to store information
about a individual application or, if it is part of a set of files, to the group of files.
The ‘vers’ resource with an ID of 1 specifies version information for the application;
the version resource with an ID of 2 specifies version information for a set of files.

Figure 510 shows the relationship between the Version Information settings and the
‘vers’ resource settings:

Figure 510. Macintosh ‘vers’ resources 1 and 2.

The string in the Long Version area for vers ID2 corresponds to the Package Info
field in the App class’s properties.

The following elements are stored:

n Major Version level: In binary-coded decimal format. On Macintosh, accessible
only from the ‘vers’ resource in the first byte.

n Minor Version level: In binary-coded decimal format. On Macintosh, accessible
only from the ‘vers’ resource in the second byte.

n BugVersion: In binary-coded decimal format. On Macintosh, accessible only from
the ‘vers’ resource in the third byte.

Stagecode. The levels are coded as follows:

This information appears as the Release level in Windows Properties.

n NonreleaseVersion: Accessible from the ‘vers’ resource as the fourth byte. The
Major, Minor, Bug, and Nonrelease version numbers are concatenated in the
Windows Preferences dialog and shown as the “File Version.”

Table 43: Values corresponding to Stagecode.

Value Description

0 Development

1 Alpha

2 Beta

3 Final
704 REALbasic User’s Guide

Building Stand-Alone Applications
n AutoincrementVersionInformation: If this option is selected, the
NonreleaseVersion will be incremented automatically for each build. It does not
increment for a debug run in the IDE.

n Short version: Identifies the version number of the software. This may be
displayed, at the end-user’s option, in the Finder’s List views.

n Long version/Package Info: Long Version contains the version number and other
identifying information about the company, developer, or group of files. For ‘vers’
ID 1, the Long Version is displayed in the version field of the built application’s Get
Info window. For ‘vers’ ID 2, the string is displayed under the application’s name
and next to the application’s icon at the top of the Get Info window. It is referred to
as ‘Package Info’ in the Build Application dialog box.

Using the GetResource method of the ResourceFork class, you can access the
information contained in the ‘vers’ resource of your built application.

Windows
Settings

In the Windows Settings group you give the Windows build of your application a
name and, if desired, choose to run it as a Multiple Document Interface (MDI)
application.

If you select the Multiple Document Interface option, the application’s windows
will be enclosed in the “parent” MDI window. If you select this option, you can
enter the caption for the MDI window that appears in its title bar.

Select Multiple Document Interface if you want your Windows application to run
inside a “master” window. Enter the text of the master window title in the
MDICaption area.

If you deselect Multiple Document Interface, your application’s windows will
appear alongside other applications’ windows (like the REAL Studio IDE) and have
their own menubars. If your application can open more than one document window,
it will launch another copy of itself.

The MDIWindow class in the language allows you to set several properties of the
MDI window, such as its initial location and size, minimum size, and title. For
more information, see the entry for the MDIWindow class in the Language Reference.

There are three optional fields in the Windows Settings group:

n Internal Name: This is useful when your product has a different internal name than
its external name. If you leave Internal Name blank, it will be set to the name of the
application.

n Company Name: The name of the executable file. Use this if the name of the
executable is different from the (public) product name that is visible in the Start
menu. For example, “winword.exe” versus “Microsoft Word”.

n Product Name: The name of the product as installed in the Windows Start . All
Programs menu.
705REALbasic User’s Guide

Building Stand-Alone Applications
Linux Settings The Linux Settings group enables you to give the Linux build a name.

Mac Settings Use the Mac OS Settings group to set the name of the Mac OS X applications, set a
Creator code for the built application, and specify the file types that the application
will accept via drag and drop. The Creator code can be set using a global constant
(that is declared in a module) or a public constant using the syntax modulename.con-
stantname or windowname.constantname.

File Types for
Macintosh
Drag and Drop

To specify the acceptable file types for drag and drop, first define the file types in a
File Types Set Editor. Then click the “...” button for the AcceptFileTypes property
in the App object’s Properties pane. The following dialog box will appear, listing
the file types that you have defined.

Figure 511. The Accept File Types dialog box.

The AcceptFileTypes dialog will list all of the currently defined File Types. It uses
the syntax FileTypeSetName.FileTypeName. To indicate that the Macintosh build of
the application will accept drag and drop for the file type, select the file type’s
CheckBox by clicking its CheckBox.

Registering
Your Creator
Code

Each application’s creator code should be unique. This is because the Finder uses
these codes to determine which application to launch when a file is double-clicked.
The Finder simply locates the first application it can find with a matching creator
code.

You can register your application’s creator code with Apple to be reasonably sure
that it’s unique. For more information about registering Creator codes, see the
Apple developer web site at http://developer.apple.com.

Debugger The properties in the Debugger group provide the following capabilities:
706 REALbasic User’s Guide

Building Stand-Alone Applications
n CommandLineArgs: Enables you to pass command line arguments to debug
builds. Enter the arguments in this field.

n Destination: Enables you to specify a destination directory for debug builds.
Clicking the “...” button opens a file browser that enables you to select the desired
directory. When you make your selection, the full path to the directory is displayed
in this field.

Advanced The properties in the Advanced group offer the following options:

n Bundle Identifier: For Mac OS X bundled applications, you can enter the
CFBundleIdentifer in the Bundle Identifier field. This will add the
CFBundleIdentifier to the application’s plist. A bundle is a directory structure that
organizes executable and resources belonging to the application.

n Include Function Names: The RuntimeException.Stack property is a String array
that contains a list of all of the methods in the stack from the main entrypoint to the
point at which the exception was invoked.

The first element (element 0) contains the current function. The methods in the
stack continue from there. This feature only works if the Include Function Names
property is set to True in the “blessed” App class’s properties.

Default
Language

If you have provided support for more than one language via constants (see “Using
Constants to Localize your Application” on page 378), you can choose the default lan-
guage for the build from the Language pop-up menu. The values stored in the ‘vers’
resource are given in Table 44 on page 720.

You can select the default region for the application as well.

Build
Automation

If you wish, you can choose to automate the build process. For example, you can
specify the default language, the target platform, and set property values like build
version of the target application. This is entirely optional; you can choose to build
your application manually using the normal IDE controls.

You automate the build process using the Build Automation item that is added to
every project. The item has blank placeholders for every target platform; you
automate the build process by adding script items to the desired platform item.
707REALbasic User’s Guide

Building Stand-Alone Applications
Figure 512. The Project Editor window with the Build Automation item.

Each project can have its own pre and post-build IDE script. With these scripts you
can add ‘hooks’ for third-party tools to run IDE scripts. The scripts are placed in the
Build Automation item in the Project Editor window. This item is included in all
Desktop Application projects, regardless of whether you want to automate the build
process.

Each platform group is populated with one item that represents the build. This
item cannot be modified or deleted. Instead, you add script items to the platform
group.

Figure 513. The Project Editor window with the Build Automation item.

Each target contains one item. It represents the build project step for that platform.
This step cannot be added, removed, or renamed. It marks the point in the list of
build steps where the compilation of the application will occur. It also serves as the
708 REALbasic User’s Guide

Building Stand-Alone Applications
marker that determines what steps happen before the application is compiled and
what steps occur after the application is compiled.

Figure 514. The empty build steps in the default desktop application.

You can add separate build scripts for each target platform (Windows, Mac OS X,
and Linux) and you can use the feature to specify what happens before the
application is compiled and what happens after the application is compiled.

You add build steps using either the Project > Add > Build Automation submenu
or the contextual menu. In the latter case, choose Add to Project> Build
Automation to display the submenu items. In both cases, you will see three items:

n Copy files

n New IDE script

n External IDE script

Adding an item does not nest the item inside one of the target platform groups.
When it is external to all the Build Automation items, it is disabled from all tar-
gets. However, you can configure the item from this position. In all cases, you set
the properties of the step to configure it.
709REALbasic User’s Guide

Building Stand-Alone Applications
Figure 515. A new Copy Files step.

Drag it into a target platform group to make it active:

Figure 516. An enabled Copy Files step.

Here are descriptions of all the script types.

Copy Files Step The CopyFiles step copies a list of files to a selected destination. The destination for
the copy is specified by the Destination property of the CopyFilesStep. The values
are:

n App Parent Folder

n Resources Folder

n Framework Folder
710 REALbasic User’s Guide

Building Stand-Alone Applications
n Bundle Parent Folder

Since REAL Studio is a cross-platform development tool, the destinations are
specified in as cross-platform compatible way as possible. This table explains what
happens on each platform.

Use the Properties pane for a Copy Files step to specify the Destination from the
pop-up menu.

The Subdirectory can also be entered as a string. The specified directory will be cre-
ated and files copied into it. It will not create an entire relative directory path at
present.

Use the Files property to add files. It offers a dialog in which you can add the files.

Figure 517. The Files dialog box.

New IDE Script A new IDE script is created inline. It is not stored externally to your project like
other (external) IDE scripts. If you send a project that contains an internal IDE
script, the script will be included as part of the project. You add the internal script
as the Script item in the Properties pane. Click the Script property to open a dialog
in which you can enter the script.

Destination Mac OS X Windows Linux

App Parent
Folder

Next to the executable in
Bundle > Contents> Mac OS

next to EXE Next to EXE

Resources
Folder

In Bundle > Contents >
Resources

Directory containing
EXE > Resources

Directory
containing
EXE

Framework
Folder

In Bundle > Contents >
Frameworks

Directory containing
EXE appname Libs

Next to EXE

Bundle
Parent Folder

Directory containing the
bundle

Directory containing
EXE

Directory
containing
EXE.
711REALbasic User’s Guide

Building Stand-Alone Applications
Figure 518. The New IDE Script dialog.

There are two new variables available for IDE build scripts, CurrentBuildLocation
and CurrentBuildTarget. CurrentBuildLocation is the shell path to the item being
built. It is not valid in pre-build steps and will be blank. This location will be
wherever GetFolderItem would try to locate the file. CurrentBuildTarget is an
Integer value that you can use to determine what kind of executable is being built.
It uses the same constants as BuildApp.

External IDE
Script

An external IDE script is stored externally to your project. It is just a reference to an
external file. You specify the script file using the File property of the External
Script’s Properties pane. Click in the File area to open a browser area.

Since an external script is a reference, they are not included as part of the project. If
you send such a project to another person, you will need to include the external
script file or files.

Preparing your Application for Compilation
Although the process of creating a standalone application is very simple, you should
take into account any special features or limitations of the target operating system
so that you can optimize your application’s performance.

REAL Studio offers a very convenient way of testing your application under a
different operating system: remote debugging. If you have a computer that is
running a second target operating system, you can use remote debugging to send it
a debug build of your application and launch it automatically. Remote debugging is
available in the Professional and Studio versions of REAL Studio.

For information on how to configure your computers for remote debugging, see the
section “Remote Debugging” on page 657.
712 REALbasic User’s Guide

Building Stand-Alone Applications
This section covers some of the issues affecting the behavior of an application on
each of the platforms.

Compiling for
Windows

To compile for Windows, check the Windows CheckBox in the Build Settings dia-
log box area and enter the name of the .exe file in the Windows group in the App
object’s Properties pane. The compiler will create a single executable application for
the Windows environment. On Windows, the application will have a generic appli-
cation icon unless you have provided a custom icon. On Macintosh, the Windows
application will have a Parallels badge if Parallels is installed. You can double-click
the Windows build to open your Windows application in Parallels (assuming you
have a Windows virtual machine).

Figure 519. Windows builds of a REAL Studio application.

As discussed in the section “Building for Windows” on page 696, a windows build
will, in general, result in a folder that contains the .exe file plus a folder that
contains all the .dlls that the application uses. The build will produce only the .exe
file only in the special case in which the application does not use any plug-ins.

Windows
Considerations

Before building an application for deployment on Windows, you should check the
following issues for compatibility:

n End of Line Characters: When inserting text into TextFields or TextAreas via
code, keep in mind that Returns are followed by Line Feeds. Use the EndOfLine
function rather than hardcoding end of line characters.

n Non-ASCII Codes: Characters above ASCII 127 are not identical on all platforms
and also differ by language. For example, the bullet character on the Macintosh is
165 but on Windows it is 149 (US operating systems). When you read in text from
an outside source, you can use the optional Encoding parameter of the Read,
ReadLine, or ReadAll methods to specify the encoding that the incoming text uses.
Internally REAL Studio stores the encoding with each text string. If you need to
write text out to an application or platform that expects a particular encoding, you
can call the ConvertEncoding method to convert the text to the desired encoding.

n Windows GUI: If you are developing your application on Macintosh or Linux, it’s
important to consider Windows user interface guidelines. Otherwise, your
application will look like a port from another platform to Windows rather than a
genuine Windows application.

n Control Order: If you are developing the application on Macintosh for deployment
on other platforms you should check the control order since controls like

Windows LinuxWindows on
Macintosh
with Parallels

Mac OS X
713REALbasic User’s Guide

Building Stand-Alone Applications
CheckBoxes and PushButtons can get the focus on Windows and Linux. Make sure
you test the control order on other platforms before building your application.

n Multiple Document Interface: Some MDI (multiple document interface)
applications on Windows maximize the MDI frame window when launched. The
MDI frame window is the parent window in which the applications windows open.

If you are compiling a Win32 version of your project and would like to maximize
the MDI frame window when your application launches, you can call the Maximize
method of the MDIWindow class in the Open event in the App object. The the App
object is added to your Project Editor automatically. Be sure to specify that you
want the application to run in an MDI window in the Windows settings group of
the App class’s properties.

n Mac-only Controls: Some control are unique to the Macintosh and don’t have a
Windows or Linux counterpart. For example, the SpotlightQuery control supports
the Macintosh-only Spotlight API.

n Windows Menus: The text of certain standard menu items on Windows are
different. For example, “Exit” is used instead of “Quit”. You can use the REAL
Studio constants system to localize your application's interface for Windows in this
respect (see “Using Constants to Localize your Application” on page 378). The Exit
or Quit menu in REAL Studio is already handled via constants in the App class.

n Mac-only Features: A few REAL Studio capabilities are Macintosh-specific. For
example, AppleEvents and AppleScript, and the DockItem class. Another example
is the Permissions class, which is for Linux and Mac OS X only. You can use
conditional compilation to isolate this code. It uses the structure:

TargetBoolean is a boolean constant or constant expression that lets you selectively
include code that will be included only in a particular build. You can use the built-
in boolean target compiler constants TargetMacOS, TargetMachO, TargetHasGUI,
TargetCarbon, TargetLinux, TargetWin32, or Targetx86. These constants test
which type of code is compiling. You can also use constant expressions that evaluate to
True or False. For example, you can use the RBVersion and the RBVersionString
constants to determine whether the user is using a particular version of REAL
Studio or at least a minimum version level, e.g., version 2005 and above.

See the section in the Language Reference on Cross-Platform Development and the
descriptions of the conditional compilation constants for more information.

#If TargetBoolean then
//platform-specific code, included in
//the built app when TargetBoolean is True
#Elseif TargetBoolean2 then

//platform-specific code for TargetBoolean2
#Endif
714 REALbasic User’s Guide

Building Stand-Alone Applications
n Platform-specific FolderItems: Some of the functions that return references to
Mac OS-specific or Linux-specific folders will return Nil on Windows and vice versa.
See the entry for SpecialFolders in the Language Reference and access special OS
FolderItems via this module.

n API Calls: With the Declare statement, you can make API calls for Macintosh,
Linux, or Windows platforms. Of course, the nature of the call will differ by
platform. Use conditional compilation to isolate both the Declare statements and
your usage of your toolbox calls later in your code.

n Font sizes for controls: The three target platforms supported by REAL Studio
have their own conventions regarding default system fonts and font sizes. Often, a
font size that looks good on one platform is too large or too small on another
platform. For that reason, the REAL Studio Options dialog box has an option for
choosing the default font size for the target platform to use as the default font size
for all controls that use text. This, in effect, allows you to choose more than one
default font size for controls simultaneously. Choose a font size of zero to use this
option.

Figure 520. Choosing the default font size for the target platform for controls.

You can also set the TextSize property of any control to zero to invoke this option
for the particular control (if the option is not selected globally, as shown in
Figure 520). You can also specify the System font or the SmallSystem font rather
than a specific font to instruct REAL Studio to use the system (or small system) font
for the target platform.
715REALbasic User’s Guide

Building Stand-Alone Applications
Mac OS X
Considerations

Before building your application for Mac OS X, you should carefully test all the
interface elements to make sure that they look right (i.e., buttons, Popup menus,
ListBoxes, etc. are properly sized and look good with the fonts used in Mac OS X).
Also any shared libraries that the application uses must be carbonized.

If you are a Windows or Linux user and are cross-compiling for Mac OS X, you
should familiarize yourself with the Apple’s Human Interface Guidelines. It is a
detailed specification for Apple-recommended user interface design. The complete
user interface guidelines are at:

The following are some of the major differences between Apple interface conven-
tions and those of other platforms. Some differences can be handled via careful inter-
face design while others may require alternate versions of windows, dialogs, and
other interface elements. To manage alternate versions of objects, you can use the #If
statement to conditionally compile for different target platforms. See the Language
Reference for information about #If and the target platform constants used for condi-
tional compilation.

n Macintosh uses a single menubar that is always at the top of the screen. Individual
windows do not have menubars. Although REAL Studio supports multiple
menubars that can be associated with different windows, the use of this feature is
contrary to Apple user interface guidelines.

n The Exit menu item on Windows is named “Quit” on Macintosh. You can use the
REAL Studio constants system to localize your application’s interface for Windows
in this respect (see “Using Constants to Localize your Application” on page 378).
This is done within REAL Studio, for example. The App class contains a constant
that is used to set the text property of this menu item.

n An application’s preferences menu item is located in the application’s own menu,
rather than under the File, Edit, or Tools menu. REAL Studio has a special class for
handling this issue, the PrefsMenuItem class. Use this class rather than the
MenuItem class for your Preferences menu item.

n Macintosh does not support Windows’ Multiple Document Interface. This makes
windows document-centric rather than application-centric because a document
window is never enclosed in a parent window that identifies the application and
holds the application’s menubar. Moreover, each Mac OS X window exists in its
own layer in the Finder. That is, clicking on one of an application’s windows does
not bring all of the application’s windows to the front. As a result, a Macintosh user
can interleave one application’s windows with other application’s windows. If you
designed your application as an MDI application, be sure to check out its behavior
in a non-MDI environment.

http://developer.apple.com/documentation/UserExperience/Conceptual/O
SXHIGuidelines/
716 REALbasic User’s Guide

Building Stand-Alone Applications
n Historically, the standard Macintosh mouse is a one-button mouse, although Apple
and third-party multiple-button mice are now available and supported by
Mac OS X. However, you can’t expect that all your users will have a three-button
mouse. On Macintosh, the equivalent of the Windows’ right+click gesture is
Control-click. Be sure that you application does not rely on mouse gestures that are
not supported by the one-button Apple mouse.

n Mac OS X uses the Dock as an application and document launcher. REAL Studio’s
DockItem property of the Application class enables you to control the appearance of
your application’s Dock icon and the DockItem property of the Window class
enables you to control the appearance of the icon representing one of your
application’s documents (When a Mac OS X user minimizes a document window, it
appears as an item in the Dock). These icons should be designed as 128 x 128 pixel
icons.

n In dialog boxes, PushButton captions use verbs rather than “Yes” and “No” and are
arranged differently. Typically, the positions of the “validate” and “cancel” buttons
are reversed. For example, the two dialogs shown in Figure 521 are the “save
changes” dialogs from Microsoft Word for Mac OS X and Windows XP. As you can
see, the arrangement and wording of the PushButtons are significantly different.
Also, modal dialogs such as this are implemented on Mac OS X as sheet windows
when they pertain to a particular window.

Figure 521. “Save Changes” dialogs on Macintosh OS X and Windows XP.

n Toolbars that contain many, many small icons are discouraged by Apple. Apple
favors the use of a few “high quality, larger” icons in the toolbar which are labeled
with text below the icon rather than via a hidden “tips” window. REAL Studio’s
Toolbar class can be used to create such toolbars. Mac OS X applications also use the
Drawer window to reveal additional choices or options when a toolbar icon is
clicked. Apple also recommends the use of floating palettes as an alternative to
extensive toolbars.

n There is a standard list of reserved keyboard shortcuts for Macintosh. Your
application should not try to override them. Aqua user interface guidelines also
specify certain recommended keyboard shortcuts for common operations, such as the
717REALbasic User’s Guide

Building Stand-Alone Applications
keyboard equivalents for the standard File and Edit menu items. These keyboard
shortcuts are listed in the Aqua Human Interface Guidelines, available at the URL
given above.

n Carbon applications include an automatically generated ‘plst’ resource which
describes your application to the Mac OS X Finder. If you wish, you can override
this by including your own ‘plst’ 0 resource in a resource file in the project.

Linux
Considerations

If you are building your application for Linux from another platform, you should
carefully check out the appearance of the Linux version of your interface and adjust
the font size and size of controls for maximum readability. For example, controls
such as PushButtons are too short to display text property when drawn at the
standard height for Macintosh and Windows.

Here is a method that examines all the RectControls on a layout and enlarges the
appropriate ones for the Linux version of the application:

You should keep in mind the following information.

Requirements Linux applications run on only on x86 machines and REAL Studio desktop applica-
tions require GTK+ 2.8 or above (which has its own requirements, such as GDK,
Pango, Atk, etc.), glibc-2.3 or above, CUPS, and libstdc++.so.6. Depending on

// For Linux we are going to set the new control height to 28
const kNewHeight = 28

Dim i as Integer
Dim ctl as RectControl

// loop through all of the controls on the window
For i = 0 to ControlCount - 1

If NOT control(i) isa rectControl then
Continue // move to the next control in the loop

End If

// Cast it as a RectControl that has a Height property
ctl = RectControl(control(i))

If ctl.height < kNewHeight then

If (ctl isa pushButton) OR (ctl isa staticText) OR (ctl isa TextField) OR _

(ctl isa popupMenu) OR (ctl isa comboBox) then
ctl.height = kNewHeight

End if

End if

Next
718 REALbasic User’s Guide

Building Stand-Alone Applications
your distribution of Linux, you may not already have this pre-installed. However,
you can download and install the GTK+ libraries from http://www.gtk.org. You
may also find pre-built libraries from your Linux distributor’s home page or GTK
may be included on your distribution CD as an optional install item.

General
Information

Some controls and operations that work on Macintosh and/or Windows have limita-
tions under Linux. This is detailed below.

n Sounds: Requires libsndfile (http://www.zip.com.au/~erikd/libsndfile/) but is
weak linked to your app, so your app should still run even if the end user doesn’t
have this library installed, but he or she can’t play any sounds.

n Canvas: Scroll will redraw the Canvas’s contents if there are certain controls on top
of the Canvas, such as a PushButton.

n Drag and Drop: Dragging over controls that have mouse over effects, such as
PushButtons, do not update the drag bounds properly.

n TextField and TextArea: The SelCondense, SelExtend, SelOutline, and
SelShadow styles are not supported. These are nonstandard text styles that were
introduced with Mac OS “classic” and not supported on more recent OSs.

n FolderItem: Setting the creation date of a file or folder is not supported.

n Menus: A window cannot be assigned the same menubar as another. If you want
two windows to have the same menus you need to duplicate the menubar.

n QuickTime related classes are not supported.

n PushButton, CheckBox, and RadioButton: You can’t suppress the depressed state
of buttons, CheckBoxes, and RadioButtons when returning True from the
MouseDown event.

n ScrollBars: ScrollBars behave a little bit differently than on Macintosh and
Windows. Clicking on the arrow buttons without LiveScroll does not trigger the
ValueChanged event until you release the mouse button.

n Speak: The Speak method is not supported in the initial release.

n RadioButtons: In a group of RadioButtons, one must always be selected.

n PopupMenus: There is no support for Separators.

n Printing: Printing requires libgnomeprint 2.2 (or above) and CUPS installed.
Printing is supported only to PostScript printers. On Linux, there is no Page Setup
dialog. Calling the PrinterSetup method returns False and no dialog is shown to the
user.

Assigning Custom Document Icons
As you already know, you can assign a custom application icon in the App class’s
properties pane. If your application creates documents, you will probably want to
719REALbasic User’s Guide

Building Stand-Alone Applications
assign icons that match the theme of your application icon, to the documents it cre-
ates. This can be done in the File Type Sets Editor. To add the appropriate docu-
ment icons, click the Icon button in the File Types Sets Editor (Figure 522) to
display the custom file type dialog box. For more information, see the section “Add-
ing a Document Icon” on page 485.

Figure 522. The File Types Set Editor.

Region Codes
The following table gives the Region Codes that are used in the ‘vers’ resource for
built applications.

Table 44: Region codes used in the ‘vers’ resource.

Code Value Code Value

00 US 22 Malta

01 France 23 Cyprus

02 Britain 24 Turkey

03 Germany 25 Yugoslavia

04 Italy 33 India

05 Netherlands 34 Pakistan

06 Belgium-Lux. 36 It. Swiss

07 Sweden 40 Anc. Greek

08 Spain 41 Lithuania

09 Denmark 42 Poland
720 REALbasic User’s Guide

Building Stand-Alone Applications
10 Portugal 43 Hungary

11 Fr. Canada 44 Estonia

12 Norway 45 Latvia

13 Israel 46 Lapland

14 Japan 47 Faeroe Isl.

15 Australia 48 Iran

16 Arabia 49 Russia

17 Finland 50 Ireland

18 Fr. Swiss 51 Korea

19 Gr. Swiss 52 China

20 Greece 53 Taiwan

21 Iceland 54 Thailand

Table 44: Region codes used in the ‘vers’ resource.

Code Value Code Value
721REALbasic User’s Guide

Building Stand-Alone Applications
722 REALbasic User’s Guide

CHAPTER 16 Converting Visual Basic
Projects to REAL Studio

Because of the similarities between REAL Studio and Visual Basic, creating a
Macintosh version of a Visual Basic application is fairly easy. REAL Studio can save
you hours of time by handling the tedious job of recreating the interface and pasting
in your code into all the various event handlers and methods.

Contents

n VB Migration Assistant

n Database Options
723REALbasic User’s Guide

Converting Visual Basic Projects to REAL Studio
VB Migration Assistant
REAL Studio has a utility that makes the conversion much easier. The VB
Migration Assistant is available as an optional download at the REAL Software web
site. Use the Migration Assistant as the first step in converting the VB application.

The VB Migration Assistant (VBMA) is a cross-platform REAL Studio application.
It saves you time by doing a lot of the conversion involved in porting from Visual
Basic to REAL Studio.

VBMA creates a REAL Studio project from the contents of your Visual Basic
project. Specifically, it moves over forms, modules, and classes. Rather than having
to copy and paste forms and code, VBMA handles this part for you. Since the
controls in REAL Studio are not identical to those in Visual Basic, VBMA provides
a mapping of Visual Basic controls to REAL Studio controls. The common controls
are mapped by default. Controls that VBMA does not recognize can be mapped to
REAL Studio controls by you before VBMA converts your project to a REAL Studio
project.

What doesn’t
it do?

While Visual Basic code and REAL Studio code are very similar in some respects,
they are very different in others. VBMA does not do any code conversion. It does
make an effort to move code over, but it makes no attempt to convert Visual Basic
code into REAL Studio code. In fact, it comments out all the code that it moves
over. This is done to make it easier for you to convert your code one method or event
at a time. You simply uncomment your code then make the necessary changes to
make it work in REAL Studio. Active X/COM controls are not cross-platform and
VBMA makes no attempt to make them work cross-platform. In fact, at the
moment REAL Studio doesn’t support visual COM controls. However, some COM
controls have cross-platform equivalents built right into REAL Studio or available
from third party developers.

Supported
Versions of
VB

Visual Basic versions 5 and 6 are supported. VB.NET and Visual Basic Express are
not currently supported.

Third-party
Controls

The fewer third party controls your project uses, the better candidate it is for
porting to REAL Studio. Projects with lots of third party controls can be ported but
VB Migration Assistant will be less useful and you will have to do more work than
with a project that uses the standard Visual Basic 5/6 controls.

Converting a
VB Project

To convert as VB project, do this:

1 Launch VB Migration Assistant.

The VB Migration Assistant window appears.
724 REALbasic User’s Guide

Converting Visual Basic Projects to REAL Studio
Figure 523. The VB Migration Assistant window.

2 Click the Import Project button and choose your Visual Basic project file.

Alternatively, you can drag your .frm, .bas, .cls and .ctl files into the file list
in the window.
The items to be converted appear in the window.
725REALbasic User’s Guide

Converting Visual Basic Projects to REAL Studio
Figure 524. An opened VB project.

3 Set the VB Project Encoding if necessary.

4 Click the Next Button.

The proposed mapping appears. Each mapping can be changed using its pop-
up menu.
726 REALbasic User’s Guide

Converting Visual Basic Projects to REAL Studio
Figure 525. Setting the mapping.

5 Adjust the control mapping if necessary.

6 Click the Migrate button.

7 When VB Migration Assistant is finished, save your REAL Studio project.

VB Migration Assistant will attempt to launch REAL Studio and open your
migrated project.

Encoding
Issues on
Windows

If your Visual Basic project was created using a version of Windows for a different
language than the one you are running VB Migration Assistant, you will need to set
the VB Project Encoding combobox to the language of the system upon which you
created your VB project.

Encoding
Issues on
Macintosh
and Linux

If you are running VB Migration Assistant on the Macintosh or Linux, you will
need to set the VB Project Encoding pop-up menu/combobox to the language of the
Windows OS upon which your project was created.

Non-English
File Names

If some of your VB files have non-English names, you will need to choose the proper
VB Project Encoding before you migrate your project. If VB Migration Assistant
can't find the files from your project, try importing them individually by clicking
the Add Item button.
727REALbasic User’s Guide

Converting Visual Basic Projects to REAL Studio
Auto-opening
your Project

VB Migration Assistant should automatically open your project using REAL Studio
or REAL Studio once it finishes migrating it. If this doesn’t happen, choose Options
from the Edit menu (Preferences from the VB Migration Assistant menu on
Macintosh) and select the REAL Studio application you wish to use when opening
migrated projects.

Database Options
Visual Basic applications often use Microsoft Access or the Jet database engine that
comes with Visual Basic to provide single-user database capabilities. You can con-
vert these applications to use the built-in REAL Studio database engine or any other
supported data source. The REAL SQL Database data source is included in all ver-
sions of REAL Studio.

For multi-user applications, you can use REAL Server, available as a separate
product from REAL Software. The REAL Server is available to REAL Studio
Professional customers and is included as part of REAL Studio Studio. The REAL
Server runs on Linux, Macintosh, or Windows as a background application. It can
be administered by as separate Admin application (included with the product). It
also includes a plug-in that adds the REALSQLServerDatabase class to the REAL
Studio framework. With the plug-in, you can develop full-featured multi-user
database applications.
728 REALbasic User’s Guide

Index
Symbols
&c literal 216, 378
#error option 391, 589
#If statement 262

Numerics
4th Dimension 604

A
About REAL Studio menu command 73
absolute path 492

creating an 492
accelerator

entering a 380
accelerators

creating 198
AcceptFocus property 134
AcceptTabs property 132, 134
Access Scope 225, 324, 331, 370, 400
Action event handler 272, 280, 344, 349, 350, 538
ActionButton 111
Activate event handler 582
Active X Help 176
ActiveX components 174–176, 691–692
ActiveX controls 174–176
Add Bookmark button 40, 57
Add Bookmark dialog box 60
Add Bookmark Folder dialog box 72
Add Bookmark Folder menu command 71
Add Bookmark menu command 71
Add Constant declaration area 326, 380, 554
Add Folder button 79
Add Index screen 609
Add Menu button 195
Add Menu command 65
Add Menu Item button 199
Add Method button 555
Add Method declaration area 556
Add Note button 248
Add Separator button 205
Add to Class menu command 82
Add to ModuleName Menu command 81
Add to Project Menu command 81
Add Window button 90, 102
AddPicture method 526, 528
AddRawData method 453
AddResource method 528
Address property 669

AddRow method 241
Aggregates property 587
aliases

importing 306
of folderitems 491

Align menu command 64
alignment guides 183
alignment icons 183
All Controls list 114
AlternateActionButton 111
Always Show Tabs option 54
Analyze Item menu command 68
Analyze Project command 632
Analyze Project menu command 68, 632, 699
And operator 250
App class 580–583

event handlers 581
properties of 700
Scope of methods 582
Scope of properties 582

App class properties 105
Append method 232
AppendToTextFile method 512
AppleEvent object

Send method 687
AppleEvent objects

creating in REAL Studio 687
AppleEvents 714

communicating with 687–688
receiving 687–688
required 688
sending 687
sophisticated 688

AppleScript 714
adding to a project 685
adding to REAL Studio 685
calling 686
passing values to 686
preparing an 685
returning values from 686

AppleScripts
calling 685–686
importing 306

Application class 527, 529, 580–583, 655, 687
event handlers 581
methods of 582
NewDocument event handler 529
properties of 582

Application menu
for Mac OS X 202
729REALbasic User’s Guide

Index
ArcShape class 442
Arrange menu command 64, 131
array

assignment 232
declaring an 229–230, 316, 374
definition of 229
index of 229
passing as a parameter 242, 330
passing by reference 245, 337
resizing an 230
returned by a function 557
returning from a function 331, 371

array element
referring to an 230

Array function 231, 439
arrays 229–243

Append method 232
converting 233–234
declared as a property 545
declaring 229
in structures 395, 562
initializing 231
Insert method 232
Join function 234
multi-dimensional 230, 243, 330
of classes 575
one-based 229
ParamArray keyword 330
Redim statement 233
Remove method 233
resizing 232–233
Split function 233
zero-based 229

ASCII 416
ASCII character codes 416
ASCII encoding 416
Assigns keyword 340, 573
AttributeInfo 597
attributes 84, 237–239

accessing 239
Attributes Editor 84, 238
Auto Adjust TabIndexes menu 64
Auto Adjust TabIndexes menu command 70
Auto Adjust TabIndexes menuitem 183
autocomplete 291–293

in Location area 57
Autocomplete applies standard case 276
Autocomplete shows details 276
AutoDiscovery class 167
AutoEnable property 193, 582
automating

REAL Studio 62

B
Back and Forward buttons 40

Back button 55, 70
Back menu command 70
Backdrop property 519

of Canvas control 430
to display a picture 428

BASIC
compiled 20
disadvantages of interpreted 212
history of 20, 212
interpreted 20
object-oriented 20

Behavior in Window Editor dialog 547
BevelButton

adding items to a 155
as popup menu 154
No Bevel option 141

big endian byte order 263
binary file

reading a 522–523
writing to 523–524

binary files
benefits of 522
compared to text files 514
definition of 521
random read/write access to 522

BinaryStream 523
compared to TextInputStream 522
definition of 522
encoding of 523

BinaryStream class 522
bitwise comparisons 251
BOF property 624
bookmark folders 57

adding 71
bookmarks

adding 71
customizing 60
global 57, 60
local 57, 60
modifying 60

Bookmarks bar 40
adding a bookmark to 59
adding items to 57
adding methods and properties to 60
contextual menu 60
hiding the 41, 68
IDE window 59

Bookmarks bar menu command 70
Bookmarks dialog box 57
Bookmarks menu 57, 71
Boolean

data type 215
branching

definition of 260
Break keyword 637
730 REALbasic User’s Guide

Index
Break on Exceptions 66, 652
Break statement 262
breakpoint

definition of 637
removing a 637

breakpoints
in stand-alone applications 637

Bring All to Front menu command 72
broadcasting

using UDPSocket 678
Browser 273–280

contents of 273
contextual menus in 297
expanding and collapsing categories 296
Find and Replace window 299–301
hiding the 294
use of bold in 280
using to access code 279
viewing items in 278

buffer
definition of 667

bug reports 73
bugs

logical 632
reporting 30
syntactical 632

Build Application menu command 68, 698
build automation 707–712
Build button 56, 68, 698
Build Process preferences 698
Build Progress dialog box 698
Build Settings dialog box 378, 490, 707
Build Settings menu command 68
Build unsaved apps in option 698
Builds menu command 72
Builds window 699
Built-in controls 113
Bundle Identifier 707
Bundle Identifier property 707
ByRef

passing arrays 337
ByRef keyword 244, 337
Byte data type 214
ByVal keyword 244

C
Can’t Undo menu command 63
CancelButton 111
Canvas control 132, 147, 161–162, 560

AcceptFocus property 134
Backdrop property 430, 516, 519
copying a picture in a 432
creating custom controls with 440, 583–585
drawing in a 437
getting the focus 133

MouseDown event 440, 518
Paint event 437, 441
Paint event handler 584
redrawing 441
saving image drawn in 518

carriage return
used in writing to text files 512

casting 576
CellClicked event definition 560
CellClicked event handler 584
CFStringRef data type 219
character

getting a non-ASCII 419
character set

defined 416
CheckBox 142–143
Checkbox

getting the focus 135
child control 185
Child method 492
Chr function 243, 419
CICN resource 526
class

accessing properties and methods of 579
based on a control 578
creating a 539–540
definition of 577
extending a 401
with no super class 578

class constants 221
class extension methods 401, 568
class interface 387–392, 585–593

creating a 387–389, 586–588
definition of 585
example 591–593
implementing a 389–392, 588–591
modifying a 66

class interfaces
#error option 391, 589
deleting 591
Extract Interface dialog 84
Implement Interfaces dialog 83, 390, 589

classes
adding event definitions to 392, 558–561
adding methods to 555–557
adding new events to 392, 558–561
adding properties to 544
arrays of 575
built-in 533
casting 576
constructors 569
custom 596
definition of 531
deleting 602
destructors 571
731REALbasic User’s Guide

Index
encrypting 599
exporting 542, 599
exporting protected 599
extending 568–569
extension methods 401
importing 306, 598–599
not based on controls 578–579
removing from memory 580
saving 542
saving as an external project item 542
shared among projects 80

Clear All Breakpoints menu command 66
Clip method 439
Clipboard

getting data from 452
putting data on 452–453
testing for data types 451
transferring text and graphics with 451–453

Clipboard class 451, 452
AddRawData method 453
Picture property 452
PictureAvailable method 451
RawData property 452
RawDataAvailable method 451
SetText method 452
Text property 452
TextAvailable method 451

Close event handler 581
Close Tab menu command 62
Close Window menu command 62
CMY color model 216
CMY function 445, 446
code

commenting 247
copying and pasting 304
encrypting exported 307
exporting 307
line by line execution 648–649
protecting 599
step in 648
step out 648, 649
step over line of 647, 648

Code and Window Editors Share a Tab option 48
Code Editor 46, 273–304

accessing the 369
autocomplete 291–293
auto-completion in 283
breaking up long lines in 288
Browser 273–280
contextual menus 297
defined 46
entering code in 283
font size 304
Notes 248
opening 274

opening its window 296
Options 275–276
parameter line 282
printing code in 304
resize bar 294, 295
resizing 294
resizing panels in 294

code execution
Step In option 648
Step option 647
Step Out option 648, 649

color
assigning to a property 130
constants 378
data type 215
inserting into the Code Editor 287
working with 445–448

Color Picker 378, 446
RGB 447

COM Component help 176
ComboBox control 132, 145, 154

adding items to 154
getting the focus 132

CommandLineArgs property 707
Comment menu command 64
comments

adding to code 247
multiline 247

comparison operators 249–250
compilation

incremental 697
compilation process

halting the 637
compiler constants 263
composite index 610
computed properties 321, 549
computed property

example of 551
Get method 321, 550
Set method 321, 550
writing a 321, 549

conditional compilation 262, 714–715
Console Application 76
Console application 695
console application

creating a 76
Console Application project 76

contents of 76
Console Application template 76
ConsoleApplication 76
Const statement

scope of 237
constant

class 221
global 129
732 REALbasic User’s Guide

Index
Local 375
constants 236–237

adding to a class 553–555
class 221
color 378
copying and pasting 304
dynamic 554
dynamically localizable 379
entering into Properties pane 128
for localizing an app 379–382
in Dim statements 230
local 324
module 375–383
window 324–327

ConstructorInfo 597
constructors 228, 341, 569
Container Control

modifying a 66
Container Control control 177
contextual menu 103

accessing in Code Editor 297
Add Control item 117
Edit item 274
Find Item 303
in Browser 297
Make External command 83
Make Internal command 83
Project Editor 81–84
Select All item 118
Select item 118
selecting controls using 118

control
adding to a window 38
child 185
locking a 125
parent 185
position of 121

control array 348–350
control class

adding a 578
control hierarchy 184–189
control layers 131
control order

changing the 179
controls 345–349

ActiveX 174–176
adding to a window 116
aligning 121, 183
alignment guides 121
All Controls list 114
appearance of 139
BevelButton 154
built-in 39, 113
Canvas 161–162
changing properties of 126–131

CheckBox 142–143
ComboBox 154
creating custom 583–585
creating new instances on the fly 346
creating subclasses of 533
custom 39, 440–442
DatabaseQuery 173, 605
DataControl 143, 173
default font size for 715
defined 38
definition of 345
Disclosure Triangle 165
distributing evenly 184
dragging from Tools window 116
duplicating 139
events for 345
favorite 39
Favorites list 114
GroupBox 155
Line 160
ListBox 149–152, 605
lock properties 122–125
MoviePlayer 163–164
moving 121
object hierarchy 139
OLEContainer 176
Oval 161
PagePanel 157
plug-in 39, 113
pop-up menu 39
PopupArrow 164
PopupMenu 153
Position properties 121
ProgressBar 148
ProgressWheel 165
Project 39, 113
PushButton 140, 605
RadioButton 143
RbScript 165
receiving the focus 132
rectangle 160
removing 131
RoundRectangle 161
ScrollBar 147
selecting 118
selecting all 119
selecting in reverse order 118
selecting invisible 119
selecting several 119
Serial 166
ServerSocket 166
Slider 147–148
SSLSocket 166
StaticText 143, 605
TabPanel 156–157, 605
733REALbasic User’s Guide

Index
TCPSocket 166
TextField 144, 605
Timer 173
Toolbar 168–173
UDPSocket 167
UpDownArrows 165

Controls drop-down list 37
Controls list 37, 38

annotated illustration of 113
defined 38
minimizing the 68

Convert To Menu button 205
Convert to Method menu command 289–290
ConvertEncoding function 419, 513, 672
coordinates system

description of 427
Copy menu command 63
CopyFiles 710
CopyFiles step 710
counter

choice of "i" as 256
incrementing a 256

counter variables
in loops 256
in nested loops 257
typing as Integer 255

CreateResourceFork method 525
CreateTextFile method 512, 513
Creator code 706

entering the 490
registering 490, 706

CString data type 218
CueText property 144
Currency data type 215
CurrentExecutingMethodName 245
CURS resource 526, 526–528
cursors 306

custom 526–528
custom, in Windows 527–528

CurveShape class 442
custom application icons 701–702
custom classes

creating 539–541
overloading 572

custom control
drawing 584–585

custom controls 39, 440–442
creating 583–585

custom document icons 719, 720
custom icons 489

adding to custom file types 490
Customize Main Toolbar dialog 58
Customize Project toolbar dialog box 78
Cut menu command 63

D
data source

adding and removing a 606
selecting a 605
specifying a 619

data sources
two or more 604

data type
changing 219

data types
Boolean 215
Byte 214
CFStringRef 219
Color 215
CString 218
Currency 215
declaring with Dim statement 223
definition of 213–219
Delegate 218
Double 215
Int16 214
Int32 214
Int64 214
Int8 214
Integer 214
OSType 219
PString 218
Ptr 218
Single 215
String 213
Structures 219
UInt16 214
UInt32 214
UInt64 214
UInt8 214
WindowPtr 218
WString 218

data typing
in parameter line 283

DataAvailable event handler 666
database

creating a table 608–610
plug-ins 604
queries 623

Database Binding properties 618
Database class 622
database schema 607
DatabaseQuery control 173, 605, 617

properties 617
databases

adding records 627
back-end 604
building interface for 605
choosing a data source 619
creating a new REALSQLdatabase 607–610
734 REALbasic User’s Guide

Index
creating in IDE 607–610
data source 604
DataControl control 618
editing records 623
field types 615–617
in Project panel 306
indexing fields 609–610
Mandatory field attribute 609
modifying records 624
overview of 604
plug-in architecture 604
primary key field 609
selecting a data source 605
SQL 604
Unique field attribute 609
viewing data in 610
viewing Schema 607

DataControl control 143, 173, 618
Datagram class

UDPSockets 678
datagrams 678
Date class 218, 227–228
dates

formatting 421–423
Deactivate event handler 582
DebugBuild constant 263
Debugger

Edit Code command 648
Object IDs in 650
Pause command 647
Resume command 647
Stack drop-down list 649
Step command 647
Step In command 648
Step Out command 648
Stop command 647
Variables pane 649

Debugger panel 636
debugging

defined 632
definition of 632
remote 657–663
Stack drop-down list 638
Variables pane 639

debugging machines
configuring 661

declaration statement 223
for arrays 229
for objects 227

Declare statement 684, 715
Decrypt menu command 64, 82
Decrypt Window dialog box 108
Default Comment Style 276
default language 707

setting the 378

default window
setting the 104

Define Missing Method menu command 335
Delegate data type 218

data types
delegate 393, 566

Delete menu command 63, 82
Delete method 496
DeleteRecord method 624
Deselect All menu command 64
Desktop Application 76
Desktop Application project 76, 192

contents of a 76
Desktop Application template 76
Destination property 707
destructors 341, 571
dialog icons

drawing 435
dictionaries 234
Dim statement 223

for arrays 229
for declaring an array 229
for objects 227
using constant in 230

Disclosure Triangle control 165
Do loop 253–254
document icons 719
Document window 91–92
documentation

conventions 22
dot syntax

defined 220
Double

data type 215
double-clicking

to open a file 529
drag and drop 350–353

implementing 350
multiple items 350
PrivateRawData 356–357
RawData 356–357
RawData property 350

dragging
from a ListBox 351

dragging text
in TextFields 350

DragItem object 351, 352
DragRow event handler 351, 357
DrawBlock method 450
DrawCautionIcon method 436
Drawer window 98
DrawNoteIcon method 436
DrawPicture method 431
DrawPolygon method 438
DrawStopIcon method 436
735REALbasic User’s Guide

Index
DropObject event handler 352, 353, 355, 356, 357
dropping

implementing 352–353
Duplicate menu command 64, 82
Dynamic checkbox 379
dynamic constants 383, 554

E
EasyTCPSocket class 167
EasyUDPSocket class 167
Edit Bookmarks dialog box 60
Edit Code command 648
Edit menu command 63, 82
Edit Mode buttons 274
Edit Tab Order button 180
Edit Window menu command 82
EditableMovie class 520
Editor Only command 294
Editor Only menu command 41, 68
Editor toolbar

hiding the 41, 68
Editor Toolbar menu command 70
Else clause

in If statement 261
ElseIf statement

in If statement 262
Email

sending and receiving 674
empty events

showing and hiding 280–282
Enabled property 577
EnableMenuItems

event handler 581
EnableMenuItems event handler 360, 361, 534,

577
enabling

menu items 193
encoding 416–420, 671

ASCII 416
default 418, 419
defined 416
determining the 417
MacJapanese 417
MacRoman 417
of a binary stream 523
specifying the 418
specifying when writing text files 513
text 416–419, 671, 672
Unicode 416, 417
UTF-16 416
UTF-8 416

Encoding function 417, 418
Encoding property 418, 511
encodings

reading and writing files 511

Encodings object 418, 419, 420, 512, 523, 667,
671, 672

Encrypt dialog box 107, 308, 600
Encrypt menu command 64, 82
encrypted classes

documenting 601
importing 599

encrypting
classes 599

end of file
checking for 511

endless loop
escaping from an 254

EndOfLine class 413, 713
Enter License Key menu command 73
entry filters 408
enum 397–399, 564–566

casting 399, 566
declaring an 399, 566

enumeration 564
EOF property 511, 523, 624
Equals keyword 250
Event Definition declaration 560
event definitions 392, 558–561

reasons for adding 560
event handler 222, 280, 282, 283, 315, 320, 335,

344, 345, 349, 350, 353, 354, 355, 356, 357
Activate 582
Close 581
Deactivate 582
default 279
definition of 272
EnableMenuItems 581
HandleAppleEvent 582
object-oriented programming 278
Open 581
OpenDocument 581
opening an 274
passing parameters to 282
selected 280

event handlers 206, 274, 278, 309–310, 320, 361
default 274
for controls 345
Unhandled Exception event 582

event-driven programming 32, 272, 309
definition of 271

events
copying and pasting 304
defined 32
examples of 272, 309
indirect 272

ExcelApplication class 691
Exception block 495, 653–655

syntax of 653
Exists property 495
736 REALbasic User’s Guide

Index
Exit menu command 63
Export Localizable Values command 63
Export menu command 63, 83
Export Source 307
exported class

desktop icon of 598
exporting

classes 542, 599
items 307
menubars 207
modules 402
source code 307

Extends keyword 401, 568–569
External IDE script 712
external project item 80–81, 305, 402, 542, 599

locked 81
external project items

Make External command 83
Make Internal command 83
saving to disk 84
showing 82

Extract Interface dialog box 84, 593
Extract Superclass dialog box 83
Extract Superclass menu command 541

F
Favorites controls 39, 114–115
Favorites list 114
Feedback 30
field attributes

Mandatory 609
Unique 609

field types 615–617
fields

indexed 609–610
Figure 244 on page 291 291
Figure 45 on page 75 76
FigureShape class 442
file

accessing a 492
File menu 61

New Window command 103
File Path menu command 82
file type

definition of 480
deleting 488
editing 488

File Type Sets Editor 428
file types

APPL 480
custom 488–490
overview of 480
PICT 480
specifying several 502
TEXT 480

using 488
File Types Set Editor 480, 484, 720
files

creating new 529–530
opened by dropping 529
opening from desktop 529
ownership 497

FillPolygon method 438
Find 65

recent 302
Find Implementors menu item 84
Find Item command 302
Find Item contextual menu 303
Find menu command 64
Find scope 300
Find/Replace window

in Browser 299–301
Floating Properties Palette option 44, 45
Floating windows 94–95
flow of control 260
focus

Canvas control 133
Checkbox control 135
ComboBox control 132
controls that receive 577
definition of 132
ListBox control 132
on Linux 132
on Macintosh 132
on Windows 132
PushButton control 134, 135
Slider control 136
TextField 132

FolderItem
Child method 493
definition of 491
Delete method 496
deleting a 496
Exists property 495
getting for application’s folder 500
getting info on a 496
Item method 500
locked 497
OpenAsSound method 520
ownership 497
Parent property 493
relative paths 500
uses of a 491

FolderItem class 491, 492, 493, 496, 497, 500, 501,
503, 505, 509, 511, 512, 513, 514, 515,
516, 520, 524, 525, 529

AppendToTextFile method 512
CreateTextFile method 512
OpenAsMovie method 520
OpenAsPicture method 430, 433, 519
737REALbasic User’s Guide

Index
OpenAsVectorPicture method 445
OpenStyledEditField method 514
SaveAsPicture method 445, 516
SaveStyledEditField method 514

FolderItems 491
aliases of 491
properties of 491
representing System folders 494
shortcuts to 491

folders
bookmark 57
project 79

font
SmallSystem 406
System 406

font attributes
determining the 410–411
setting 411–412

Font function 406
font size 406, 409, 411, 412, 442
font style 411

determining the 410
font styles

toggling the 412
FontAvailable function 411
FontCount function 406
fonts

determining available 406–407
setting attributes of 406–412

For Each statement 258
For loop 254–257
ForeColor property 445, 446
Format function 420

FormatSpec 421
formatting

numbers, dates, and times 420–423
formulas for properties in 127
FORTRAN

historical note on 256
Forward button 40, 55, 70
Forward menu command 70
full keyboard access 137–139

enabling 137
selecting a control using 139

full path
creating a 492

function 283
declaring a 557
defined 244
returning an array 557

Function statement 283
functions

adding to a module 371
definition of 243–244, 330
returning arrays 331, 371

specifying the return type 557

G
Get method

computed property 321, 550
GetCicn method 526
GetFolderItem

relative paths 500
GetFolderItem function 492, 493, 496, 500, 501,

520
GetIcl method 526
GetNamedPicture method 526
GetOpenFolderItem function 430, 433, 502, 503,

511, 512, 514, 520, 525
GetParameters 597
GetPicture method 526
GetResource method 528
GetSaveFolderItem function 508, 509, 515, 516,

518
GetSaveFolderItem method 513
GetSound method 526
getter properties 549
GetTrueFolderItem function 492
GIDBit (Set Group bit)

permissions 499
global

constant 129
properties, methods, and constants 370

global bookmarks 71
Global Bookmarks option 57, 60
Global Floating window 94, 97
global methods 372
global properties 374
Global scope

for localization constants 325
in Class Extension methods 569

global variables 374
Go to Location menu command 71
Go to Search menu command 65
graphical user interface 76

characteristics of 32
Graphics class 431

Clip method 439
DrawCautionIcon method 436
DrawLine method 437
DrawNoteIcon method 436
DrawOval method 437
DrawPicture method 431
DrawPolygon method 438
DrawRect method 437
DrawRoundRect method 437
DrawStopIcon method 436
FillOval method 437
FillPolygon method 438
FillRect method 437
738 REALbasic User’s Guide

Index
FillRoundRect method 437
ForeColor property 437, 445
PenHeight property 437
PenWidth property 437
Pixel property 436, 448

grid
drawing a 437

Gridlock class example 584
Group

FolderItem 497
GroupBox 155

for organizing RadioButtons 155
GTK+ 2.0 694
GUI

defined 76

H
HandleAppleEvent event handler 582, 687
help

context-sensitive 23, 290–291
online 23

Help menu 73
adding a 196

Hide Empty Events menu command 69, 281
Hide Properties menu command 43, 72
Highlight Parent Control preference 186
History menu 41, 70

navigating via the 55
Home and End Keys 277
Home and End Keys options 277
Home menu command 70
HSV color model 216
HSV function 445, 446
HTMLViewer control 146
HTTP protocol 681
HTTPS protocol 675

I
icons 489

custom document 719
IDE 33

panel dividers 41
IDE options 294
IDE Script window 62
IDE scripts 62, 165
IDE Scripts menu command 62
IDE window 33, 35–57, 61

Bookmarks menu 71
Edit menu 63
File menu 61
Help menu 73
History menu 70
Location area 37, 40
Main Toolbar 40, 55

menus 61–73
Project Editor 40
Project menu 65
tabs 37
View menu 68
Window Editor panel 36

If statement
one line 262

If…Then structure 260–266
ImageWell 162

displaying a picture in 429
Implement Interface dialog 83, 390, 589

#error option 391, 589
Implement Interface dialog box 390, 589
ImplicitInstance property 313
Import as External menu command 63, 80, 599
Import menu command 62
importing

classes 598–599
external project items 599
into a project 305–307
menubars 207
pictures 306
project items 62

importing as external
project item 599
project items 63

Include Function Names 707
incremental compilation 697
index

composite 610
of an array 229

Index parameter 349
Index property 205

used to differentiate multiple instances 348
inheritance 140
Insert Color menu command 287
Insert method 232
InsertRow 243
installation requirements

for Linux 21
for Windows 21

instance
definition of 577

instance properties 552
instances

removing from memory 580
Int16 data type 214
Int32 data type 214
Int64 data type 214
Int8 data type 214
Integer

data type 214
integrated development environment (IDE) 33
interface controls 583
739REALbasic User’s Guide

Index
interface inheritance 594
interfaces

character based 32
deleting 591
Implement Interfaces dialog 390, 589

Internet 166
interrupting execution 638
Introspection module 597–598
invisible controls

finding 119
IP address 669
IsA operator

in casting 576
in class interface 593

Issue Type dialog box 67

J
Jet database engine 728
Join function 234

K
keyboard accelerators 380

creating 198
keyboard shortcuts 196

for menu items 50
KeyDown event handler 537

L
Language reference

online 23
Language Reference menu command 73
LastErrorCode property 673
line continuation character 288

shortcut for 289
Line control 160
lines 160

drawing 437
Lingua 63, 383
Linux applications

requirements for 694, 719
Linux builds 718
Linux Settings group 706
ListBox 132, 149–152, 241, 243

AddRow method 241
custom borders 150
custom shading 150
custom sorts 152
dragging a row 153
editable 152
getting the focus 132
hierarchical 149
implementing drag and drop 351
multicolumn 257

resizing columns in 152
selection in 149
sorting a 151

little endian byte order 263
Local Bookmarks option 57, 60
local scope 315
local variables 639

declaration of 223
Localization table 325
localizing 379–384
Location area 37, 40, 57, 71
Lock Position command 125
LockBottom property 122
Locked property 497
locking a control 125
LockLeft property 122
LockRight property 122
LockTop property 122
loops 252–257

endless 638
lengthy 254
nested 257
optimizing speed of 256

M
Mac OS

built application name 706
Mac OS classic

memory requirements for 706
Mac OS X

Application menu 202
Color Picker 447
compiling for 716
number separators 420

Macintosh
text services 293

MacJapanese 417
MacProcID 99
MacRoman encoding 417, 418
MacType string 451
Main Toolbar 40, 55

Add Bookmark button 57
Back button 55
Build button 56
customizing the 58
Forward button 55
hiding the 41, 68
Location area 57
Run button 55
Search area 58

Main Toolbar menu command 70
Make External command 83
Make External contextual menu item 542
Make External menu command 80
Make Internal command 83
740 REALbasic User’s Guide

Index
Mask property 409
mask property 408
mathematical operators 235
mathematical precedence 235
MDI application 705
MDI window

maximizing 714
MDIWindow class 705, 714
Me function 441, 585
MemberInfo 597
memory errors

caused by excessive calls 649
memory management 580

examples of 580
MemoryBlocks 396, 564
Menu Editor 49, 189–196

Convert To Menu command 205
defined 49
Properties pane 50
View Mode buttons 50

Menu Editor toolbar 50
menu handler 193, 282

adding a 359
menu handlers

definition of 358
menu item separators

adding 205
menu items

adding 196–200
creating on the fly 205
dynamic 205, 362
enabling 193, 360
enabling or disabling 577
handling from controls 361
handling when a window is open 361
handling when no windows are open 361
implementing 205–207, 357–363
keyboard shortcuts for 50, 196
moving 204
removing 205
removing programmatically 207

Menu Layout menu command 70
menubar

default 190, 192
previewing 50

menubars
adding to a project 192
assigning to a window 192
assigning to the application 192
importing 306
importing and exporting 207–208

menus
adding 193–202
managing within classes 577
moving 205

MessageDialog class 109–111
icons in the 435

MessageDialogButton 111
Metal window 98
method

adding to a module 327, 370–372
assigning a value to 573–575
creating a 335–336
definition of 241
deleting a 334
parameter line 282

Method declaration area 332
MethodInfo 597
methods

adding to Bookmarks bar 60
adding to windows 329–334
associated with objects 310
built-in 241
class extension 401, 568
components of 282
constructors 341, 569–571
copying and pasting 304
default values for parameters 338–339
destructors 341, 571
finding in Code Editor 302
initialization of 341
optional parameter for 340
parameters passed to 241
passing values to 241
referring to in subclasses 538
Return Type 332
returning value from 330
scope of 331
setter 340–341
Stack drop-down list 638
tracking execution of 649
values returned from 243

Microsoft Access 728
Microsoft Office

automation 690
Modal Dialog windows 93–94
Modeless Dialog window 99
modems

communicating with 668
module

adding a 368
compared to class based on Application

object 374
encrypted 402
exporting a 402
importing a protected 402
nested 399–400

module namespace 367
modules

decrypting 404
741REALbasic User’s Guide

Index
encrypting 403, 403–404
importing 306
importing and exporting 402
role of 367
scope of items 370, 400
shared among projects 80

moths
role of in history of computing 632

MouseCursor constructor 526
MouseCursor property 527, 528
MouseDown event 440
MouseDown event handler 351, 352, 441, 561,

584
MouseEnter event handler 527
MouseExit event handler 527
MouseMove event 437
Movable Modal window 92–93
Movie class 520
movie controller

default appearance of 163
MoviePlayer

assigning movie to 164
MoviePlayer control 163–164, 520, 521

Movie property 520
movies

importing into projects 79
MsgBox function 109, 435, 503, 505, 509
multicasting 678
Multiline property

in TextArea 409
multiple connections

TCP/IP 670
with ServerSocket 675

Multiple Document Interface (MDI) 705
MySQLCommunityServer class 620
MySQLEnterpriseServer class 620

N
nested loops 257
New IDE script 711
New IDE Script menu command 62
New Implementor menu item 84
New operator 324, 552, 578, 677

creating custom class with 579
in Dim statement 579
to open a window 313

New Project dialog box 76
New Project menu command 61, 74, 87
New Subclass menu command 83
New Window menu command 61
NewDocument event handler 529, 581
NewPicture function 433, 518
Next Tab menu command 72
NextPage method 449
Nil

checking for 495
Nil object 418, 419, 495, 496, 503, 505, 509, 511,

512, 514, 516, 518, 520, 524, 525
NilObjectException error 495, 503
Not operator 251
Notes

in Code Editor 248
numbers

formatting 420–421

O
object hierarchy 117, 139
object inheritance 140
Object Viewer 649

opening in a new window 642
Object2D class 442–443
object-oriented

BASIC 20, 212
menus 357
methods 310

object-oriented programming 20
advantages of 20
definition of 310
event handlers 206, 222, 272, 274, 280, 282,

283, 309–310, 315, 320, 335, 344, 345, 349,
350

interface inheritance 594
menu handlers 282, 358
Protected properties 315

ODBCDatabase class 620
Office automation 690
OLEContainer control 176
on run handler (AppleScript) 685
on run statement 686
one-based array

definition of 229
online help 23
Online Reference 23

searching 25
Open Application AppleEvent 529
Open event handler 352, 354, 355, 357, 536, 581
open file dialog

limiting file types displayed in 502
Open File dialog box 501
Open File menu command 82
Open menu command 61
Open Recent menu command 61
Open shared method 510
OpenAsMovie method 520
OpenAsPicture method 433, 516, 519
OpenAsSound method 520
OpenAsTextFile method 511
OpenAsVectorPicture method 445
OpenDialog class 502, 503
OpenDocument
742 REALbasic User’s Guide

Index
event handler 581
OpenDocument event handler 529
OpenGLSurface 162
opening windows 313–314
OpenOracleDatabase Class 620
OpenPrinter function 448, 449, 450
OpenPrinterDialog function 448, 449, 450

passing SetupString to 450
OpenResourceFork method 524, 525
OpenStyledEditField method 514
operator precedence 236
Operator_ keywords 572
operators

comparison 249
mathematical 235

Optional keyword 340
optional parameters

Optional keyword 340
options

Autocomplete applies standard case 276
Autocomplete shows details 276
Code Editor 287
printing 304
Syntax Highlighting 275
Window Editor 186

Options menu command 65
Or operator 251
Oracle 604
order of mathematical operations 235
OSType data type 219
Others

FolderItem 497
OutOfBoundsException error 654
Oval control 161
ovals

controlling "ovalness" of 161
drawing 437

OvalShape class 442
overloaded function

example 572
overloading 251

definition of 572
Owner

FolderItem 497

P
Page Setup dialog box 448
Page Setup menu command 63
PagePanel 157
PageSetupDialog method 448
Paint event 431, 437, 441

Canvas control 431
Paint event handler 356, 448, 518, 584, 585
pane

definition of 41

panel
definition of 41

panel divider 41
panes

resizing 41
ParamArray keyword 330
parameter

passing an array as 242
parameter declaration 568
parameter line

data typing 283
in method 282

parameter passing 336
in parameter line 282

ParameterInfo 597
parameters

declaring data type of 329
default values for 338
definition of 241
more than one 242
optional 340
passing arrays as 330
passing by reference 336–337
passing by value 336
passing to methods 329

parent class 533
parent control 185
Parent function 492
Parent Highlight 186
password field

creating a 408
Paste menu command 63
pasteboard 119, 120

changing the color of 187
Window Editor 187

path
absolute 492
full 492
to application’s folder 500

Pause command 647
Pause menu command 67
permissions

as octal value 497
Execute 498
folderItem 497–500
Read 498
Sticky bit 499
Write 498

Permissions class 498
constructor 500

PICT file
saving a 516–518

PICT resource 526, 528
picture

copying a portion of 431
743REALbasic User’s Guide

Index
displaying a 431
displaying in a portion of a window 430
displaying in a window 428–430
scaling a 432

pictures
creating 431
importing into projects 79
opening 518–519

Pixel property
of a Graphics object 448

pixels
drawing 436

PixMapShape class 442
Plain Box windows 95
Play menu command 82
plug-in controls 39, 113
plug-ins 689

database 604
formats of 689
including in stand-alone apps 689
loading 689
used to create custom controls 689
using 689
writing 689

polygons
drawing 438–439
filled 439

POP3 protocol 681
PopupArrow control 164
PopupMenu control 153

adding items to a 153
changing the select item in 154
getting the focus 134

port
definition of 669

port numbers
on Mac OS X and Linux 669

Port property 669, 670
PowerPointApplication class 691
precedence

operator 236
preferences

Build Process 698
debugger 661
Highlight Parent preference 186
remote debugger sessions 661
Window Editor 186, 715

Preferences menu command 65
PrefsMenuItem class 202
Previous Tab menu command 72
primary key 609
primary key index 610
Print dialog box

displaying the 449
Print menu command 63

PrinterSetup class 448
SetupString property 448

PrinterSetup class objects 449
PrinterSetup settings 448
printing 448–450

in Code Editor 304
options 304
overview of process 448
sending a page to the printer 449
without the Print dialog box 450

Private scope 316, 325, 331, 533, 544
PrivateRawData property 357
Profile Code menu command 67
Profiler 655–657
ProgressBar 148

Barber Poles 148
indeterminate 148

ProgressWheel control 165
project

adding and removing items from a 79
creating a new 74
defined 40
removing items from 81
saving a 62, 84
starting and stopping 651

Project controls 39, 113
adding to a window 578

Project Editor 40–43
adding classes to 533
adding data source to 606
contextual menu 81–84, 104, 107, 540, 541, 606
creating a subclass in 540
dragging items to 79
importing files into 305
items included in 40
removing data source from 606

Project Editor toolbar
configuring the 77

project item
removing a 81

project items
decrypting 82
encrypting 82
organizing 79

Project Menu
Step Out command 649

Project menu 65
Break on Exceptions command 652
debugging with the 648
Step command 648
Step In command 648

project templates 76
creating 87

projects
items in 73–74
744 REALbasic User’s Guide

Index
properties 639
adding to a class 544–545
adding to a module 373–374
adding to a window 314–320
adding to Bookmarks bar 60
assigning values to 220
computed 321, 549
copying and pasting 304
data type mismatches 225
defined 42
definition of 213
formulas for 127
getter and setter 549
getting value from 222
Global 374
global 370, 374
Private 374
protected 315
Public 374
referring to in subclasses 538
setting via popup menu 101
setting via text entry area 102
shared 552
show in Properties pane 315

Properties list
customizing 545

Properties pane 40, 42, 127
defined 42
displaying in a floating window 45
entering Boolean properties 127
entering constants 128
entering numeric expressions 127
floating 44
for Menu Editor 50
hiding 43
Menu Editor 195
minimizing the 68
setting a color property 130
setting Interfaces property 592
showing 44
using choice lists 130
using the 100, 126

property
definition of 226
documenting a 247, 319, 374, 545
scope of 315

Property List Behavior dialog 64, 83, 546
PropertyInfo 597
Protected methods 372
protected properties 374
Protected scope 315, 324, 331, 370, 400, 543
protecting

exported code 599
protocol

defining your own 681

definition of 681
PString data types 218
Ptr data type 218
Public methods 372
Public properties 374
Public scope 315, 324, 331, 343, 370, 400, 543
PushButton control 140, 272

getting the focus 135

Q
QuickTime 163
QuickTime file

opening a 520
QuickTime movies 306, 520–521
Quit menu command 63
QuitMenuItem class 190, 203

R
RadioButton control 143
RadioButtons

compared to Checkbox 143
RaiseEvent statement 561
RawData property 357
RawDataAvailable method 451
RbScript control 165
RBVersion constant 263
Read method 667
ReadAll method 510, 511, 511, 667
ReadLine method 510
REAL Software

contacting 29
REAL SQL Database

adding tables 607
primary key 605

REAL Studio
2006r3 Encryption 403
adding AppleScripts to 685
advantages of compiled 212
books and magazines 28
built application name 706
checking for updates 28
Code Editor 46
controls 113–184
Controls list 38
converting Visual Basic apps to 723–728
coordinates system 427
Debugger 67, 636
debugging in 33
development process in 32
differences from BASIC 212
document icons 719
electronic documentation 27
entering license key 73
Feedback 73
745REALbasic User’s Guide

Index
Feedback menu command 73
hardware requirements 22
IDE 33–50
IDE window 35–57
Info menu command 73
installation requirements 21
installing 21
integrated development environment 33
Interface Assistant 89, 208
Introspection 597–598
localizing an app 379–384
mailing lists 28
memory management 580
Menu Editor 49
menus 61–73
object hierarchy 117
operating system requirements 21
Options 275, 287, 294, 304
overview of 20
plug-ins 689
preferences 186, 698, 715
project templates 87
projects 40, 73
reporting bugs 30
reserved words in 240
saving as XML 85
scripting 62
SDK 689
syntax error messages 33
technical support 28, 29
third-party web sites 28
using code examples 26
using database with 728
Version Control Project format 85
VM Migration Assistant 724
web page 28
Window Editor 36
working with a VCS 85

REAL Studio 2006r3 Encryption 403
REAL Studio Feedback 30
REALbasic

magazine about 28
REALbasic Developer 28
REALSQLServerDatabase class 620
REALStudio

development cycle 32
IDE window 61

RecordSet class 623
Rectangle control 160
rectangles

drawing 437
RectShape class 442
Redim statement 233
Redo menu command 63
reference

definition of 578
reference counting

definition of 580
Refresh button 299
RegEx class 424
regular expressions 424–427
Remote Debugger Stub

configuring 658
remote debugging 67, 657–663

connections 661
remote machines

configuring 661
Remove method 233
RemoveResource method 528
Report Editor

Body area 457
data source 460
Footer section 462
GroupByField 461
Grouping section 460
Page Footer area 458
Page Header area 457
previewing to a Canvas 475
printing 468
SummaryType field 462
using a text file with 470
with interface 470
with SQL SELECTstatement 465

Report Layout Editor 456
reserved words 240
resize bar

in Code Editor 295
resource file

adding to a project 525
resource fork 524

adding a 525
adding to a project 525
contents of 524
opening a 524–525

resource forks
definition of 524

resource types
supported 526

ResourceFork class 525, 526, 528
resources

importing 306
reading 526–528
writing to 528

Resume command 647
Return character

used in writing to text files 512
Return type 557
reusable code 532
Revert to Saved menu command 62
RGB color
746 REALbasic User’s Guide

Index
specifying via the & operator 216
RGB color model 216
RGB function 441, 445, 446, 448
RGB values

getting the 446
root namespace 367
Rounded windows 96
RoundRectangle 161
RoundRectShape class 442
RTFData property 515
Run button 55, 67
Run menu command 67
Run panel 636
Run Paused menu command 67, 636
Run Remotely menu command 67
runtime exceptions 653–655

S
Save As dialog box

managing the 507–510
Save As menu command 62, 84, 85
Save menu command 62, 84
SaveAsDialog class 508, 509
SaveAsJPEG method 516
SaveAsPicture method 445, 516, 518
SaveStyledEditField method 514
schema

database 607
Scope 331

for a class 543–544
for a module 370–372
Global 226, 370
Local 225, 237, 315, 375
of a constant 377, 554
of a control 343
of a method 331, 332, 557
of a module’s items 370, 400
of a property 318, 374, 545
of class extension method 569
of constants 237, 375
of window constants 324
Private 226, 316, 325, 331, 533, 544
Protected 226, 315, 324, 331, 370, 400, 543, 582
Public 226, 315, 324, 331, 343, 370, 400, 543,

582
scripting

REAL Studio 62
ScrollBar control 147
search

via Spotlight 298
Search area 40, 58
Search Results 298–299

Refresh button 299
searches

favorite 302

recent 302
secure email 675
secure TCP connections 676
Select All menu command 63
Select Case statement 264–266, 349
selected file

getting folderitem for 502
selected folder

getting folderitem for 504
selected text

determining attributes of 410
working with 407–408

SelectFolder function 504, 505
SelectFolderDialog class 504, 506
selecting

controls 119
Self function 320, 344, 528
SelTextSize property 411
Separator control 155
separators

in menus 205
Serial control 166, 666

changing configuration of 668
Close method 668
configuring 666
DataAvailable event handler 667
Flush method 667
LookAhead method 667
Open method 667
overview of use 666
placing in a window 666
Poll method 668
reading data with 666
Write method 667
writing data 667
XmitWait method 667

serial device
definition of 666

serial devices
communicating with 666–668

serial port
closing the 668
opening the 666

ServerSocket class 166, 669, 673, 675
service application

creating a 76
Set Breakpoint menu command 66
Set method

computed property 321, 550
setter methods 340, 573–575
setter properties 549
SetupString property

storing the 449
Shadowed Box window 95
shared libraries 306
747REALbasic User’s Guide

Index
shared methods 557
shared properties 552
shortcuts

of folderitems 491
Show all Bookmarks menu command 71
Show Built Applications on Disk preference 698
Show Code menu command 69
Show Empty Events menu command 69, 281
Show Empty Events menu item 281
Show Layout menu command 69
Show Object IDs in Variable Lists option 651
Show on Disk menu command 82
Show Properties menu command 44, 72
Single data type 215
Slider

tick marks 148
Slider control 147–148

getting the focus 136
SmallSystem font 304, 406
SMTP protocol 681
SMTP server 669
snd resource 526

getting sounds from 520
reading 526

socket
orphaning a 673

Socket control 670
Close method 674
Connect method 670
Connected event handler 670
DataAvailable event handler 670
Error event handler 672
Listen method 670
Write method 671

SocketCore class 669
Sound class 520
sound file

opening a 519
sound files 519–520
sounds

importing 306
importing into projects 79

source code
encrypting 307
exporting 307

Space Horizontally command 184
Space Vertically command 184
Split function 233
Spotlight 174, 298
SQL 604
SQL queries 173
SQLSelect method 623
SSL communication 166
SSL protocols 166, 677
SSLSocket class 166, 675, 676

stack
in debugger 638

Stack drop-down list 638
Debugger 649

Stack window
viewing code from 649

stand-alone application
naming the 706

standalone application
creating a 56
naming the 705, 706

standalone applications
building 695–702

Standardize Format command 289
Startup screen

Options dialog 61
StaticText control 143
Step command 647, 648
Step In command 648
Step In option 648
Step menu command 67
Step option 647
Step Out command 648, 649
Step Out option 648, 649
Step statement

for incrementing a counter 256
Sticky bit 499
Stop 56
Stop command 647
Str function 243
String

data type 213
StringShape class 442
structs 219
structure alignment 397, 564
structure fields

declaring 394, 562
Structured Query Language 604
Structures 219
structures 219, 394–396, 561–563

alternative to MemoryBlocks 396, 564
using 396, 563

Styled property
in TextArea 514

styled text
definition of 409
handling 409–412
reading into a TextArea 514
saving as RTF 515
writing to a file 514
writing to disk 515

styled text files 514–515
StyledText

RTFData property 515
StyledText class 412–415, 515
748 REALbasic User’s Guide

Index
AppendStyleRun method 413
InsertStyleRun method 413
Paragraph method 413
ParagraphAlignment method 414
ParagraphCount method 414
RemoveStyleRun method 413
StyleRun method 413
StyleRunCount method 413
StyleRunRange method 413
Text method 413

StyledTextPrinter class 410, 450
DrawBlock method 450

StyleRun class 413
Sub statement 282
subclass

based on a control 578
creating a 540
creating via contextual menu 83
customizing a 533
definition of 533

subclasses
ease of debugging 537
examples of 533, 533–538

submenu
adding a 200–202

Super Class 536
defined 140, 533

Super keyword 570
superclass

extracting from a class 541
Switch To contextual menu item 281
syntax errors 33
Syntax Highlighting 275
System font 304, 406

T
tab

dragging a 54
Tab Order 69

changing the 179
Tab order 118

changing the 179
tab order

changing the 179
tab panel

definition of 41
Tab Panel Editor 157
tabbed editing

defined 51
Tabbed Editing option 54
table

creating a 607–608
Table 9 on page 304 306
TabPanel 156–157
TabPanels

advantages of 156
tabs

reordering 51
Tabs bar 34, 36, 37, 40, 41

contextual menu 53
dragging an item to 79
hiding the 53

Target property 344
TargetBigEndian constant 263
TargetCarbon constant 263, 714
TargetHasGUI constant 263, 714
TargetLinux constant 263, 714
TargetLittleEndian constant 263
TargetMachO constant 263, 714
TargetMacOS constant 263, 714
TargetMacOSClassic constant 263
TargetPowerPC constant 263
TargetWin32 constant 263, 714
TargetX86 constant 263, 714
TCP/IP 166, 669

multiple connections 675
supporting multiple connections 670

TCP/IP communications 669–681
TCP/IP connection

closing 674
error handling 672
listening for a 670
reading data 670
to another computer 670–674
writing data 671

TCP/IP protocols 681
TCPSocket control 166, 669

for communicating via the Internet 166, 167
Port property 669

technical support 29
templates 76
text

getting and selecting 407
text encoding 416–420

ASCII 416
default 418
defined 416
determining the 417
MacJapanese 417
MacRoman 417
specifying the 418
specifying when writing text files 513
Unicode 416, 417

text encodings 416–419
in Serial communications 667
in TCP/IP communications 671
reading and writing files 511
writing 671

text file
creating a 509
749REALbasic User’s Guide

Index
reading a 418, 510
writing to 419, 512–513

text files
compared to binary files 514
limitations of 514
specifying a text encoding 511
working with 510–515

text services 293
TextArea 132

MultiLine property 409
Styled property 514

TextArea control 145
TextEncoding class

Chr method 419
TextField 132, 144

AcceptTabs property 132
CueText property 144
cut, copy, and paste in 451
determining the font in 410
determining the font style 410
dragging text in 351
filtering entries 408
Format property 408
formatting text in 408
getting the focus 132
implementing drag and drop 350
LimitText property 408
Mask property 409
mask property 408
masking entries 409
MultiLine property 414
Password property 408
SelBold property 411
SelChange event handler 408
SelItalic property 411
SelLength property 407
SelStart property 407
SelText property 407
SelTextFont property 410
SelTextSize property 410, 411
SelUnderline property 411
setting font attributes in 411–412
setting the font style 411
Styled property 409, 414
subclass of 533
ToggleSelectionBold method 412
ToggleSelectionItalic method 412
ToggleSelectionUnderline method 412
toggling font styles 412

TextInputStream
definition of 510

TextInputStream class 418, 511, 512
Encoding property 418, 511
Open shared method 510

TextOutputStream

definition of 512
TextOutputStream class 419, 512, 513

WriteLine method 512
Thread class 254
Timer object 173
times

formatting 423
TLS protocol 166
Toolbar

Back button 70
Build button 68
Forward button 70
Location area 40, 71
Main 40
Run button 67
Search area 58

Toolbar control 168–173
Toolbar Editor 168
ToolButton 168
ToolItem 168
Type Filter dialog box 636
type selection 133
TypeInfo 597
TypeMismatchException runtime error 576

U
Ubound function 231
UDP socket modes 678
UDPSocket

instantiating a 677
UDPSocket class 167, 672, 677–679
UDPSockets

broadcasting 678
IP addresses for 678
multicasting 678
unicasting 678

UDT 394, 561
UIDbit (Set User bit)

permissions 499
UInt16 data type 214
UInt32 data type 214
UInt64 data type 214
UInt8 data type 214
underscore character

as line continuation character 288
Undo menu command 63
UnhandledException

event handler 582, 655
unicasting 678
Unicode encoding 416, 417
UpDownArrows control 165
user interface

importance of 89
UserCancelled function 436
user-defined types 394, 561
750 REALbasic User’s Guide

Index
UTF-16 encoding 416
UTF-8 encoding 416, 418, 419

V
vacuum tubes

use of in computers 632
values

changing the data type of 219
debugging 649–650
getting and setting in variables 223
getting from properties 222

variable
definition of 213

variables
declaration of 223
defined 223
definition of 213
getting and setting values 223
global 370, 374
local 225

Variables pane 639
Debugger 649

Variant data type 216
VB Migration Assistant 724
VBA 690
VBA Help 690
VCS 85
vector graphics 442–445

saving 445
vector object

definition of 442
displaying a 443–445
drawing a 443
opening 445

Version Control Project format 85
version control system 85
View menu 68, 281

Maximize Editor menu command 41
View Mode buttons 50, 296
virtual method 568
Visual Basic

converting to REAL Studio 723–728
Visual Basic for Applications 690
Volume function 492

W
Warnings menu item 67
While loop 253
While…Wend loop 511
window

accessing properties of a 320
adding a property to a 316, 332
adding controls to a 116
default 104

deleting a method 334
deleting a property 320
editing a method 334
editing a property 319
managing multiple instances of a 344
Paint event 431
types of 90

Window class
MacProcID property 99
Paint event 437

Window editing area 37
Window Editor 36

alignment icons 183
defined 36
displaying the 36
Edit Mode buttons 274
preferences 186, 715
View Mode buttons 296

Window Editor toolbar 180
customizing the 105–107

Window menu 72
WindowPtr data type 218
windows

accessing controls, methods, and properties of
other 342

adding methods to 329–334
adding properties to 314–320
creating 103
creating new 102
default type 92
deleting 103
events 311–313
Frame property 90, 101
Implicit Instance property 313
importing 306
multiple instances of 344
opening 313–314
opening with New operator 313
removing 103
shared among projects 80
Title property 101
windoids 94

Windows Media Player 520
WordApplication class 691
WriteLine method 512
WString data type 218

X
XML

opening 85
saving as 85

XML format 61
751REALbasic User’s Guide

Index
Z
zero-based array

definition of 229
752 REALbasic User’s Guide

	Contents
	CHAPTER 1 Introduction
	Contents
	Welcome to REAL Studio
	Installing REAL Studio
	Windows Requirements
	Linux Requirements
	Macintosh Requirements

	Where to Begin
	Documentation Conventions
	Using the On-Line Help
	Searching the Online Reference
	Context- Sensitive Help
	Context- Sensitive Error Messages

	Using Tips
	Electronic Documentation
	Our Support Web Page
	End User Web Sites
	REAL Studio Developer
	REAL Studio third-party Books
	Our Internet Mailing Lists
	Obtaining Updates
	Technical Support from REAL Software

	Contacting REAL Software
	Reporting Bugs and Making Feature Requests

	CHAPTER 2 Getting Started with REAL Studio
	Contents
	Concepts
	Applications are Driven by Events
	Developing Software with REAL Studio

	The Development Environment
	The REAL Studio IDE Window
	The Window Layout Editor

	The Project Editor
	The Code Editor
	The Menu Editor

	Configuring the IDE for Multiple Windows
	Working with the Tabs bar
	The Contextual Menu
	Hiding the Tabs bar
	Dragging a Tab

	The Main Toolbar
	Customizing the Main Toolbar

	The Bookmarks Bar
	REAL Studio IDE Menus
	The File Menu
	The Edit Menu
	The Project Menu
	The View Menu
	The History Menu
	The Bookmarks Menu
	The Window Menu
	The Help Menu

	Working with Projects
	Creating a New Project
	Configuring the Project Editor Toolbar
	Adding Items to Your Project
	Removing Items from Your Project
	The Project Editor Contextual Menu
	Saving Your Project
	Creating Project Templates

	CHAPTER 3 Building a User Interface
	Contents
	Working with Windows
	Window Types
	Creating Windows
	Removing Windows
	Setting the Default Window
	Encrypting Windows

	Message Dialog Boxes
	The MsgBox function
	The MessageDialog Class

	Interacting with the User Through Controls
	Favorites Controls
	Adding, Changing, and Removing Controls
	Understanding Control Layers
	Understanding The Focus
	Full Keyboard Access
	Duplicating Controls
	The Object Hierarchy
	Button Controls for Performing Actions
	Controls for Displaying and Entering Text
	HTMLViewer
	Controls for Displaying and Entering Numeric Values
	Controls for Presenting a List of Choices
	Controls for Visually Grouping Other Controls
	Controls for Displaying Graphics and Pictures
	Controls for Playing Movies, Music, and Animation
	Miscellaneous Controls
	Controls for Handling Communications
	Toolbar Control
	The Timer
	Controls for Working With Databases
	The Spotlight Query Control
	ActiveX Controls
	The Container Control
	Opening an Old Project

	Changing The Tab Order
	Using the Edit Tab Order Mode
	Auto- Adjustment of the Tab Order

	Aligning Controls with Other Controls
	Spacing Controls Evenly

	The Control Hierarchy
	Control Hierarchy Features

	Adding Menus and Menu Items
	The Default Menubar
	Adding Menubars
	Adding Menus
	Adding a Help Menu
	Adding Menu Items
	Adding a Submenu
	Adding a Menu Item to the Mac OS X Apple and Application Menus
	Moving Menus and Menu Items
	Converting a Menu Item to a Menu
	Removing Menu Items
	Adding A Menu Item Separator
	Creating MenuItems on the Fly
	Importing and Exporting Menus

	User Interface Guidelines

	CHAPTER 4 BASIC Programming Concepts
	Contents
	BASIC versus REAL Studio
	Storing Values in Properties and Variables
	What are Properties?
	Variables
	Data Types
	Changing a Value From One Data Type to Another
	Assigning Values to Properties
	Getting Values From Properties
	Getting and Setting Values in Variables
	Declaring Objects
	Using Arrays
	Mathematical Operators
	Operator Precedence
	Constants

	Reserved Words
	Executing Instructions with Methods
	Passing Values to Methods
	Returning Values from Methods
	Passing Parameters by Value and by Reference
	Using the Meta- Constant

	Documenting Your Code
	Comparison Operators
	Logical Comparisons
	Bitwise Comparisons

	Executing Instructions Repeatedly with Loops
	While...Wend
	Do...Loop
	For...Next
	The For…Each statement
	Adding Loops to your Code

	Making Decisions with Branching
	If…Then…End If
	If...Then...Else ...End If
	If...Then...Else If...End If
	If...Then...Else
	#If...#Endif
	Select...Case

	CHAPTER 5 Programming with Events and Objects
	Contents
	Understanding Event-Driven Programming
	Using The Code Editor
	Opening the Code Editor
	Configuring the Code Editor
	The Browser
	Understanding Methods in the Code Editor
	Opening a Window from its Code Editor
	The Code Editor’s Contextual Menu
	Searching your Project
	Finding using the Contextual Menu
	Copying and Pasting Code

	Printing Your Code
	Importing and Exporting Your Classes, Menus, Modules, and Windows
	External Project Items
	Importing
	Exporting
	Encrypting Your Source Code

	Responding To User Actions with Event Handlers
	Object- Oriented Programming
	Windows Events

	Opening Windows
	Adding Properties to Windows
	The Scope of a Property
	Declaring an Array as a Property
	Computed Properties
	Shared Methods and Properties

	Adding Constants to Windows
	The Scope of Window Constants
	Localizing an Application using Constants
	Converting a Literal to a Constant

	Adding Methods to Windows
	Passing Parameters to Methods
	Returning Values from Methods
	The Scope of Methods
	Dynamic Method Creation
	An Example Method
	Passing a Parameter by Value or Reference
	Setting Default Values for a Parameter
	Setter Methods
	Constructors and Destructors
	Attributes

	Accessing Items of Other Windows
	Controls
	Events

	Creating New Instances of Controls On The Fly
	Sharing Code Among An Array of Controls
	Drag and Drop
	Dragging Text From TextFields
	Dragging a Row From a ListBox
	Dragging from an ImageWell
	Dragging from a Canvas Control
	Dropping
	Dropping Items On TextAreas
	Dropping Items on ListBoxes
	Dropping Items on ImageWells and Canvas controls
	RawData and PrivateRawData Properties

	Menus and Menu Items
	Adding Code To a Menu Handler
	Enabling Menu Items
	Handling Menu Items From Individual Controls
	Handling Menu Items When a Window Is Open
	Handling Menu Items When No Windows Are Open
	Creating New Menu Items On The Fly
	Displaying a Contextual Menu
	Classes

	CHAPTER 6 Adding Global Functionality with Modules
	Contents
	Understanding Modules
	Adding A New Module
	Scope of a Module’s Items

	Adding Methods to Modules
	Adding Properties to Modules
	Adding Constants to Modules
	Adding a Constant to a Module
	Color constants
	Using Constants to Localize your Application

	Adding Classes to Modules
	Converting a Project Class to a Module Class

	Adding Class Interfaces to Modules
	Adding Event Definitions to Modules

	Adding Delegates to Modules
	Structures
	Creating a Structure
	Using Structures
	Structure Alignment

	Adding an Enumeration to a Module
	Nesting a Module in a Module
	Class Extension Methods
	Importing and Exporting Modules
	Exporting
	Importing

	Encrypting Modules

	CHAPTER 7 Working With Text and Graphics
	Contents
	Working With Fonts
	The System and SmallSystem Fonts
	What Fonts Are Available?

	Working with the Selected Text
	Creating a Password Field
	Formatting and Filtering Text Entry
	The Format Property
	The Mask Property

	Handling Styled Text
	Determining the Font, Size, and Style of Text
	Setting the Font, Size, and Style of Text

	Working with StyledText Objects
	Working with Text Encodings
	Text Encodings: From ASCII to Unicode
	Changing Your Code To Handle Text Encodings

	Formatting Numbers, Dates, and Times
	Numbers
	Dates
	Times

	Searching using Regular Expressions
	Adding Pictures and Drawing Graphics
	Understanding the Coordinates System
	Displaying Pictures In a Window
	Creating Pictures
	Drawing Standard Dialog Icons
	Drawing Pixels
	Drawing Lines
	Drawing Ovals
	Drawing Rectangles
	Drawing Polygons
	Drawing into a Region in the Graphics Object
	Creating Custom Controls with the Canvas Control

	Working with Vector Graphics
	Drawing and Displaying a Vector Object
	Opening and Saving Vector Graphics

	Working With Color
	Determining the RGB Values For a Color
	The Pixel Property of Graphics Objects

	Printing Text and Graphics
	Working with the Page Setup Dialog Box
	Printing With The Print Dialog Box
	Printing Without The Print Dialog Box
	Printing Styled Text

	Transferring Text and Graphics with the Clipboard
	Testing The Clipboard For Specific Data Types
	Getting Data From The Clipboard
	Putting Data On The Clipboard

	CHAPTER 8 Creating Reports
	The Report Layout Editor
	Report Editor Controls
	Report Editor Toolbar
	Report Editor Areas
	Adding a Report to a Project
	Adding a Grouping Section

	Report Editor Examples
	Using a Database as a Data Source
	Using a Text File as a Data Source

	CHAPTER 9 Working With Files
	Contents
	Understanding File Types
	Using The File Types Editor
	Creating Custom File Types for Your Application

	Understanding FolderItems
	How Are Shortcuts and Aliases Handled?
	Getting a File at a Specific Location
	Accessing Specific System Folders
	Verifying that you have accessed the Item
	Creating a New FolderItem
	Getting Information About a FolderItem
	Deleting a FolderItem
	Getting and Setting Ownership
	Getting and Setting Permissions
	Getting The Path To Your Application’s Folder
	Getting Specific Items In the Application’s Folder
	Getting The Selected File From An Open File Dialog Box

	Getting The Selected Folder From An Open Folder Dialog Box
	Using the Save As Dialog Box
	Working With Text Files
	Reading From a Text File
	Writing to a Text File
	Limitations of Text Files

	Working With Styled Text Files
	Loading Styled Text Into a TextArea
	Writing Styled Text From a TextArea to a File

	Working With Picture Files
	Saving Pictures
	Opening Pictures

	Working With Sound Files
	Working With Movie Files
	Working With Binary Files
	BinaryStreams
	Reading From a Binary File
	Writing to a Binary File

	Working With Macintosh Resources
	Opening a File’s Resource Fork
	Adding a Resource Fork to a File
	Adding a Resource Fork to a Project
	Supported Resource Types
	Reading Resources
	Writing To Resources
	More Information on the ResourceFork

	Files Opened From the Desktop
	Files Opened by Double- Clicking
	Files Dropped On Your Application’s Icon
	Creating New Files

	CHAPTER 10 Creating Reusable Objects with Classes
	Contents
	The Benefits of Classes
	Reusable Code
	Smaller Projects and Applications
	Easier Code Maintenance
	Easier Debugging
	More Control

	Understanding Instances
	Understanding Subclasses
	What is a Subclass?
	Examples of Subclasses

	Referring to a Class’s Properties and Methods From Within the Class
	Creating Classes
	Creating a Subclass from an Existing Class
	Creating a Superclass from an Existing Class

	Saving Classes
	External Project Items

	Modifying Classes
	Scope of a Class’s Methods, Properties, and Constants
	Adding Properties
	Customizing the Properties List
	Adding Computed Properties
	Adding Shared Properties
	Adding Constants
	Adding Methods
	Adding Shared Methods
	Adding Event Definitions
	Adding Structures
	Structure Alignment
	Adding Enumerations
	Adding Delegates

	Virtual Methods
	Extending Classes
	Writing a Class Extension Method
	Calling a Class Extension Method

	Constructors and Destructors
	Constructors
	Old Syntax
	Destructors

	Overloading
	Overloading Custom Classes
	Assigning a Value to a Method

	Using Arrays of Classes
	Casting
	Managing Menus within Classes
	Using Classes in Your Projects
	The Class
	The Instance
	The Reference
	Subclasses Based on Controls
	Classes Based on Classes Other Than Controls
	Accessing the Properties and Methods of a Class
	When are Instances of Classes Removed From Memory?

	The Application Class
	Special Event Handlers
	Scope of the App Class’s Properties
	Scope of the App Class’s Methods

	Creating Custom Interface Controls with Classes
	Drawing Your Custom Control

	Class Interfaces
	Implementing Methods
	Modifying and Deleting Interfaces
	A Class Interface Example Project
	Creating a new Class Interface from an Existing Class

	Interface Inheritance
	Introspection
	Importing Classes From Other Projects
	Importing External Project Items

	Exporting Classes For Use In Other Projects
	Encrypting Your Source Code

	Deleting Classes From a Project

	CHAPTER 11 Creating Databases with REAL Studio
	Contents
	REAL Studio’s Database Architecture
	Structured Query Language
	REAL Studio’s Database Tools
	Selecting a REAL Data Source

	Creating and Modifying Databases from the Project Editor
	Adding Indexes
	Viewing Data
	Storage Types and Column Type Affinities

	The DatabaseQuery Control
	The DataControl Control
	Creating a Database Front End Programmatically
	Accessing a Data Source
	Creating a Database in Code
	Opening a Data Source
	Editing Records
	Listing Records
	Adding Records

	CHAPTER 12 Debugging Your Code
	Contents
	What is Debugging?
	Logical Bugs
	Syntactical Bugs
	Analyzing the Project
	Filtering Types of Issues

	The Debugger
	Breaking into the Debugger
	The Debugger Screen
	Controlling Execution

	Following the Execution of Methods
	Step
	Step In
	Step Out
	Tracking Method Execution with the Stack

	Watching Your Values
	Local Values
	Parameters
	Global Values
	Object IDs

	Starting and Stopping Your Project
	Runtime Exception Errors
	Handling Runtime Errors

	Profiling your Project
	Remote Debugging
	About Firewalls

	CHAPTER 13 Communicating With The Outside World
	Contents
	Communicating With Serial Devices
	Getting Set Up
	Opening the Serial Port
	Reading Data
	Writing Data
	Changing a Serial Control’s Configuration on the Fly
	Closing the Port
	Communicating With Modems
	Communicating with USB and FireWire Devices

	TCP/IP Communications with the TCPSocket Control
	Getting Set Up
	Making a Connection to Another Computer
	Listening For a Connection From Another Computer
	Reading Data
	Writing Data
	Handling Errors
	Orphaning a Socket
	Maximum Number of Sockets
	Closing the Connection
	Sending and Receiving Email via TCP/IP
	HTTP Communications

	Handling Multiple Connections with the ServerSocket Control
	Reference Counting

	Handling Secure TCP Connections with the SSLSocket Control
	UDP Connections with the UDPSocket Control
	Datagrams
	UDPSocket Modes

	Making Networking Easy
	The AutoDiscovery Class

	Understanding Protocols

	CHAPTER 14 Extending the Capabilities of REAL Studio
	Contents
	Making API calls to the Operating System
	Calling AppleScripts
	Preparing an AppleScript to Work in REAL Studio
	Adding an AppleScript to a Project
	Passing Values To an AppleScript
	Returning Values From an AppleScript
	Calling an AppleScript
	Removing an AppleScript

	Communicating with AppleEvents
	Sending AppleEvents
	Receiving AppleEvents
	Sophisticated AppleEvents

	Using and Writing REAL Studio Plug-ins
	Loading Plug- ins
	Using Plug-ins
	Including Plug-ins in Your Stand- Alone Applications
	Writing Your Own Plug-ins

	Using PowerPC Shared Libraries
	Microsoft Office Automation
	ActiveX Components

	CHAPTER 15 Building Stand-Alone Applications
	Contents
	Choosing a Target Platform

	Building Your Application
	Building for Windows
	Incremental Compilation
	Analyzing the Project

	Customizing the Standalone Application’s Properties
	Appearance Settings
	Version Information
	Windows Settings
	Linux Settings
	Mac Settings
	Debugger
	Advanced

	Preparing your Application for Compilation
	Compiling for Windows
	Mac OS X Considerations
	Linux Considerations

	Assigning Custom Document Icons
	Region Codes

	CHAPTER 16 Converting Visual Basic Projects to REAL Studio
	Contents
	VB Migration Assistant
	What doesn’t it do?
	Supported Versions of VB
	Third-party Controls
	Converting a VB Project
	Encoding Issues on Windows
	Encoding Issues on Macintosh and Linux
	Non-English File Names
	Auto-opening your Project

	Database Options

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

